JPS60231324A - Electron beam exposure apparatus - Google Patents

Electron beam exposure apparatus

Info

Publication number
JPS60231324A
JPS60231324A JP59086321A JP8632184A JPS60231324A JP S60231324 A JPS60231324 A JP S60231324A JP 59086321 A JP59086321 A JP 59086321A JP 8632184 A JP8632184 A JP 8632184A JP S60231324 A JPS60231324 A JP S60231324A
Authority
JP
Japan
Prior art keywords
coil
astigmatism correction
field
points
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59086321A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
洋 安田
Shinji Miyagi
宮城 慎司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59086321A priority Critical patent/JPS60231324A/en
Publication of JPS60231324A publication Critical patent/JPS60231324A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a high-performance apparatus which enables a clear beam image to be obtained over the entire deflection field, by providing a focusing coil and a plurality of astigmatism correction coils consisting of at least a twofold astigmatism correction coil and a threefold astigmatism correction coil, and supplying correction data to each of the coils. CONSTITUTION:Two kinds of astigmatism correction coils, that is, a twofold astigmatism correction coil 21 and a threefold astigmatism correction coil 22 are disposed together with a focusing coil 1. Correction data corresponding to each of the points in the entire deflection field is prepared for all of the coils and stored in the memory section of an arithmetic controller 8. The correction data is experimentally obtained for each of the points in the entire deflection field. For example, the deflection field is divided into a multiplicity of points, and a peak value of a curve obtained by differentiating a reflected beam detecting signal with respect to the value of current flowing through the focusing coil 1 is calculated for each of the points. In this way, data items for all of the points in the field are stored, and when the field is scanned, these data items are collated with each of the points in the field, and a beam image which has been corrected is projected.

Description

【発明の詳細な説明】 ial 発明の技術分野 本発明は電子ビーム露光装置に係り、特に高度に収差が
補正される露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an electron beam exposure apparatus, and more particularly to an exposure apparatus in which aberrations are highly corrected.

(bl 技術の背景 近年、紫外線露光法の限界から、電子ビーム露光法が広
く利用され、EC(半導体集積回路)の微細化に大いに
役立っていることは周知の通りである。
(bl Background of the Technology) In recent years, due to the limitations of ultraviolet exposure, electron beam exposure has been widely used, and it is well known that it is of great help in miniaturizing ECs (semiconductor integrated circuits).

一方、ICの高集積化には限りがなく、微細化する程、
回路が高速動作する等の利点があるために、ICの高集
積化、高密度化には日夜努力が払われている。従って、
最近ではサブミクロン・パターンの描画が行なわれてお
り、電子ビーム露光装置においても可能な限り鮮明なビ
ームスポットによって被露光面をスキャン(走査)する
ことが極めて重要なことである。
On the other hand, there is no limit to the high integration of ICs, and as they become smaller,
Since circuits have advantages such as high-speed operation, efforts are being made to increase the integration and density of ICs. Therefore,
Recently, submicron patterns have been drawn, and it is extremely important for an electron beam exposure apparatus to scan the surface to be exposed with a beam spot as clear as possible.

(C) 従来技術と問題点 さて、走査型電子ビーム露光装置において、ビームは平
坦なウェハー面をスキャンするわけであるから、偏向フ
ィールドの中心からずれると、ウェハー面に焦点を結ば
なくなる。即ち、ビームが偏向フィールドの中心点から
遠ざかるにつれて、焦点距離を大きくして、例えば偏向
フィールドが四角形の場合には、四隅部で最大の焦点距
離になるようにしなければならない。このようにしない
と、適切な焦点がフィールド全面で得られない。
(C) Prior Art and Problems Now, in a scanning electron beam exposure apparatus, the beam scans a flat wafer surface, so if it deviates from the center of the deflection field, it will no longer be focused on the wafer surface. That is, as the beam moves away from the center point of the deflection field, the focal length must be increased so that, for example, if the deflection field is square, the maximum focal length is at the four corners. Otherwise, proper focus cannot be obtained over the entire field.

このような働きをするコイルを焦点コイル(ダイナミッ
クフォーカスコイル)と呼んで、従前より既に露光装置
に配置されている。
A coil that functions in this manner is called a focus coil (dynamic focus coil), and has already been installed in exposure apparatuses.

また、偏向フィールドの中心から遠ざかると、ビームの
非点収差が変わって、そのために鮮明に焦点を結ばなく
なる。即ち、偏向方向の直交面内の一方向では適切な焦
点を結ぶが、他方向では焦点ボケを起こして、歪んだ楕
円形状のビームスポットとなる。これを補正するために
、非点収差補正コイル(スティグマトールコイル)が焦
点コイルと同様に従前から、電子ビーム露光装置に砲付
けられている。
Also, as the beam moves away from the center of the deflection field, the astigmatism of the beam changes, making it less sharply focused. That is, the beam is properly focused in one direction in a plane orthogonal to the deflection direction, but is out of focus in the other direction, resulting in a distorted elliptical beam spot. In order to correct this, an astigmatism correction coil (stigmator coil), like a focusing coil, has been installed in an electron beam exposure apparatus for some time.

第1図はこのような焦点コイル1と非点収差補正コイル
2を配置した電子ビーム露光装置の概要図を示しており
、その他の記号の3は電子銃、4はブランキング、5は
絞りレンズ、6は偏向レンズ、7はウェハー(被露光基
板)、8は露光装置全般を制御する計算制御器である。
Fig. 1 shows a schematic diagram of an electron beam exposure apparatus in which such a focusing coil 1 and astigmatism correction coil 2 are arranged, and the other symbols 3 are the electron gun, 4 is the blanking, and 5 is the aperture lens. , 6 is a deflection lens, 7 is a wafer (substrate to be exposed), and 8 is a calculation controller that controls the overall exposure apparatus.

このうち、焦点コイル1は導線を束ねたリング状のコイ
ルで、これを偏向フィールド域の周囲に設けたものであ
るが、非点収差補正コイル2は第2図に示すように、中
心をフィールド域として放射状にコイルを配した形状で
ある。このコイルはS極とN極とが交互に隣接しており
、コイル巻数と電流量■を加減するとビームスポットの
形状が可変になる。一般に、第2図のような2回対称非
点収差補正コイルが汎用されているが、非点収差補正コ
イルは1個だけでなく、同形状のコイルを2個設けて、
一方を他方に対して平面的に45度ずらせて配置してい
る。2回対称非点収差補正コイルの別名を4極子コイル
とも称しているが、更に、3回対称、5回対称や6回対
称等の複雑な形状の非点収差補正コイルも知られている
Of these, the focusing coil 1 is a ring-shaped coil made of a bundle of conducting wires, and is installed around the deflection field area, while the astigmatism correction coil 2 has the center of the field as shown in Figure 2. It has a shape in which coils are arranged radially as a region. This coil has S poles and N poles adjacent to each other alternately, and the shape of the beam spot can be changed by adjusting the number of turns of the coil and the amount of current. Generally, a two-fold symmetrical astigmatism correction coil as shown in Fig. 2 is widely used, but instead of just one astigmatism correction coil, two coils of the same shape are provided.
One side is arranged planarly offset by 45 degrees from the other. The two-fold symmetric astigmatism correction coil is also called a quadrupole coil, but astigmatism correction coils with complex shapes such as three-fold, five-fold, and six-fold symmetry are also known.

しかしながら、一種類(上記平面的にすら・口た2つの
コイル対を一種類とする)の非点数’R?+Ii正コイ
正金イルただけでは、収差を完全に補正することは難し
いことが、経験上から判ってきた。例えば三角形状のビ
ームスポットが現れ易くて、フィールド全域に亘って、
ビームスポットを高度な真円形状に補正することは、大
変困難なことである。一方、6回対称等の複雑な形状の
非点収差補正コイルを用いれば、補正データが極めて複
雑化して、同様にビームスポットをフィールド全域に亘
って、高度な真円形状にすることが至難な業になる。
However, one type of astigmatism 'R? It has been found from experience that it is difficult to completely correct aberrations using only the +Ii positive metal mirror. For example, a triangular beam spot tends to appear over the entire field,
It is very difficult to correct the beam spot to a highly perfect circular shape. On the other hand, if an astigmatism correction coil with a complicated shape such as 6-fold symmetry is used, the correction data becomes extremely complicated, and it is also extremely difficult to make the beam spot a highly perfect circle over the entire field. It becomes a karma.

尚、ここで上記したビームの焦点ボケの問題は、電子銃
3がウェハー7面より遠ざかれるにつれて少なくなって
、補正も容易になる。しかし、それではビーム強度が弱
くなって、露光量が減少する。
Incidentally, the above-described problem of beam defocusing decreases as the electron gun 3 moves away from the wafer 7 surface, and correction becomes easier. However, this weakens the beam intensity and reduces the exposure amount.

本発明は電子銃を被露光面に近づけ、言い換えれば築束
半角を大きくし偏向を広角にして、且つ強いビームが得
られる電子ビーム露光装置、即ち電子ビーム露光装置の
高性能化に関するものである。
The present invention relates to an electron beam exposure apparatus that can bring an electron gun closer to the surface to be exposed, in other words, increase the half-angle of convergence, widen the deflection angle, and obtain a strong beam, that is, improve the performance of an electron beam exposure apparatus. .

(d+ 発明の目的 本発明は上記のような問題に解決を与え、偏向フィール
ド全域に亘って鮮明なビーム像が得られる高性能な電子
ビーム露光装置を提供するものである。
(d+ OBJECTS OF THE INVENTION The present invention provides a solution to the above-mentioned problems and provides a high-performance electron beam exposure apparatus that can obtain a clear beam image over the entire deflection field.

+01 発明の構成 その目的は、焦点コイルと、少なくとも2回対称非点収
差補正コイルおよび3回対称非点収差補正コイルからな
る複数の非点収差補正コイルとが設けられ、該焦点コイ
ルと非点収差?di正コイルのそれぞれに偏向フィール
ドの各アドレスに対応する補正データを与えるようにし
た電子ビーム露光装置によって達成させることができる
+01 Structure of the Invention The object is to provide a focusing coil and a plurality of astigmatism correction coils each consisting of at least a two-fold symmetrical astigmatism correction coil and a three-fold symmetrical astigmatism correction coil; aberration? This can be achieved by an electron beam exposure apparatus that provides correction data corresponding to each address of the deflection field to each of the di positive coils.

ffl 発明の実施例 以下1図面を参照し一実施例を用いて詳細に説明する。ffl Embodiments of the invention Hereinafter, an embodiment will be described in detail with reference to one drawing.

第3図は本発明にかかる電子ビーム露光装置の概要断面
図を示しており、図示のように焦点1イル1と共に、2
回対称非点収差補正コイル21と3回対称非点収差補正
コイル22との2種類の非点収差補正コイルを配置する
。2回対称非点収差補正コイル21は第2図に示した通
りのもので、3回対称非点収差補正コイル22の形状を
第4図に示している。図には3回対称コイル22を1個
だけしか示していないが、2回対称非点収差補正コイル
2と同じように、同形コイルの一方を他方に対して平面
的に30度ずらせた2個からなるコイルである。
FIG. 3 shows a schematic cross-sectional view of an electron beam exposure apparatus according to the present invention, and as shown in the figure, focal points 1 and 2 are
Two types of astigmatism correction coils, a rotationally symmetrical astigmatism correction coil 21 and a threefold symmetrical astigmatism correction coil 22, are arranged. The two-fold symmetrical astigmatism correction coil 21 is as shown in FIG. 2, and the shape of the three-fold symmetrical astigmatism correction coil 22 is shown in FIG. Although only one 3-fold symmetrical coil 22 is shown in the figure, like the 2-fold symmetrical astigmatism correction coil 2, there are two coils with the same shape, one of which is shifted by 30 degrees in plan with respect to the other. It is a coil consisting of.

そうすれば、焦点コイルと非点収差補正コイルと合ワせ
て合計で、5つのコイルが設けられる事になるが、これ
らすべてのコイルについてフィールド域の各点に対応す
る補正データを作り、それを計算処理装置8の記憶部に
記憶させておく。そのデータはフィールド全域の各点に
対して実験的にめるが、例えば第5図(alに示すよう
に偏向フィールド域10を多数点に区切り、各点につい
て焦点コイルの電流値■に対する反射ビーム検出信号の
微分のピーク値Pをめる。その図表を第5図(hlを示
しているが、このデータは例えば、試料上の一定領域を
ビームで走査し、領域端部(エツジ)でのビーム信号の
変化量を微分し、その値を実験的にプロットしてめたも
のである。このようにして、フィールドの全点について
データFを記憶させる。なお、各点以外のフィールド内
の部分は、近接した点のデータで補間するようにする。
In this case, a total of five coils will be provided including the focusing coil and the astigmatism correction coil, but correction data corresponding to each point in the field area will be created for all these coils, and the correction data will be adjusted accordingly. is stored in the storage section of the calculation processing device 8. The data can be obtained experimentally for each point in the entire field, but for example, as shown in Figure 5 (al), the deflection field area 10 is divided into many points, and for each point, the reflected beam for the current value of the focusing coil is Calculate the peak value P of the differential of the detection signal.The chart is shown in Figure 5 (hl), but this data can be obtained by, for example, scanning a certain area on the sample with a beam, and scanning the area at the edge of the area. It is obtained by differentiating the amount of change in the beam signal and plotting the value experimentally.In this way, data F is stored for all points in the field.Please note that the data F is stored for all points in the field. interpolates data from nearby points.

同様にして、この焦点コイルのデータの他に、偏向フィ
ールド10の各点について、フィールド域の各点に対す
る2回対称非点収差補正コイル21のX方向のデータS
に、X方向のデータSyおよび3回対称非点収差補正コ
イル22のX方向のデータHχ、y方向のデータr1y
をめ、それらを計算処理装置8の記憶部に入力させてお
く。
Similarly, in addition to the data of this focusing coil, for each point of the deflection field 10, data S in the X direction of the two-fold symmetric astigmatism correction coil 21 for each point of the field area.
, X-direction data Sy, X-direction data Hχ of the three-fold symmetric astigmatism correction coil 22, and y-direction data r1y.
and input them into the storage section of the calculation processing device 8.

かくして、フィールドを走査する際、フィールド域の各
点においてこれらのデータと照合し、焦点コイル、2回
対称非点収差補正コイル、3回対称非点収差補正コイル
と順次に高次な補正を行なったビーム像を投影する。そ
うすると、偏向フィールド全域に亘って真円形のビーム
スポットが走査される。又、広角に偏向してフィール1
:域を一層広くすることも可能になる。
Thus, when scanning the field, these data are checked at each point in the field area, and higher-order corrections are sequentially performed using the focusing coil, the 2-fold symmetrical astigmatism correction coil, and the 3-fold symmetrical astigmatism correction coil. project a beam image. Then, a perfectly circular beam spot is scanned over the entire deflection field. Also, it can be deflected to a wide angle to create a feel 1
: It is also possible to further widen the area.

このようにした電子ビーム露光装置の実施結果によれば
、10■■角のフィールド域の四隅部で0.1μmφの
真円状ビームスポットが得られ、又151m角ノフィー
ルド域の四隅部で0.2μmφのビームスポットが得ら
れており、それ以外のフィールドの中心に近い点でも、
同様な真円形ビームスポットが得られる。
According to the implementation results of the electron beam exposure apparatus constructed as described above, a perfect circular beam spot of 0.1 μmφ was obtained at the four corners of a 10 mm square field area, and a perfect circular beam spot of 0.1 μmφ was obtained at the four corners of a 151 m square field area. A beam spot of .2 μmφ was obtained, and other points near the center of the field also
A similar perfectly circular beam spot is obtained.

fgl 発明の効果 以上の説明から明らかなように、本発明によれば絶えず
適切なビーム像で走査する高性能な電子ビーム露光装置
カー得られ、露光精度の向上に極めて寄与するものであ
る。
fgl Effects of the Invention As is clear from the above description, the present invention provides a high-performance electron beam exposure apparatus that constantly scans with an appropriate beam image, and greatly contributes to improving exposure precision.

尚、上記例は2回対称非点収差補正コイルと3回対称非
点収差?ili正コイルとで説明したが、3回対称コイ
ルの代わりに他の対称コイル、例えば5回対称コイルを
用いても同様の結果が得られることは当然である。
In addition, is the above example a 2-fold symmetric astigmatism correction coil and a 3-fold symmetric astigmatism correction coil? Although the description has been made using the ili positive coil, it is natural that similar results can be obtained even if other symmetrical coils, for example, 5-fold symmetrical coils, are used instead of the 3-fold symmetrical coil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電子ビーム露光装置の概要図、第2図は
2回対称非点収差補正コイルの1個を図示した図、第3
図は本発明にかかる電子ビーム露光装置の概要図、第4
図は3回対称非点収差補正コイルの1個を図示した図、
第5図+alはフィールドの各点を例示した図、第5図
中)はビームのピーク値Pをめる図表例である。 図中、1は焦点コイル、2.21は2回対称非点収差補
正コイル、22は3回対称非点収差補正コイル、3は電
子銃、4はブランキング、5は絞りレンズ、6は偏向レ
ンズ、7はウェハー、8は計算制御器、10はフィール
ドを示している。 第1図 第2図 13図 第4図 、、−ビ 第5図
Figure 1 is a schematic diagram of a conventional electron beam exposure system, Figure 2 is a diagram illustrating one of the two-fold symmetric astigmatism correction coils, and Figure 3 is a diagram illustrating one of the two-fold symmetric astigmatism correction coils.
FIG. 4 is a schematic diagram of an electron beam exposure apparatus according to the present invention.
The figure shows one of the three-fold symmetrical astigmatism correction coil.
Figure 5+al is a diagram illustrating each point of the field, and Figure 5) is an example of a chart showing the peak value P of the beam. In the figure, 1 is a focusing coil, 2.21 is a 2-fold symmetrical astigmatism correction coil, 22 is a 3-fold symmetrical astigmatism correction coil, 3 is an electron gun, 4 is blanking, 5 is an aperture lens, and 6 is deflection. 7 is a wafer, 8 is a calculation controller, and 10 is a field. Fig. 1 Fig. 2 Fig. 13 Fig. 4, -B Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 焦点コイルと、少なくとも2回対称非点収差補正コイル
および3回対称非点収差補正コイルからなる複数の非点
収差補正コイルとが設けられ、該焦点コイルと非点収差
補正コイルのそれぞれに偏向フィールドの各アドレスに
対応する補正データを与えるようにしたことを特徴とす
る電子ビーム露光装置。
A focusing coil and a plurality of astigmatism correction coils comprising at least two-fold symmetrical astigmatism-correcting coils and a three-fold symmetrical astigmatism-correcting coil are provided, each of the focusing coil and the astigmatism correction coil having a deflection field. An electron beam exposure apparatus characterized in that correction data corresponding to each address is given.
JP59086321A 1984-04-28 1984-04-28 Electron beam exposure apparatus Pending JPS60231324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086321A JPS60231324A (en) 1984-04-28 1984-04-28 Electron beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086321A JPS60231324A (en) 1984-04-28 1984-04-28 Electron beam exposure apparatus

Publications (1)

Publication Number Publication Date
JPS60231324A true JPS60231324A (en) 1985-11-16

Family

ID=13883567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086321A Pending JPS60231324A (en) 1984-04-28 1984-04-28 Electron beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPS60231324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368613A (en) * 1989-06-07 1994-11-29 Fujitsu Limited Electron beam exposure apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693318A (en) * 1979-12-10 1981-07-28 Fujitsu Ltd Electron beam exposure device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693318A (en) * 1979-12-10 1981-07-28 Fujitsu Ltd Electron beam exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368613A (en) * 1989-06-07 1994-11-29 Fujitsu Limited Electron beam exposure apparatus

Similar Documents

Publication Publication Date Title
US3930181A (en) Lens and deflection unit arrangement for electron beam columns
JPH046255B2 (en)
US6657210B1 (en) Electron beam exposure method, a method of constructing exposure control data, and a computer-readable medium
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
JPH06103946A (en) Variable-shaft stigmator
US6642675B2 (en) Charged particle beam exposing apparatus
JPH01213948A (en) Electron beam projector
US11961709B2 (en) Charged particle beam device for inspection of a specimen with a plurality of charged particle beamlets
EP0133016A2 (en) Multi-gap magnetic image lens for charged particle beams
WO2008113079A1 (en) Charged particle optics with azimuthally-varying third-order aberrations for generation of shaped beams
JP2001093809A (en) Pattern lithography method and charged beam lithography system
JPS5823155A (en) Device for aligning and controlling charged particle beam
JPH0447944B2 (en)
JPS6042825A (en) Exposure device by charged beam
JP2003332207A (en) Aligner using electron beam and processing device using the electron beam
JPS6362321A (en) Charged particle exposing apparatus
JP2006294962A (en) Electron beam lithography system and method therefor
JPH08195345A (en) Electron beam drawing device
US4798953A (en) Electronic beam device for projecting an image of an object on a sample
JPS60231324A (en) Electron beam exposure apparatus
JP2007035386A (en) Electron beam apparatus and device manufacturing method using same
JP2003346698A (en) Electron beam system and production process of device
US5387799A (en) Electron beam writing system
US6326629B1 (en) Projection lithography device utilizing charged particles
JPH06338445A (en) Electron-beam lithography apparatus