JPS60231333A - Semiconductor structure - Google Patents

Semiconductor structure

Info

Publication number
JPS60231333A
JPS60231333A JP59087120A JP8712084A JPS60231333A JP S60231333 A JPS60231333 A JP S60231333A JP 59087120 A JP59087120 A JP 59087120A JP 8712084 A JP8712084 A JP 8712084A JP S60231333 A JPS60231333 A JP S60231333A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
layer
crystal layer
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59087120A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoneda
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59087120A priority Critical patent/JPS60231333A/en
Publication of JPS60231333A publication Critical patent/JPS60231333A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02477Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable a high-quality single crystal layer to be laminated on a GaAs single crystal substrate, by continuously and successively laminating a ZnSe single crystal layer, a ZnSe1-xSx buffer layer and a ZnS single crystal layer on a GaAs single crystal substrate, and gradually varying the composition ratio (x) of the buffer layer from 0 to 1 from the substrate side. CONSTITUTION:A ZnSe single crystal layer 2 laminated on an n-GaAs single crystal substrate 1 has a lattice constant substantially equal to that of the substrate 1. A buffer layer 3 laminated on the layer 2 is constituted by ZnSe1-xSx wherein the ratio (x) gradually varies from 0 to 1 from the layer 2 side. A ZnS single crystal layer 4 is laminated on the buffer layer 3. Each of the layers is grown by the MBE method. For example, growth is carried out in such a manner that, in a vacuum vessel which has been evacuated to a background vacuum degree of 10<-10>Torr or less, the n-GaAs substrate 1 having a (100) plane is secured to a substrate holder 11 having a heater by means of an In metal 12, and first to third cells 13-15 are disposed in facing relation to the substrate 1.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高品質なZnS単結晶層を得るための半導体構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a semiconductor structure for obtaining a high quality ZnS single crystal layer.

(ロ)従来技術 1−Vl化合物の一つであるZnS (硫化亜鉛)は、
エネルギーバンドギャップが広いため、青色発光素子を
得るための一つの素材として有望視されている。しかし
、ZnSでは、I[−’/I化合物の特徴として高融点
であること、及び組成元素の蒸気圧が高いことのために
、高い結晶性の単結晶が得にくい。
(b) Prior art 1-ZnS (zinc sulfide), which is one of the Vl compounds, is
Because of its wide energy bandgap, it is seen as a promising material for producing blue light-emitting devices. However, in ZnS, it is difficult to obtain a single crystal with high crystallinity because the I[-'/I compound has a high melting point and the vapor pressure of the constituent elements is high.

真空蒸着法やスパッタ法は、ZnS単結晶を得るための
方法として知られているが、上記理由により結晶性や、
純度の点でいまだ満足を与える手法ではない。
Vacuum evaporation method and sputtering method are known as methods for obtaining ZnS single crystal, but due to the above reasons, crystallinity and
This method is still not satisfactory in terms of purity.

また、近年出現した分子線エピタキシャル成長法02)
、下MBE法と称す)を用いたものがJ ourna’
l Of Crystal Growth 53(19
81)421−431 等で報告されている。
In addition, the molecular beam epitaxial growth method that has appeared in recent years02)
The method using the MBE method is Journa'
l Of Crystal Growth 53 (19
81) 421-431, etc.

従来、ZnSのMBEでは、ZnSとの格子整合がよい
とぎれるGaPや81基板を用いて行なわれていた。ま
た、GaAsを基板として用いた場合でも格子の不整合
は大きいが、結構良好な結果が得られていて、GaPあ
るいはSiを基板として用いた場合と余り差がない。こ
の理由として考えられるのは格子の整合性が膜質まで直
接的に反映できる程、高品質な膜が末だ得られていない
と考えられる。この様に格子整合性の良いSlやGaP
基板を用いても末だ充分高品質な膜が得られない1つの
大きな理由として特にMBEでは成長前の基板表面の清
浄性が成長膜質を大きく支配するということが分ってい
る。Siは空気中の酸素と反応しやすく表面に5i−0
2を形成する。またGaPも酸素と反応しやすくリン酸
化物、ガリウム酸化物が形成される。これら酸化膜を除
去するためには真空中で極めて高温で処理しなければな
らない。たとえばSlの場合だと5i−0□を除去する
には1200℃以上の加熱が必要で、GaPは630℃
程度で除去出来るがこの程度の温度番どなれば母材中の
リンも多量に飛び出し、酸化膜除去後のGaP表面は極
めて荒れた表面になる。
Conventionally, MBE of ZnS has been carried out using GaP or 81 substrates that have good lattice matching with ZnS. Further, even when GaAs is used as a substrate, the lattice mismatch is large, but fairly good results are obtained, and there is not much difference from when GaP or Si is used as the substrate. A possible reason for this is that films of such high quality that lattice matching can be directly reflected in film quality have not yet been obtained. In this way, Sl and GaP have good lattice matching.
It has been found that one of the major reasons why a film of sufficiently high quality cannot be obtained even if a substrate is used is that, especially in MBE, the cleanliness of the substrate surface before growth largely controls the quality of the grown film. Si easily reacts with oxygen in the air and has 5i-0 on the surface.
form 2. GaP also easily reacts with oxygen, forming phosphorus oxide and gallium oxide. In order to remove these oxide films, treatment must be performed in a vacuum at extremely high temperatures. For example, in the case of Sl, heating to 1200°C or higher is required to remove 5i-0□, while for GaP it is 630°C.
Although it is possible to remove the oxide film at a certain temperature, a large amount of phosphorus in the base metal also comes out at this temperature, and the GaP surface after the oxide film is removed becomes extremely rough.

この様な表面上にZnSのMBEを行なえばその下地表
面の影響を成長膜も受け膜質の低下をもたらす。GaA
sを基板として用いた場合もやはりGaAeの表面に酸
化膜が形成されるがGaAsの場合の酸化物は570C
の真空中熱処理で完全に除去できる。又、570t″で
はG a −A 9表面のGaやAsはそれ程飛び出さ
ず清浄な表面が得られる。この清浄な表面上にZnSの
MBEを行なえばそれなりに膜質の良好なものが得られ
るが格子不整があるため格子整合の良い基板を用いた場
合に比較して膜質が劣ると予測される。
If MBE of ZnS is performed on such a surface, the grown film will also be affected by the underlying surface, resulting in a decrease in film quality. GaA
Even when S is used as a substrate, an oxide film is formed on the surface of GaAe, but in the case of GaAs, the oxide is 570C.
It can be completely removed by heat treatment in vacuum. In addition, at 570t'', Ga and As on the surface of Ga-A 9 do not fly out so much and a clean surface can be obtained.If MBE of ZnS is performed on this clean surface, a film with fairly good quality can be obtained. Due to the lattice mismatch, it is predicted that the film quality will be inferior compared to when a substrate with good lattice matching is used.

(ハ)発明の目的 本発明は斯る点に鑑みてなされたもので、GaAs単結
晶基板上に高品質なZnS単結晶層を積層可能な半導体
構造を提供せんとするものである。
(c) Purpose of the Invention The present invention has been made in view of the above points, and it is an object of the present invention to provide a semiconductor structure in which a high quality ZnS single crystal layer can be stacked on a GaAs single crystal substrate.

に)発明の構成 本発明の構成的特徴は、GaAs単結晶基板上kc Z
 n S e単結晶層、Zn5e 1−xSXからなる
バッファ層、ZnS単結晶層を連続的に順次積層してな
り、上記バッファ層の組成比Xは上記基板側より0から
1へ順次変化することにある。
2) Structure of the Invention The structural feature of the present invention is that
An n S e single crystal layer, a buffer layer made of Zn5e 1-xSX, and a ZnS single crystal layer are successively laminated in sequence, and the composition ratio X of the buffer layer changes from 0 to 1 sequentially from the substrate side. It is in.

←剰実施例 第1図は本発明の一実施例を示し、(1)はn型単結晶
基板、(2)は該基板上に積層されたZn5e単結晶層
であり、該層はGaAElと略等しい格子定数を有する
。(3)は該単結晶層上に積層されたバッファ層であり
、該バッファ層はZnS e 1−xsXからなりその
組成比XはZn5e単結晶層(2)側より順次0から1
に変化する。(4)は上記バッファ層(3)上に積層さ
れたZnS単結晶層である。
←Example Embodiment Figure 1 shows an embodiment of the present invention, in which (1) is an n-type single crystal substrate, (2) is a Zn5e single crystal layer laminated on the substrate, and this layer is made of GaAEl and They have approximately equal lattice constants. (3) is a buffer layer laminated on the single crystal layer, the buffer layer is made of ZnS e 1-xsX, and the composition ratio
Changes to (4) is a ZnS single crystal layer laminated on the buffer layer (3).

また、上記各層の成長はMBF法を用いて行なう。Further, the growth of each of the above layers is performed using the MBF method.

第2図はMBE装置を原理的に示したものである。バッ
クグラウンド真空度io”’rorr以下に排気された
真空容器内において、加熱用ヒータを備えた基板ホルダ
ー01)上に工n(インジウム)メタル(IL2にて一
生面が(100)面であるn型GaAs(力゛リウム砒
素)基板(1)が固着されている。
FIG. 2 shows the principle of the MBE apparatus. In a vacuum chamber evacuated to a background vacuum level below io'''rorr, a substrate holder (01) equipped with a heating heater is placed on an indium (indium) metal (the surface of which is (100) in IL2). A type GaAs (lium arsenide) substrate (1) is fixed.

基板(1)と対向する位置には第1〜@3セル0題〜(
19が配され、これらの間には主シヤツタ00と個別シ
ャッタ(16a)〜(160)が介在されている。また
上記各セル031〜051には加熱用ヒータ(171及
び温度検出用熱電対(旧が夫々装着されている。更に上
記各セル0m〜(1ωには夫々Zn、Se及びZnSが
収納されている。
At the position facing the board (1) are the 1st to 3rd cells 0 to (
19, and a main shutter 00 and individual shutters (16a) to (160) are interposed between them. In addition, each of the cells 031 to 051 is equipped with a heating heater (171) and a temperature detection thermocouple (old).Furthermore, each of the cells 0m to 1ω contains Zn, Se, and ZnS, respectively. .

次いで第1図に示した本実施例を第2図に示しゐ た装置を用いて製造す方法を工程別に説明する。Next, the present embodiment shown in Fig. 1 is shown in Fig. 2. The manufacturing method using the equipment will be explained step by step.

八 A、第1工程 本工程ではGaAS基板(1)表面の酸化膜を除去する
。具体的には上記各シャッタを閉じた状態で基板(1)
を600t″に20分間保持する。
8A. First step In this step, the oxide film on the surface of the GaAS substrate (1) is removed. Specifically, with each of the above shutters closed, the board (1)
was held at 600t'' for 20 minutes.

B、第2工程 本工程では基板(1)上にZn5e単結晶層(2)を成
長せしめる。具体的には基板(1)の温度を320℃、
第1セルαJ温度を300℃、第2セル0沿温度を約2
00℃とし、主シャフタ0印及び第1、第2の個別シャ
ッタ(16a)(16b)を開となす。斯る状態を約1
時間保持することにより基板(1)上に約1μm厚のZ
n5e単結晶層(2)が成長する。
B. Second Step In this step, a Zn5e single crystal layer (2) is grown on the substrate (1). Specifically, the temperature of the substrate (1) was set to 320°C,
The first cell αJ temperature is 300℃, the second cell 0 temperature is approximately 2
00° C., and the main shutter 0 mark and the first and second individual shutters (16a) (16b) are opened. Such a state is about 1
By holding for a period of time, a Z layer with a thickness of approximately 1 μm is formed on the substrate (1).
An n5e single crystal layer (2) is grown.

C1第3工程 本工程ではZn5e単結晶層(2)上にバッファ層(3
)を形成する。斯る形成条件は、成長開始前の基板(1
)温度を500℃、第2セル(1舶温度を200℃、第
3セル08温度を980℃とし、第1個別シャッタ(1
6a)以外の各シャッタを開となし成長を開始する。斯
る成長中、基板(1)及び第2セルC141を夫々0.
67℃/mi、n及び0,83℃/mi、nの冷却速度
で冷却し、上記第2セル04)温度が150℃でかつ基
板(1)温度が260℃となった時点で上記第2個別シ
ャッタ(16’b)を閉となす。斯る第2個別シャッタ
(161))が閉となされた時点で上記バッファ層(3
)は約1μm成長し、またその組成はZnSem結晶層
(2)側がZn5eであり成長層表面がZnSとなるよ
うにZn5e1.−xSxの組成比Xが0から1に徐々
に変化している。
C1 Third step In this step, a buffer layer (3) is formed on the Zn5e single crystal layer (2).
) to form. Such formation conditions are such that the substrate (1
) temperature is 500°C, the second cell (1 ship temperature is 200°C, the third cell 08 temperature is 980°C, the first individual shutter (1
Growth is started by opening each shutter except 6a). During this growth, the substrate (1) and the second cell C141 were each heated to 0.
Cooling was performed at a cooling rate of 67°C/mi,n and 0,83°C/mi,n, and when the second cell 04) temperature was 150°C and the substrate (1) temperature was 260°C, the second cell The individual shutter (16'b) is closed. When the second individual shutter (161)) is closed, the buffer layer (3) is closed.
) grows to a thickness of approximately 1 μm, and its composition is Zn5e1. The composition ratio X of -xSx gradually changes from 0 to 1.

これはZnS分子中のSが基板(1)温度260t!以
上では斯る基板温度に略比例して基板(1)への付着量
が減少し、またSθはそのセル温度の減少に略比例して
飛翔量が減少するためである。
This means that S in the ZnS molecule has a substrate (1) temperature of 260t! This is because the amount of adhesion to the substrate (1) decreases in proportion to the substrate temperature, and the amount of flying Sθ decreases in proportion to the decrease in cell temperature.

D、第4工程 本工程は最終工程であり、上記バッファ層(3)上にZ
nS単結晶層(4)を成長せしめる。斯る成長条件は第
6セル(19を980℃、基板(1)温度を260℃と
し、主シヤツタ(16)及び第3個別シャッタ(16(
りを開とする。斯る条件下では約0.7μm/hの速度
でZnS単結晶層(4)が成長する。
D. Fourth step This step is the final step, in which Z is formed on the buffer layer (3).
An nS single crystal layer (4) is grown. The growth conditions were as follows: the sixth cell (19) was 980°C, the substrate (1) temperature was 260°C, the main shutter (16) and the third individual shutter (16(
Open up. Under such conditions, the ZnS single crystal layer (4) grows at a rate of about 0.7 μm/h.

本実施例より得られたZnS単結晶層と上記第1〜第4
工程のうち第2、第3工程を省略し、GaAS単結晶基
板上に直接形成されたZnS単結晶層とのフォトルミネ
ッセンス(PL)強度をノンドープZnS単結晶の理論
的な発光波長である350nm以上で測定した。第3図
は本測定結果を示し、同図中曲線aが本実施例により得
られたZnS単結晶層のPL強度であり、曲線すがGa
As単結晶基板上に直接形成されたZnS単結晶層のP
L強度である。尚、曲線aの測定時の感度は曲線すの測
定時の感度の10倍である。
The ZnS single crystal layer obtained in this example and the first to fourth
The second and third steps are omitted, and the photoluminescence (PL) intensity with the ZnS single crystal layer formed directly on the GaAS single crystal substrate is set to 350 nm or more, which is the theoretical emission wavelength of non-doped ZnS single crystal. It was measured with Figure 3 shows the results of this measurement, in which curve a is the PL intensity of the ZnS single crystal layer obtained in this example, and the curve a is the PL intensity of the ZnS single crystal layer obtained in this example.
P of ZnS single crystal layer formed directly on As single crystal substrate
L strength. Note that the sensitivity when measuring curve a is 10 times the sensitivity when measuring curve a.

第3図から明らかなように本実施例により得られたZn
S単結晶層の方が長波長側(350nm以上)の深いレ
ベルlこよる発光が少なくなっている。これは換言すれ
ば膜質の優秀さを示すものである。
As is clear from FIG. 3, the Zn obtained in this example
The S single crystal layer emits less light at a deep level on the long wavelength side (350 nm or more). In other words, this shows the excellent film quality.

(へ)発明の効果 本発明によれば高品質のZnS単結晶層が得られるため
、青色発光素子等のデバイスに一鳳と応用可能となる。
(f) Effects of the Invention According to the present invention, a high-quality ZnS single crystal layer can be obtained, so that it can be applied to devices such as blue light emitting elements.

【図面の簡単な説明】[Brief explanation of the drawing]

1g1図は本発明の一実施例を示す断面図、第2図はM
BE成長装置を原理的に示す模式図、第5図はPL特性
を示す特性図である。 (1)−Cr a A 8単結晶基板、f2)−Z n
 S e単結晶層、(3)・・・バッファ層、(4)・
・・ZnS単結晶層。 出願人 三洋電機株式会社 代理人 弁理士 佐 野 静 夫 第4図 第2図 6
Figure 1g1 is a sectional view showing one embodiment of the present invention, and Figure 2 is M.
A schematic diagram showing the principle of the BE growth apparatus, and FIG. 5 is a characteristic diagram showing the PL characteristics. (1)-Cr a A 8 single crystal substrate, f2)-Z n
S e single crystal layer, (3)...buffer layer, (4)...
...ZnS single crystal layer. Applicant Sanyo Electric Co., Ltd. Agent Patent Attorney Shizuo Sano Figure 4 Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1) G a A 8単結晶基板上にZnSθ単結晶
層、Zn5e 1−xSxからなるバー177層、Zn
S単結晶層を連続的に順次積層してなり、上記バッファ
層の組成比Xは上記基板側より0から1へ順次変化する
ことを特徴とする半導体構造。
(1) ZnSθ single crystal layer, 177 bar layers made of Zn5e 1-xSx, Zn
1. A semiconductor structure comprising S single-crystal layers successively stacked one after the other, wherein the composition ratio X of the buffer layer sequentially changes from 0 to 1 from the substrate side.
JP59087120A 1984-04-27 1984-04-27 Semiconductor structure Pending JPS60231333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087120A JPS60231333A (en) 1984-04-27 1984-04-27 Semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087120A JPS60231333A (en) 1984-04-27 1984-04-27 Semiconductor structure

Publications (1)

Publication Number Publication Date
JPS60231333A true JPS60231333A (en) 1985-11-16

Family

ID=13906093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087120A Pending JPS60231333A (en) 1984-04-27 1984-04-27 Semiconductor structure

Country Status (1)

Country Link
JP (1) JPS60231333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105896A (en) * 2020-01-10 2021-07-13 三星显示有限公司 Method for producing quantum dots, and optical member and device comprising quantum dots

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752126A (en) * 1980-09-16 1982-03-27 Oki Electric Ind Co Ltd Compound semiconductor device
JPS5753927A (en) * 1980-09-18 1982-03-31 Oki Electric Ind Co Ltd Compound semiconductor device
JPS57128092A (en) * 1981-01-30 1982-08-09 Sanyo Electric Co Ltd Imbedded type semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752126A (en) * 1980-09-16 1982-03-27 Oki Electric Ind Co Ltd Compound semiconductor device
JPS5753927A (en) * 1980-09-18 1982-03-31 Oki Electric Ind Co Ltd Compound semiconductor device
JPS57128092A (en) * 1981-01-30 1982-08-09 Sanyo Electric Co Ltd Imbedded type semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105896A (en) * 2020-01-10 2021-07-13 三星显示有限公司 Method for producing quantum dots, and optical member and device comprising quantum dots

Similar Documents

Publication Publication Date Title
Sitar et al. Interface chemistry and surface morphology in the initial stages of growth of GaN and AlN on α-SiC and sapphire
US8679650B2 (en) Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
US7482618B2 (en) ZnO group epitaxial semiconductor device and its manufacture
JP5122738B2 (en) Method for manufacturing ZnO crystal or ZnO-based semiconductor compound crystal, and method for manufacturing ZnO-based light emitting device
JP4705079B2 (en) III-V / II-VI Semiconductor Interface Manufacturing Method
Rusop et al. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates
US7718468B2 (en) Manufacture method for ZnO-containing compound semiconductor layer
Shan et al. Aging and annealing effects of ZnO thin films on GaAs substrates deposited by pulsed laser deposition
Huang et al. GaNyAs1-x-yBix Alloy Lattice Matched to GaAs with 1.3 µm Photoluminescence Emission
JPS60231333A (en) Semiconductor structure
Korenstein et al. Growth of (111) and (100) CdTe films on (100) GaAs substrates by hot wall epitaxy
JP3504851B2 (en) Method for manufacturing compound semiconductor film
JP2009196867A5 (en)
JP2009196867A (en) METHOD FOR PREPARING MgaZn1-aO SINGLE CRYSTAL THIN FILM
Cheng et al. Low‐temperature growth of ZnSe by molecular beam epitaxy using cracked selenium
Zahn et al. The influence of Cd overpressure in the molecular beam epitaxy of InSb/CdTe heterostructures: A combined raman and infrared spectroscopy study
US6503578B1 (en) Method for preparing ZnSe thin films by ion-assisted continuous wave CO2 laser deposition
US5451552A (en) Method for improvement of optical quality and reduction of background doping in gainSB/INAS superlattices
JP2001270799A (en) Zinc oxide thin film and method for producing the same
Hussain et al. Photoluminescence comparison of different substrates on AlN: Cr thin films for optoelectronic devices
Yao et al. Molecular beam epitaxy of ZnSe and ZnTe thin-film single crystals
Brill et al. Material characteristics of HgCdSe grown on GaSb and ZnTe/Si substrates by MBE
Rajavel et al. Growth kinetics and properties of heteroepitaxial (Cd, Zn) Te films prepared by metalorganic molecular beam epitaxy
JP3538634B2 (en) Semiconductor element substrate, method of manufacturing semiconductor element, and semiconductor element
JP2547585B2 (en) Method for growing ZnSe single crystal