JP2009196867A5 - - Google Patents

Download PDF

Info

Publication number
JP2009196867A5
JP2009196867A5 JP2008042277A JP2008042277A JP2009196867A5 JP 2009196867 A5 JP2009196867 A5 JP 2009196867A5 JP 2008042277 A JP2008042277 A JP 2008042277A JP 2008042277 A JP2008042277 A JP 2008042277A JP 2009196867 A5 JP2009196867 A5 JP 2009196867A5
Authority
JP
Japan
Prior art keywords
single crystal
thin film
substrate
zno
znmgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008042277A
Other languages
Japanese (ja)
Other versions
JP2009196867A (en
JP5019326B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008042277A priority Critical patent/JP5019326B2/en
Priority claimed from JP2008042277A external-priority patent/JP5019326B2/en
Publication of JP2009196867A publication Critical patent/JP2009196867A/en
Publication of JP2009196867A5 publication Critical patent/JP2009196867A5/ja
Application granted granted Critical
Publication of JP5019326B2 publication Critical patent/JP5019326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

Z. Vashaei、外4名、“Ahigh-resolution electron microscopy study of MgxZn1-xOfilms grown on MgO/c-sapphire ”、phys. stat. sol. (c)3、2006年、第4号、p.1042−1045Z. Vashaei, four others, “Ahigh-resolution electron microscopy study of MgxZn1-xOfilms grown on MgO / c-sapphire”, phys. Stat. Sol. (C) 3, 2006, No. 4, p. 1042-1045 K. Matsubara、外6名、“Band-gap modified Al-doped Zn1-xMgxO transparent conducting filmsdeposited by pulsed laser deposition”、APPLIFD PHYSICS LETTERS、2004年8月23日、第85巻、第8号、p.1374−1376K. Matsubara, 6 others, “Band-gap modified Al-doped Zn1-xMgxO transparent conducting films deposited by pulsed laser deposition”, APPLIFD PHYSICS LETTERS, August 23, 2004, Vol. 85, No. 8, p. 1374-1376 K. Ogata、外7名、“ZnOand ZnMgO growth on a-plane sapphire by molecular beam epitaxy”Journal ofCrystal Growth 251、2003年、p.623−627.K. Ogata, 7 others, “ZnOand ZnMgO growth on a-plane sapphire by molecular beam epitaxy” Journal of Crystal Growth 251, 2003, p. 623-627. A. Ohtomo、外8名、“MgxZn1-xOas a II-VI widegap semiconductor alloy”、APPLIFD PHYSICS LETTERS、1998年5月11日、第72巻、第19号、. p.2466−2468.A. Ohtomo, 8 others, “MgxZn1-xOas a II-VI widegap semiconductor alloy”, APPLIFD PHYSICS LETTERS, May 11, 1998, Vol. 72, No. 19, p. 2466-2468.

以下、この発明によるMgaZn1-aO単結晶薄膜の作製方法を実施するための最良の形態を説明する。
〔実施形態の概要〕
まず、この発明によるMgaZn1-aO単結晶薄膜の作製方法の実施形態の概要を説明する。
以下に説明する実施の形態においては、ZnO薄膜の作製において実績のある、例えば特許第3945782号公報に記載されているようなプラズマアシスト付きの反応性蒸着法を用いる。
Hereinafter, the best mode for carrying out the method for producing a Mg a Zn 1-a O single crystal thin film according to the present invention will be described.
[Outline of Embodiment]
First, an outline of an embodiment of a method for producing a Mg a Zn 1-a O single crystal thin film according to the present invention will be described.
In the embodiment described below, a reactive deposition method with plasma assist as described in, for example, Japanese Patent No. 3945782, which has a track record in the production of a ZnO thin film, is used.

通常、ZnOバルク単結晶は抵抗率が100Ω・cm以上であるが、ZnO単結晶育成の際にドナー不純物(Al、Fe、Gaの単独あるいはそれらの組み合わせ)を、1.0×1017/cm以上ドーピングすることによって、結晶性に優れ移動度が高く、基板の抵抗率を0.5Ω・cm以下にすることが可能なため、導電性基板として使用可能である。
また、ZnO単結晶基板の代わりにMgbZn1-bO(ただし、0<b≦1)単結晶基板を用いることにより格子定数や熱膨張係数のずれも解消できるため、発生する歪みもさらに抑制することが可能であり、より好ましい。
Normally, the resistivity of a ZnO bulk single crystal is 100 Ω · cm or more, but donor impurities (single or a combination of Al, Fe, and Ga) are added at 1.0 × 10 17 / cm during the growth of a ZnO single crystal. By doping 3 or more, the crystallinity is excellent and the mobility is high, and the resistivity of the substrate can be 0.5 Ω · cm or less, so that it can be used as a conductive substrate.
In addition, by using a Mg b Zn 1-b O (where 0 <b ≦ 1) single crystal substrate instead of a ZnO single crystal substrate, the lattice constant and the coefficient of thermal expansion can be eliminated. It can be suppressed, and is more preferable.

基板にAl2O3単結晶基板を用いることもできるが、その場合には、MgaZn1-aO(ただし、0≦a≦1)とは格子定数が大きく異なり、熱膨張係数も異なる。そこで、結晶性の良好な成長層を得るため、Al2O3単結晶上にMgaZn1-aO(ただし、0≦a≦1)のバッファ層を設けるのが望ましい。また、ZnO単結晶基板を用いる場合でも、そのZnO単結晶上にMgaZn1-aOバッファ層を設けるとよい。 An Al 2 O 3 single crystal substrate can be used as the substrate, but in that case, the lattice constant is significantly different from that of Mg a Zn 1-a O (where 0 ≦ a ≦ 1), and the thermal expansion coefficient is also different. . Therefore, in order to obtain a growth layer with good crystallinity, it is desirable to provide a buffer layer of Mg a Zn 1-a O (where 0 ≦ a ≦ 1) on the Al 2 O 3 single crystal. Even when a ZnO single crystal substrate is used, an Mg a Zn 1-a O buffer layer is preferably provided on the ZnO single crystal.

その真空状態で基板加熱用ヒータ1によって基板2を成膜時の温度またはそれよりも高い温度に加熱して一定時間保持することによって、基板2の成膜面をサーマルクリーニングした後、基板2の加熱温度を成膜温度に調整する。その成膜温度は300〜1000℃の間とする。300℃より低いと結晶性が著しく悪くなり、1000℃を超えると成膜できなくなる。 In this vacuum state, the substrate 2 is heated to the temperature at the time of film formation by the substrate heating heater 1 or higher and held for a certain period of time to thermally clean the film formation surface of the substrate 2, The heating temperature is adjusted to the film formation temperature . The film forming temperature is between 300 and 1000 ° C. When the temperature is lower than 300 ° C., the crystallinity is remarkably deteriorated.

酸素と窒素は分圧にて窒素:酸素=1:0.5〜5になるようにしてから、ルツボ6の上方のシャッタ5を開け、MgxZn1-x合金からなる蒸着材料を加熱して蒸発させ、高周波プラズマ雰囲気中に含まれる酸素及び窒素原子と基板2上で結合させ、窒素ドープのp形MgaZn1-aO(ただし、0≦a≦1)薄膜を成長させて成膜する。
酸素と窒素の分圧比を上記の範囲にする理由は、窒素の割合がこれより大きくなると結晶性が悪くなり、逆に小さいとキャリア濃度が低くなってp形層の抵抗が高くなってしまうためである。成膜時間は30〜180分の間とし、膜厚は0.2〜1.0μmとする。成膜時間はこの膜厚を得るために必要な時間である。
Oxygen and nitrogen are made to have a partial pressure of nitrogen: oxygen = 1: 0.5 to 5, and then the shutter 5 above the crucible 6 is opened and the vapor deposition material made of Mg x Zn 1-x alloy is heated. This is evaporated and bonded to oxygen and nitrogen atoms contained in the high-frequency plasma atmosphere on the substrate 2 to grow a nitrogen-doped p-type Mg a Zn 1-a O (where 0 ≦ a ≦ 1) thin film. Film.
The reason why the partial pressure ratio of oxygen and nitrogen is within the above range is that the crystallinity is deteriorated when the ratio of nitrogen is larger than this, and conversely, the carrier concentration is lowered and the resistance of the p-type layer is increased. It is. The film formation time is 30 to 180 minutes, and the film thickness is 0.2 to 1.0 μm. The film formation time is the time necessary to obtain this film thickness.

〔作製したMgZnO膜の評価〕
上記の条件で成膜したMgaZn1-aO(ただし、0≦a≦1)膜(以下、「ZnMgO薄膜」という)の評価を行った。
図2は、この発明によってZnO単結晶基板上に成膜したZnMgO薄膜のX線回折(XRD)逆格子空間マップの測定結果を示す。その測定にはPhilips社製の薄膜材料結晶性解析X線回折装置であるX’ pert MRDを使用した。
[Evaluation of prepared MgZnO film]
The Mg a Zn 1-a O (where 0 ≦ a ≦ 1) film (hereinafter referred to as “ ZnMgO thin film ”) formed under the above conditions was evaluated.
FIG. 2 shows a measurement result of an X-ray diffraction (XRD) reciprocal lattice space map of a ZnMgO thin film formed on a ZnO single crystal substrate according to the present invention. For this measurement, X 'pert MRD, which is an X-ray diffraction apparatus for crystallinity analysis of a thin film material manufactured by Philips, was used.

この図2から分るように、基板であるZnOの(0002)面のピークP1と作製した薄膜であるZnMgOの(0002)面のピークP2が観察されている。スポットが扁平に伸びているのは装置の光学系の広がりのためである。ZnMgOの薄膜において他の配向面は観察されず、エピタキシャル成長しており、基板のZnO単結晶よりもわずかに広いピークとはなっているものの鋭いピークであり、結晶性は良好である。また、ZnO中にMgが取り込まれることにより、c軸長が小さくなっていることが分る。これより、取り込まれたMgはZnと置換し、六方晶のZnMgO混晶が形成されていることと考えられる。
図2において、平行四辺形の枠内が測定範囲を示しており、曲線はその測定結果を示している。また、横軸のQx、縦軸のはQyは逆格子単位(reciprocal lattice unit)×10〔rlu〕を示している。
As can be seen from FIG. 2, a peak P1 on the (0002) plane of ZnO as a substrate and a peak P2 on the (0002) plane of ZnMgO as a fabricated thin film are observed. The spots are flat because of the spread of the optical system of the apparatus. No other orientation plane was observed in the ZnMgO thin film, and it was epitaxially grown. Although it is a slightly broader peak than the ZnO single crystal of the substrate, it is a sharp peak and the crystallinity is good. It can also be seen that the c-axis length is reduced by the incorporation of Mg into ZnO. From this, it is considered that the incorporated Mg is substituted with Zn, and a hexagonal ZnMgO mixed crystal is formed.
In FIG. 2, the inside of the parallelogram frame indicates the measurement range, and the curve indicates the measurement result. Further, Qx on the horizontal axis and Qy on the vertical axis indicate reciprocal lattice units × 10 4 [rlu].

図3は、ZnO単結晶基板上に作製したZnMgO薄膜のX線回折(XRD)における2θ−ωスキャンの結果である。横軸は2θ(deg.)であり、縦軸はX線回折強度(Intensity)(a.u.)である。a.u.は任意単位でありX線回折強度の相対的な強度を示す。34.42
(deg.) のピークP1は基板であるZnOの (0002)面 のピークであり、34.46 (deg.) のピークP2は作製したZnMgOの薄膜のピークである。
FIG. 3 shows the results of 2θ-ω scanning in X-ray diffraction (XRD) of a ZnMgO thin film formed on a ZnO single crystal substrate. The horizontal axis is 2θ (deg.), And the vertical axis is X-ray diffraction intensity (Intensity) (au). au is an arbitrary unit and indicates the relative intensity of the X-ray diffraction intensity. 34.42
The peak P1 of (deg.) is the (0002) plane peak of ZnO as the substrate, and the peak P2 of 34.46 (deg.) is the peak of the produced ZnMgO thin film.

図5は、ZnO単結晶とZnO単結晶基板上に作製したZnMgO薄膜の反射スペクトルを示す線図であり、横軸は光子エネルギー(Photon
energy)(eV)、縦軸は反射率R(%)である。この図5において、破線で示すZnO単結晶では光子エネルギーの約3.3 eVにバンド端の吸収が見られる。それに対して、実線で示すZnMgO薄膜においては基板であるZnO単結晶のバンド端の吸収とZnMgO薄膜のバンド端の吸収がそれぞれ光子エネルギーの約3.3
eVと3.37 eVに観察される。これより、ZnO中に取り込まれたMgはZnと置換し、六方晶のZnMgO混晶が形成されてバンドギャップが約70 meV大きくなっていると考えられる。
FIG. 5 is a diagram showing the reflection spectrum of a ZnMgO thin film fabricated on a ZnO single crystal and a ZnO single crystal substrate, and the horizontal axis represents photon energy (Photon energy).
energy) (eV), and the vertical axis represents the reflectance R (%) . In FIG. 5, in the ZnO single crystal shown by a broken line, absorption at the band edge is observed at a photon energy of about 3.3 eV. On the other hand, in the ZnMgO thin film indicated by the solid line, the absorption at the band edge of the ZnO single crystal as the substrate and the absorption at the band edge of the ZnMgO thin film are about 3.3 photon energy, respectively.
Observed at eV and 3.37 eV. From this, it is considered that Mg taken into ZnO is substituted for Zn, and a hexagonal ZnMgO mixed crystal is formed, and the band gap is increased by about 70 meV.

この発明は、高品質でMg濃度を容易に制御できる量産性に優れたMgaZn1-aO(ただし、0≦a≦1)の単結晶薄膜の作製方法を提供する。この作製方法により作製できるMgaZn1-aO(ただし、0≦a≦1)の単結晶薄膜は発光ダイオードや半導体レーザ素子、及びそれを利用する各種表示装置やプリンタなど、紫外線を発生したりそれを使用する装置等の広範な用途に利用可能である。また、紫外線センサなどの受光素子としても利用可能である。 The present invention provides a method for producing a single-crystal thin film of Mg a Zn 1-a O (provided that 0 ≦ a ≦ 1), which has high quality and can easily control the Mg concentration and has excellent mass productivity. The Mg a Zn 1-a O (0 ≦ a ≦ 1) single crystal thin film that can be produced by this production method generates ultraviolet rays such as light emitting diodes, semiconductor laser elements, and various display devices and printers using the same. It can be used for a wide range of applications such as a device using the same. It can also be used as a light receiving element such as an ultraviolet sensor.

Claims (1)

前記ドープする窒素の濃度が2×1017/cm〜1021/cm3であることを特徴とする請求項10から14のいずれか一項に記載のMgaZn1-aO単結晶薄膜の作製方法。 The concentration of the nitrogen to be doped is 2 × 10 17 / cm 3 to 10 21 / cm 3. Fabrication of the MgaZn 1-a O single crystal thin film according to any one of claims 10 to 14 Method.
JP2008042277A 2008-02-23 2008-02-23 Method for producing MgaZn1-aO single crystal thin film Expired - Fee Related JP5019326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042277A JP5019326B2 (en) 2008-02-23 2008-02-23 Method for producing MgaZn1-aO single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042277A JP5019326B2 (en) 2008-02-23 2008-02-23 Method for producing MgaZn1-aO single crystal thin film

Publications (3)

Publication Number Publication Date
JP2009196867A JP2009196867A (en) 2009-09-03
JP2009196867A5 true JP2009196867A5 (en) 2011-03-17
JP5019326B2 JP5019326B2 (en) 2012-09-05

Family

ID=41140814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042277A Expired - Fee Related JP5019326B2 (en) 2008-02-23 2008-02-23 Method for producing MgaZn1-aO single crystal thin film

Country Status (1)

Country Link
JP (1) JP5019326B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213133B1 (en) * 2010-02-19 2012-12-18 전남대학교산학협력단 ZnMgAlO thin films of UV ragne single crystalline Lattice matched to ZnO and Method for manufacturing the same
KR20140128157A (en) * 2013-04-26 2014-11-05 오씨아이 주식회사 Method for growing single crystal using plasma
PL238652B1 (en) * 2017-11-28 2021-09-20 Inst Fizyki Polskiej Akademii Nauk Method for producing structures with the three-component layers of Zn₁-ₓMgₓO
CN109301036A (en) * 2018-11-14 2019-02-01 长春理工大学 A kind of uniform MgZnO film technology of preparing based on laser sintered method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540201B2 (en) * 2000-09-13 2010-09-08 独立行政法人産業技術総合研究所 Method for manufacturing semiconductor device having ZnO-based oxide semiconductor layer
JP2004207441A (en) * 2002-12-25 2004-07-22 Sharp Corp Oxide semiconductor light-emitting device
JP2004304166A (en) * 2003-03-14 2004-10-28 Rohm Co Ltd ZnO SEMICONDUCTOR DEVICE
JP3945782B2 (en) * 2005-09-06 2007-07-18 シチズン東北株式会社 Semiconductor light emitting device and manufacturing method thereof
JP5122738B2 (en) * 2005-11-01 2013-01-16 スタンレー電気株式会社 Method for manufacturing ZnO crystal or ZnO-based semiconductor compound crystal, and method for manufacturing ZnO-based light emitting device
JP4939844B2 (en) * 2006-06-08 2012-05-30 ローム株式会社 ZnO-based semiconductor device

Similar Documents

Publication Publication Date Title
TWI246116B (en) Process for growing ZnSe Epitaxy layer on Si substrate and semiconductor structure thereby
Nakahara et al. Growth of undoped ZnO films with improved electrical properties by radical source molecular beam epitaxy
Benramache et al. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films
Rusop et al. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates
US10593544B2 (en) Method for forming a thin film comprising an ultrawide bandgap oxide semiconductor
Bakin et al. ZnMgO‐ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano‐LEDs
JP2009043920A (en) P-TYPE MgZnO-BASED THIN FILM AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT
US9496350B2 (en) P-type ZnO based compound semiconductor layer, a ZnO based compound semiconductor element, and an N-type ZnO based compound semiconductor laminate structure
Zawadzka et al. Temperature-dependent luminescence dynamics for ZnO thin films
Aparna et al. Review on synthesis and characterization of gallium phosphide
US7718468B2 (en) Manufacture method for ZnO-containing compound semiconductor layer
JP2009196867A5 (en)
JP5019326B2 (en) Method for producing MgaZn1-aO single crystal thin film
Wei et al. Impact of oxygen source parameters on homoepitaxial ZnO films grown at low-temperature on Zn-polar substrates
Bhuiyan et al. Substrate temperature effect on the structural and optical properties of ZnSe thin films
US20140084288A1 (en) ZnO BASED COMPOUND SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THE SAME
El-Shaer et al. Growth of wide band gap wurtzite ZnMgO layers on (0001) Al2O3 by radical-source molecular beam epitaxy
Suthagar et al. Photoluminescence properties of ZnSe 1− x Te x thin films on GaAs/ITO substrates by electron beam evaporation technique
Guo et al. Growth of ZnTe layers on (111) GaAs substrates by metalorganic vapor phase epitaxy
Brill et al. Material characteristics of HgCdSe grown on GaSb and ZnTe/Si substrates by MBE
Tanaka et al. Fabrication of a ZnTe light emitting diode by Al thermal diffusion into ap-ZnTe epitaxial layer on ap-ZnMgTe substrate
JP2010056464A (en) Semiconductor light emitting element and method of manufacturing same
Feng Brief historical review of research and basic/interdisciplinary characterization of ZnO
Wei et al. Optimization of photoluminescence lifetime for ZnO films grown on ZnO substrates at low temperature
Song et al. Vertical growth of ZnO nanowires on c-Al2O3 substrate by controlling ramping rate in a vapor-phase epitaxy method