JPS60230058A - Silicon wafer for column of chromatograph instrument - Google Patents

Silicon wafer for column of chromatograph instrument

Info

Publication number
JPS60230058A
JPS60230058A JP59085796A JP8579684A JPS60230058A JP S60230058 A JPS60230058 A JP S60230058A JP 59085796 A JP59085796 A JP 59085796A JP 8579684 A JP8579684 A JP 8579684A JP S60230058 A JPS60230058 A JP S60230058A
Authority
JP
Japan
Prior art keywords
pressure
groove
silicon wafer
gas
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59085796A
Other languages
Japanese (ja)
Other versions
JPH0460219B2 (en
Inventor
Shiyousuke Hagiwara
萩原 ▲しよう▼介
Yasuo Takayama
康夫 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sord Computer Systems Inc
Sord Computer Corp
Original Assignee
Sord Computer Systems Inc
Sord Computer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sord Computer Systems Inc, Sord Computer Corp filed Critical Sord Computer Systems Inc
Priority to JP59085796A priority Critical patent/JPS60230058A/en
Publication of JPS60230058A publication Critical patent/JPS60230058A/en
Publication of JPH0460219B2 publication Critical patent/JPH0460219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Abstract

PURPOSE:To simplify measurement and to reduce the size of an instrument by forming a recess having the base of a thin film-like pressure-receiving membrane on a silicon wafer surface by etching and providing a pressure receiving membrane for measuring static pressure in the recess. CONSTITUTION:A capillary column 6, a flow passage groove 2 of a carrier gas and a flow passage groove of a gas for a detector are formed on the specular surface of a silicon wafer 1. An inlet hole 3 for the carrier gas and an injection hole 4 for a sample gas are provided to penetrate the wafer 1 and further a detector 9 is communicated with the outlet of the column groove 6. The recess 5 attached with the pressure receiving membrane having, for example, 2mm.X2mm. pressure receiving area and 10-20mum thickness is provided to the groove 2 and is so constituted as to communicate in a T shape with the groove 2. The recess is thus directly formed on the surface of the wafer 1 and the pressure receiving membrane is provided and therefore the measurement of the gaseous pressure in the flow passage of the capillary column is made easy and the reduction in the size is made easy.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ポータプル或はポケット型のガスクロマトグ
ラフ装置用のシリコンウェハ、特に、キャピラリーカラ
ム、キャリヤーガス流路及び試料ガス流路等のガス流路
に使用する溝、キャリヤーガス導入孔、試料ガス導入孔
及び排出孔及び検出済みガスの排出孔等のガス流路に連
通する貫通孔、並びに、検出器を、その表面に設け、た
ポータプルキャビフリーガスクロマトグラフ装置用のシ
リコンウェハに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a silicon wafer for a portaple or pocket type gas chromatograph device, particularly for gas flow in a capillary column, a carrier gas flow path, a sample gas flow path, etc. A portable cavity with grooves used in the gas flow path, through-holes communicating with the gas flow path such as a carrier gas introduction hole, a sample gas introduction hole and a discharge hole, and a detected gas discharge hole, and a detector are provided on the surface thereof. The present invention relates to silicon wafers for free gas chromatography devices.

(ロ)従来技術 シリコンウェハの表面に、キャピラリーカラム、キャリ
ヤーガス流路及び試料ガス流路等のガス流路用の溝、キ
ャリヤーガス導入孔、試料〃ス導入孔及び排出孔及び検
出済みガスの排出孔等のガス流路用の溝に連通する貫通
孔、並びに、熱伝導度検出器等を設け、この上にパイレ
ックスガラスを被着したポータプルキャピラリーガスク
ロマトグラ7装置は、既に公知である。
(B) Prior art On the surface of a silicon wafer, there are grooves for gas flow paths such as a capillary column, a carrier gas flow path and a sample gas flow path, a carrier gas introduction hole, a sample gas introduction hole and a discharge hole, and a discharge of detected gas. A portable capillary gas chromatograph 7 device is already known, which is provided with a through hole communicating with a groove for a gas flow path such as a hole, a thermal conductivity detector, etc., and is coated with Pyrex glass.

ところで、ガスクロマトグラフィ分析において、キャリ
ヤーガス流量が不安定であると、各成構の保持時間が不
安定となり、同定の正確度が低下し、また、ピーク面積
に変化を伴い定量分析に誤差をもたらすような不都合が
あるので、ガスクロマトグラフ装置には、キャリヤーガ
スの流量を一定にする機構が必要である。
By the way, in gas chromatography analysis, if the carrier gas flow rate is unstable, the retention time of each component becomes unstable, which reduces the accuracy of identification, and also causes changes in peak area, causing errors in quantitative analysis. Because of these inconveniences, gas chromatograph apparatuses require a mechanism to keep the flow rate of carrier gas constant.

そして、このようなことは、ポータプルのガスクロマト
グラフ装置においても例外ではなく、従来の装置におい
ても、シリコンウェハのキャリヤーガス導入孔近くに、
圧力調整器と圧力計が設けられている。しかも、この圧
力計としては、通常、直径5センチメートルのブルドン
管形の圧力計が用いられてお1)、寸法がシリコンウェ
ハと同程度の大!さのために、嵩ぼり易く、シかもこの
外にも、他の付属装置を取り付ける関係上、ポータプル
化ないしポケット型化が難しかった。といって、市販さ
れている半導体圧力センサやストレン・デージ形圧力セ
ンサを取り付けると、取付は金具や圧力センサ自体も必
ずしも寸法が小さくないので、ポケット型化はもとより
、ポータプル化にも難点があった。
And this kind of thing is no exception in portaple gas chromatograph equipment, and even in conventional equipment, there is a hole near the carrier gas introduction hole of the silicon wafer.
A pressure regulator and pressure gauge are provided. Moreover, this pressure gauge is usually a Bourdon tube with a diameter of 5 cm (1), which is about the same size as a silicon wafer! Because of this, it was bulky, and it was difficult to make it into a portaple or pocket type because of the need to attach other accessories in addition to the main body. However, when installing a commercially available semiconductor pressure sensor or strain-age type pressure sensor, the mounting hardware and the pressure sensor itself are not necessarily small in size, so there are difficulties in making it not only a pocket type but also a portable type. Ta.

(ハ)発明の目的 本発明は、シリコンウェハ上に静圧測定用の凹状受圧膜
を設けたポータプル化或はポケット型化し易いキャピラ
リー〃スクロマトグフ7装置のカラム用のシリコンウェ
ハを提供するものである。
(C) Purpose of the Invention The present invention provides a silicon wafer for a column of a Scchromatograph 7 apparatus, which is a capillary that can be easily made into a portapulle or pocket type, in which a concave pressure-receiving film for static pressure measurement is provided on the silicon wafer. .

(ニ)発明の構成 本発明は、シリコンウェハ面に、少くとも−aが薄膜状
の受圧膜の底面を有する四部が形成されてUn h間#
幇 キャリヤーガス流路溝に遅しでいることを特徴とす
るガスクロマトグラフ装置用シリコンウェイ1にある。
(D) Structure of the Invention The present invention is characterized in that at least four parts -a having a bottom surface of a thin pressure-receiving film are formed on a silicon wafer surface, and between Un h #
There is a silicon way 1 for a gas chromatograph device, which is characterized by a carrier gas flow path groove.

のシリコンウェハが使用される。また、薄い膜状の受圧
膜としては、半導体圧力センサ用のグイヤ7ラムが使用
されるがシリコンウェハの一部を薄膜状に形成してもよ
く、また、その他の薄膜状の感圧膜を使用することもで
きる。この受圧膜を有する凹部からの連絡溝はキャリヤ
ーガス流路溝にT字状に接続するのが好ましい。四部の
大きさは、キャリヤーガス流路溝に比して十分に太き(
形成するのが感圧面積が大きく保てるので好ましい。
silicon wafers are used. In addition, as a thin film-like pressure-receiving film, Guyar 7 Ram for semiconductor pressure sensors is used, but a part of a silicon wafer may be formed into a thin film-like shape, and other thin-film-like pressure-sensitive films can also be used. You can also use It is preferable that the communication groove from the recessed portion having the pressure-receiving membrane is connected to the carrier gas flow groove in a T-shape. The size of the four parts is sufficiently thick compared to the carrier gas flow groove (
It is preferable to form such a structure because the pressure-sensitive area can be kept large.

また、このように大きく保つと、僅かな圧力変動が解消
されたことになり、キャリヤーガス流量の安定化が容易
となる。
Furthermore, by keeping it large in this way, slight pressure fluctuations are eliminated, making it easier to stabilize the carrier gas flow rate.

このような底部が薄膜状の凹部は如何なる手段で形成し
てもよいが、エツチング処理によるのが好ましい。例え
ば、薄膜のp形シリコン半導体をn形シリコン半導体に
接合したものをFDPとして知られているエチレンジア
ミン、ピロカテコール及び水の混合物でエツチング処理
することにより、底部に所望の厚さの薄膜を有する四部
が得られる。エツチング剤としては、溝の輪郭を精密に
形成する関係上、異方性エツチング剤が使用される。異
方性エツチング剤としては、例えば、EDPとして知ら
れているエチレンシアミン、ピロカテコール及び水の混
合物、水酸化ナトリウム水溶液、並びに、水酸化カリウ
ム水溶液のようなアルカリ水溶液、特に、熱アルカリ水
溶液が好ましいものとしてあげられる。
Although such a concave portion having a thin film-like bottom portion may be formed by any means, it is preferable to use etching treatment. For example, by etching a thin film of p-type silicon semiconductor bonded to n-type silicon semiconductor with a mixture of ethylenediamine, pyrocatechol, and water known as FDP, four parts with a thin film of desired thickness on the bottom can be etched. is obtained. As the etching agent, an anisotropic etching agent is used in order to precisely form the contour of the groove. Examples of anisotropic etching agents include a mixture of ethylenecyamine, pyrocatechol and water known as EDP, aqueous sodium hydroxide, and aqueous alkaline solutions such as aqueous potassium hydroxide, especially hot aqueous alkaline solutions. It is considered preferable.

しかし、これらの他にも、HMAエッチ剤、つまり、弗
酸、硝酸、酢酸の混合物が使用できる。
However, in addition to these, HMA etchants, ie mixtures of hydrofluoric acid, nitric acid and acetic acid, can be used.

異方性エツチングをn形シリコンウェハ鏡面に施す場合
、n形シリコンウェハ鏡面が、面指数(10σl°の面
であると、例えば、正方形、5.)f形にエツチングさ
れるが、面指数(1ii+の面では菱形にエツチングさ
れるので、面指数+1001の面を使用するのが好まし
い。
When anisotropic etching is applied to the mirror surface of an n-type silicon wafer, the mirror surface of the n-type silicon wafer is etched into an f-shape with a surface index of (10σl°, for example, a square, 5.); Since the 1ii+ surface is etched into a diamond shape, it is preferable to use the surface with a surface index of +1001.

(ホ)実施例 航IH111+−太易IIIIめレリ】ンウェハめ二宙
協釧の概略の平面図であり、第2図は、その凹所部の部
分断面図である。
(E) This is a schematic plan view of the wafer IH111+-Taiki III Mereliri, and FIG. 2 is a partial cross-sectional view of the recessed portion thereof.

以下、これらの図を参照して、本発明を説明するが、゛
本発明はこれらの説明によって、何ら限定されるもので
はない。
The present invention will be described below with reference to these figures; however, the present invention is not limited by these explanations.

シリコンウェハ1の鏡面、例えば(1001面上に、1
1400ないし500μ!、深さ10〜20μ屑の溝を
もって、キャピラリーカラム6、キャリヤーガス流路溝
2、検出器用〃ス流路溝8を形成する。キャリヤーガス
流路溝2の端部には、これら流路溝巾と同じで、キャリ
ヤーガス入口孔3がウェハ1を貫通して設けられており
、このキャリヤーガス入口孔3は、圧力調整装置を介し
てキャリヤーガスa(共に図示されていない。)に連通
している。キャビフリー”カラム溝6とキャリヤーガス
流路溝2の間には、流路溝巾と同−巾では、サンプルガ
ス注入孔4がウェハ1を貫通して設けられている。サン
プルガス注入孔3は、例えば、計量管を介してサンプル
ガス源(共に図示されていない。)に連通させてもよい
On the mirror surface of the silicon wafer 1, for example (1001 surface, 1
1400 to 500μ! A capillary column 6, a carrier gas channel groove 2, and a detector gas channel groove 8 are formed by grooves having a depth of 10 to 20 μm. At the end of the carrier gas flow groove 2, a carrier gas inlet hole 3 having the same width as these flow grooves is provided so as to pass through the wafer 1. It communicates with a carrier gas a (both not shown) through it. Between the cavity-free column groove 6 and the carrier gas flow groove 2, a sample gas injection hole 4 is provided penetrating the wafer 1 and has the same width as the flow groove width.Sample gas injection hole 3 may be in communication with a sample gas source (both not shown), for example, via a metering tube.

キャピラリーカラム溝6の出口は、検出器のガス流路溝
に連通している。キャリヤーガス流路溝2には、受圧面
積が2iiX2xa+で、厚さ10〜20μ肩の受圧膜
を取り付けた略正方形の形状を有する凹所5が設けられ
ている。この凹所は連絡溝7を介して、キャリヤーガス
流路溝2に対し、1゛字形に連通している。
The outlet of the capillary column groove 6 communicates with the gas flow groove of the detector. The carrier gas channel groove 2 is provided with a recess 5 having a substantially square shape and having a pressure receiving area of 2iiX2xa+ and a pressure receiving membrane having a thickness of 10 to 20 .mu.m attached thereto. This recess communicates with the carrier gas flow groove 2 through the communication groove 7 in a 1'-shaped configuration.

キャピラリーカラム溝6は、検出器9を設ける位置に応
じて、蛇行状、渦状、その他適宜の形状に刻設される。
The capillary column groove 6 is carved in a meandering shape, a spiral shape, or any other suitable shape depending on the position where the detector 9 is provided.

本例においては、検出器9をキャピラリーカラム6の渦
形の環外に設ける関係上、キャピラリーカフムロ内のl
f″7%の流れは、一本置きに同じ方向になるように形
成されている。
In this example, since the detector 9 is provided outside the spiral ring of the capillary column 6,
The flow of f″7% is formed so that every other one flows in the same direction.

また、本例においては、検出器9としては、熱伝導度検
出器が使用されている。サーミスタ又は白金フィルム抵
抗体を配置する溝11が、キャピラリーカラムからのガ
ス流路溝8に直角方向に設けられている。電極端子をシ
リコンウェハ1の裏側に設けるために、サーミスタ又は
白金フィルム抵抗体を配置する溝の両端に電極端子挿通
孔10を貫設rる、。
Further, in this example, a thermal conductivity detector is used as the detector 9. A groove 11 in which a thermistor or platinum film resistor is placed is provided perpendicularly to the gas flow groove 8 from the capillary column. In order to provide electrode terminals on the back side of the silicon wafer 1, electrode terminal insertion holes 10 are provided at both ends of the groove in which the thermistor or platinum film resistor is placed.

キャピラリーカフムロを出るガスは、検出器9′で熱伝
導度が測定されて、シリコンウェハ】に貫設された排出
孔12から流出する。
The thermal conductivity of the gas leaving the capillary capillary is measured by a detector 9', and the gas flows out from a discharge hole 12 formed through the silicon wafer.

本例において、使用されるシリコンウェハ1は、400
〜500 tlxの厚さを有しており、これに四部5を
1没け、受圧面積2myX2amで、厚さ10〜20μ
pの受圧膜13を形成する。この場合、この寸法のJl
さに至るまで、シリコンウェハを、水酸化す) +7ウ
ム水溶液、水酸化カリウム水溶液或はE D 1)どし
て知られているエチレンジアミ/、ピロカテコール及び
水の混合物のようなアルカリ水溶液、特に、加熱された
アルカリ水溶液で異方性のエツチング処理を行うことに
よって、四部5及び受圧膜13を形成することができる
In this example, the silicon wafer 1 used is 400
It has a thickness of ~500 tlx, and the four parts 5 are submerged in this, the pressure receiving area is 2my x 2am, and the thickness is 10~20μ.
A pressure receiving film 13 of p is formed. In this case, Jl of this dimension
The silicon wafer is hydroxylated in an aqueous alkaline solution, such as a mixture of ethylenediamine/pyrocatechol and water, known as ED1), aqueous potassium hydroxide solution, aqueous potassium hydroxide solution, etc. The four parts 5 and the pressure-receiving film 13 can be formed by performing an anisotropic etching process using a heated alkaline aqueous solution.

このように1j的の凹所が形成されたシリコンウェハは
、例えば、パイレックスガラス板を、シリコンウェハの
カラム溝等が設けられている面上に !気密に接着して
、ガスクロマトグラフ用に形成される。
For example, a Pyrex glass plate is placed on the surface of the silicon wafer on which the column grooves and the like are provided! Glued hermetically and formed for gas chromatograph use.

この〃ラス板で覆われたシリコンウェハのキャリヤーガ
ス入口孔3を、圧力WI4整装置及びこれを介してキャ
リヤーガス源に連通させると共にサンプルガスが注入孔
4をガス計量管及びサンプル注入装置に連通させる。ま
た、受圧膜13及び検出器9の電極端子を計器に連通し
て、ガスクロマトグラフイ分析を行う。
The carrier gas inlet hole 3 of the silicon wafer covered with this lath plate is communicated with a pressure WI4 regulating device and a carrier gas source via this, and the sample gas is communicated through the injection hole 4 with a gas metering tube and a sample injection device. let Further, the pressure-receiving membrane 13 and the electrode terminals of the detector 9 are connected to a meter to perform gas chromatography analysis.

キャリヤーガスをキャリヤーガス入口孔:(から導入し
、圧力調整装置によって、キャリヤーガス圧力を調整し
て、キャリヤーガスの流量を一定量に調整する。この流
れに既知量のサンプルガスをサンプルガス注入孔4から
注入して、キャリヤーガスと共にキャピラリーカラムに
送る。サンプルが人中の成分ガスはキャピラリーカラム
でクロマトグラフィ分離されて、該カラム6から流出す
るが、この流出ガスを検出器9で検出してサンプルガス
の分析を行う。
Carrier gas is introduced through the carrier gas inlet hole, and the carrier gas pressure is adjusted by a pressure regulator to adjust the carrier gas flow rate to a constant amount. A known amount of sample gas is added to this flow through the sample gas injection hole. 4 and sends it to the capillary column together with the carrier gas.The component gases in the sample are chromatographically separated in the capillary column and flow out from the column 6, but this outflow gas is detected by the detector 9 to detect the sample gas. Perform analysis.

(へ)発明の効果 本発明は、このようにシリコンウニノー面に直接四部を
形成し、これに受圧膜を設けることにより、キャビフリ
ーカラム流路内のガス圧を極めて簡単に測定することが
できるので、複雑な管路等を付属させる必要もなくなり
、装置の小形化が容易になった。
(F) Effects of the Invention The present invention makes it possible to extremely easily measure the gas pressure in the cavity-free column flow path by forming the four parts directly on the silicone surface and providing a pressure-receiving membrane thereon. As a result, there is no need to attach complicated conduits, etc., making it easier to downsize the device.

このように、従来、大型であった高精度のキャピラリー
ガスクロマトグラフ装置を小形にすることができるので
、いちいち試料採取して分析室にまで持ち帰ることなく
、例えば、集会場、地下鉄、石油暖房室等の密閉された
場所でのガス分析が容易となり、酸素欠乏等による事故
を未然に防止できる。
In this way, the conventionally large, high-precision capillary gas chromatograph device can be made smaller, allowing it to be used in gathering places, subways, oil heating rooms, etc. without having to collect samples and take them back to the analysis laboratory. This makes it easier to analyze gas in a closed place, and prevents accidents caused by oxygen deficiency.

このように本発明によって、ボータプル或ν1はポケッ
トサイズで使用及び運搬に便利な、しかも高性能な〃ス
分析装置が提供されるので、高精度の分析が随時可能と
なる等、そのもたらす影響は大きい。
In this way, the present invention provides a pocket-sized, convenient to use and transport, and high-performance ッs analyzer, so that high-precision analysis can be performed at any time. big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のキャピラリーガスクロマトグラフ装置
のカラム用シリコンウエノ)の一実施例の説明のための
概略の平面図であり、第2図はそのガラス板を接着させ
たシリコンウェハの四部の説明のための部分拡大断面図
である。 1はシリコンウェハ、2はキャリヤーガス流路溝、3は
キャリヤーガス入ロ孔、4はサンプルガス注入孔、5は
凹所、6はキャビフリーカラム溝、7は連絡溝、8は検
出器9のガス流路溝、10は測定電極端子挿入孔、11
は熱伝導度測定用サーミスタ又は白金フィルム抵抗体間
y!溝、12はがス排出孔、13受圧膜、14はガラス
板である。 代 理 人 弁理士゛武田正彦 ! 弁理士 滝 口 昌 司 弁理士 中 風 浩 − 落 1 図 学−2憫
FIG. 1 is a schematic plan view for explaining one embodiment of the silicon wafer for columns of the capillary gas chromatograph apparatus of the present invention, and FIG. 2 is an explanation of the four parts of the silicon wafer to which the glass plate is bonded. FIG. 1 is a silicon wafer, 2 is a carrier gas channel groove, 3 is a carrier gas inlet, 4 is a sample gas injection hole, 5 is a recess, 6 is a cavity free column groove, 7 is a communication groove, 8 is a detector 9 , 10 is a measurement electrode terminal insertion hole, 11 is a gas flow groove;
is between the thermistor or platinum film resistor for measuring thermal conductivity! 12 is a gas discharge hole, 13 is a pressure-receiving membrane, and 14 is a glass plate. Representative Patent Attorney Masahiko Takeda! Patent Attorney Masaru Takiguchi Patent Attorney Hiroshi Naka Kaze - Ochi 1 Zugaku - 2 Ochi

Claims (1)

【特許請求の範囲】[Claims] シリコンウェハ面に、少くとも一部が溝膜状の受圧膜の
底面を有する四部が形成されており、該凹部が、キャリ
ヤーガス流路溝に連通していることを特徴とするガスク
ロマトグラフ装置のカラム用シリコンウェハ。
A gas chromatograph apparatus characterized in that four parts each having a bottom surface of a pressure-receiving film, at least a part of which is a grooved film, are formed on the surface of a silicon wafer, and the recessed parts communicate with a carrier gas channel groove. Silicon wafer for columns.
JP59085796A 1984-04-27 1984-04-27 Silicon wafer for column of chromatograph instrument Granted JPS60230058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085796A JPS60230058A (en) 1984-04-27 1984-04-27 Silicon wafer for column of chromatograph instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085796A JPS60230058A (en) 1984-04-27 1984-04-27 Silicon wafer for column of chromatograph instrument

Publications (2)

Publication Number Publication Date
JPS60230058A true JPS60230058A (en) 1985-11-15
JPH0460219B2 JPH0460219B2 (en) 1992-09-25

Family

ID=13868843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085796A Granted JPS60230058A (en) 1984-04-27 1984-04-27 Silicon wafer for column of chromatograph instrument

Country Status (1)

Country Link
JP (1) JPS60230058A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891120A (en) * 1986-06-06 1990-01-02 Sethi Rajinder S Chromatographic separation device
US5116495A (en) * 1987-09-11 1992-05-26 Ottosensors Corporation Capillary chromatography device
US5132012A (en) * 1988-06-24 1992-07-21 Hitachi, Ltd. Liquid chromatograph
US5500071A (en) * 1994-10-19 1996-03-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
US5658413A (en) * 1994-10-19 1997-08-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
JP2002228647A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Gas chromatograph
JP2008232799A (en) * 2007-03-20 2008-10-02 Shimadzu Corp Pyrolysistic gas chromatograph system
JP2011524536A (en) * 2008-06-17 2011-09-01 トライコーンテック コーポレイション Handheld gas analysis system for medical applications
US9658196B2 (en) 2009-07-31 2017-05-23 Tricorntech Corporation Gas collection and analysis system with front-end and back-end pre-concentrators and moisture removal
US9683974B2 (en) 2009-07-07 2017-06-20 Tricorntech Corporation Cascaded gas chromatographs (CGCs) with individual temperature control and gas analysis systems using same
US9921192B2 (en) 2010-04-23 2018-03-20 Tricorntech Corporation Gas analyte spectrum sharpening and separation with multi-dimensional micro-GC for gas chromatography analysis

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891120A (en) * 1986-06-06 1990-01-02 Sethi Rajinder S Chromatographic separation device
US5116495A (en) * 1987-09-11 1992-05-26 Ottosensors Corporation Capillary chromatography device
US5132012A (en) * 1988-06-24 1992-07-21 Hitachi, Ltd. Liquid chromatograph
US5500071A (en) * 1994-10-19 1996-03-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
US5658413A (en) * 1994-10-19 1997-08-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
JP2002228647A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Gas chromatograph
JP2008232799A (en) * 2007-03-20 2008-10-02 Shimadzu Corp Pyrolysistic gas chromatograph system
JP2011524536A (en) * 2008-06-17 2011-09-01 トライコーンテック コーポレイション Handheld gas analysis system for medical applications
JP2014232110A (en) * 2008-06-17 2014-12-11 トライコーンテック コーポレイション Handheld gas analysis systems for medical application
US9683974B2 (en) 2009-07-07 2017-06-20 Tricorntech Corporation Cascaded gas chromatographs (CGCs) with individual temperature control and gas analysis systems using same
US9658196B2 (en) 2009-07-31 2017-05-23 Tricorntech Corporation Gas collection and analysis system with front-end and back-end pre-concentrators and moisture removal
US9921192B2 (en) 2010-04-23 2018-03-20 Tricorntech Corporation Gas analyte spectrum sharpening and separation with multi-dimensional micro-GC for gas chromatography analysis
US11035834B2 (en) 2010-04-23 2021-06-15 TricornTech Taiwan Gas analyte spectrum sharpening and separation with multi-dimensional micro-GC for gas chromatography analysis
US11796515B2 (en) 2010-04-23 2023-10-24 Tricorntech Corporation Gas analyte spectrum sharpening and separation with multi-dimensional micro-GC for gas chromatography analysis

Also Published As

Publication number Publication date
JPH0460219B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
US6527835B1 (en) Chemical preconcentrator with integral thermal flow sensor
JPS60230058A (en) Silicon wafer for column of chromatograph instrument
US7290441B2 (en) Micro slit viscometer with monolithically integrated pressure sensors
US10480974B2 (en) Composite MEMS flow sensor on silicon-on-insulator device and method of making the same
JP4825791B2 (en) A micro-slot viscometer with an integrated pressure sensor
JPH02232554A (en) Sensor construction
US6290388B1 (en) Multi-purpose integrated intensive variable sensor
US10247690B2 (en) Device for analysis of mixtures of at least two gases
US5767387A (en) Chromatograph having pneumatic detector
US4361540A (en) Analysis system
US5303167A (en) Absolute pressure sensor and method
US4115230A (en) Partial oxygen measurement system
US10677622B2 (en) System for measuring flow of a liquid in a microfluidic circuit by determining gas and liquid pressures
US6543293B1 (en) Static pitot transducer
US4151741A (en) Method and apparatus for gas chromatographic analysis
CN205538072U (en) Utilize foil gage to measure device of microchannel gas distribution formula pressure
JPH06194334A (en) Reference electrode
Phansi et al. Kinetic thermometric methods in analytical chemistry
FR2647907A1 (en) METHOD FOR CALIBRATING ACCELERATION MEASURING APPARATUS
US5524473A (en) Gas chromatograph flow calibrator
Walker et al. Precision Thermal‐Conductivity Gas Analyzer Using Thermistors
JP2000180414A (en) Micro-gas detector
RU221540U1 (en) Thermal conductivity detector for gas chromatography
Gubbins et al. Determination of gas solubilities in electrolyte solutions
JPS60230056A (en) Substrate for column of capillary chromatograph device and its production