JPS60229378A - Manufacture of variable capacitance diode - Google Patents

Manufacture of variable capacitance diode

Info

Publication number
JPS60229378A
JPS60229378A JP8641184A JP8641184A JPS60229378A JP S60229378 A JPS60229378 A JP S60229378A JP 8641184 A JP8641184 A JP 8641184A JP 8641184 A JP8641184 A JP 8641184A JP S60229378 A JPS60229378 A JP S60229378A
Authority
JP
Japan
Prior art keywords
recessed section
layer
type
gaas layer
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8641184A
Other languages
Japanese (ja)
Inventor
Takeshi Konuma
小沼 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8641184A priority Critical patent/JPS60229378A/en
Publication of JPS60229378A publication Critical patent/JPS60229378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/93Variable capacitance diodes, e.g. varactors

Abstract

PURPOSE:To optimize a capacitance change rate, selectively and reverse withstanding voltage by a method wherein a recessed section is formed to a high- resistivity GaAs layer, an impurity is introduced to the recessed section through an ion implantation method, the impurity is activated through annealing in a short time and a Schottky contact is shaped in the recessed section. CONSTITUTION:An N<-> type GaAs layer 2 having impurity concentration of 5X 10<14>cm<-3> and thickness of 0.6mum is grown on an N<+> type GaAs substrate 1 having 10<18>cm<-3> as impurity concentration by using a vapor phase epitaxial method. An Si3N4 film 3 is formed, an opening section having a desired area is shaped to the Si3N4 film 3, and the N<-> type GaAs layer 2 is etched while using the Si3N4 film 3 as a mask to form a recessed section 4 in the N<-> type GaAs 2. Si ions 5 are implanted while employing the Si3N4 film as a mask. Si ions are implanted, and an N type ion implantation layer 6 is shaped through annealing for 10sec. at 1,000 deg.C by using an infrared ray lamp. Al is vacuum-deposited to shape a Schottky contact 7 in the recessed section 4, and an ohmic electrode 8 is formed on the N<+> GaAs substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超階段接合を有する可変容量ダイオードの製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a variable capacitance diode with a hyperstep junction.

従来例の構成とその問題点 可変容量ダイオードはp−n接合或はショットキ接合に
逆方向電圧を印加することで接合容量を変化させるもの
で、容量変化を大きくするには、半導体内に主接合面か
ら離れるに従って不純物濃度分布が減少するいわゆる超
階段接合が用いられるO 超階段接合可変容量ダイオードの形成方法として、例え
ば高濃度不純物を含むN 型半導体基板上に同じ導電型
の低濃度不純物を含むN−エピタキシャル層を形成し、
次に主接合面から離れるに従ってN型不純物濃度が減少
する不純物濃度分布を拡散法、イオン注入法或はエピタ
キシャル法で形成し、しかる後反対導電型のP″−拡散
或はンヨノトキ障壁により接合を形成する。この方法で
は熱処理のときN 型半導体基板側からのオートドーピ
ングが生じ、N−エピタキシャル層の不純物濃度が高く
なり、容量変化比をある程度大きくすることが出来なか
った。又容量変化比を大きくするためN−エピタキシャ
ル層の厚みを厚くすると透択的Qの低下が大きくなる。
Conventional configuration and its problems Variable capacitance diodes change the junction capacitance by applying a reverse voltage to the p-n junction or Schottky junction.In order to increase the capacitance change, it is necessary to As a method for forming an O hyperstep junction variable capacitance diode in which a so-called hyperstep junction in which the impurity concentration distribution decreases as the distance from the surface increases, for example, a method for forming an N type semiconductor substrate containing a high concentration impurity and a low concentration impurity of the same conductivity type is used. forming an N-epitaxial layer;
Next, an impurity concentration distribution in which the N-type impurity concentration decreases as the distance from the main junction surface decreases is formed by a diffusion method, ion implantation method, or epitaxial method, and then the junction is formed by P''-diffusion or a non-conductive barrier of the opposite conductivity type. In this method, autodoping from the N-type semiconductor substrate side occurs during heat treatment, and the impurity concentration of the N-epitaxial layer increases, making it impossible to increase the capacitance change ratio to a certain extent. If the thickness of the N-epitaxial layer is increased in order to increase the thickness, the reduction in the transparent Q becomes large.

又逆耐圧を高めるためガードリングを設けたりするが、
これは容量変化比が減少する。
Also, a guard ring is installed to increase reverse voltage resistance.
This reduces the capacitance change ratio.

発明の目的 本発明は基板としてGaAsを用い、容量変化比。Purpose of invention In the present invention, GaAs is used as the substrate, and the capacitance change ratio is small.

透択度Q、逆耐圧の最適化が容易な可変容量ダイオード
の製造方法を提供する。
Provided is a method for manufacturing a variable capacitance diode that allows easy optimization of transparency Q and reverse breakdown voltage.

発明の構成 本発明は高比抵抗GaAs層に凹部を形成し、この凹部
にイオン注入法で不純物を導入し、短時間アニールでイ
オン注入した不純物を活性化し、前記凹部にショットキ
接触を形成する可変容量ダイオードの製造方法である。
Structure of the Invention The present invention is a variable method in which a recess is formed in a high resistivity GaAs layer, an impurity is introduced into the recess by ion implantation, and a Schottky contact is formed in the recess by activating the ion-implanted impurity by short-time annealing. This is a method for manufacturing a capacitor diode.

実施例の説明 不純物濃度として1o18 crn−3の訂型GaAs
基板1に気相エピタキシャル法を用いて不純物濃度6×
1o crn 、厚み0.6 pmのn−型GaAs層
2を成長させる(第1図a)。Si3N4膜3を形成し
、写真食刻法を用いて、所望の面積の開孔部をSi3N
4膜3に形成L 、 S i3N4膜3をマスクとして
n−型GaAs層2をエツチングし、n−型GaAs2
に凹部4を形成する(第1図4)。
Description of Examples Modified GaAs with impurity concentration of 1o18 crn-3
The impurity concentration is 6× on the substrate 1 using the vapor phase epitaxial method.
An n-type GaAs layer 2 having a thickness of 10 crn and a thickness of 0.6 pm is grown (FIG. 1a). A Si3N4 film 3 is formed, and a desired area of the opening is formed using photolithography.
Using the Si3N4 film 3 as a mask, the n-type GaAs layer 2 is etched to form an n-type GaAs2 layer.
A recess 4 is formed in (FIG. 1, 4).

次にSi3N4膜をマスクとしてSi イオン5をイオ
ン注入する。注入条件は10OKevで3×1o12c
rn−2である。注入後赤外線ランプを用いて1000
’Cで10秒間アニールし、n型イオン注入層6を形成
する(第1図C)。AI を真空蒸着しンヨノトキ接触
7を四部4に形成し、オーミック電極8を訂GaAs基
板に形成する。
Next, Si ions 5 are implanted using the Si3N4 film as a mask. Injection conditions are 10OKev and 3×1o12c
It is rn-2. 1000 using an infrared lamp after injection
Annealing is carried out for 10 seconds at 'C' to form an n-type ion-implanted layer 6 (FIG. 1C). AI is vacuum evaporated to form a contact 7 on the four parts 4, and an ohmic electrode 8 is formed on the GaAs substrate.

上記実施例で凹部4を形成したのは、所望の併択度Qを
得ること及び逆耐圧向上のためである。
The reason why the recess 4 was formed in the above embodiment is to obtain the desired degree of combination Q and to improve the reverse breakdown voltage.

透択度Qは主にn+型GaAs基板1とn型イオン注入
層6にはさまれたn−型GaAs層2の厚みで決するの
で凹部の深さを制御することで所望の透択度Qを得るこ
とが出来る。逆耐圧は計算でめられるn型イオン注入層
の不純物濃度分布、残存するn−型GaAs層2の厚み
、不純物濃度以外に表面近傍で起る表面破かいである。
Since the transparency Q is mainly determined by the thickness of the n-type GaAs layer 2 sandwiched between the n+-type GaAs substrate 1 and the n-type ion-implanted layer 6, the desired transparency Q can be achieved by controlling the depth of the recess. can be obtained. The reverse breakdown voltage is calculated based on the impurity concentration distribution of the n-type ion-implanted layer, the thickness of the remaining n-type GaAs layer 2, the impurity concentration, and surface fracture occurring near the surface.

凹部4を形成したのは表面破かいを緩和し、逆耐圧を向
上せしめるため設けた。表面破かいを緩和するに必要な
凹部4の深さをめるため、n−型GaAs層を充分厚く
して実施例と同様のイオン注入条件でn型イオン圧入層
を形成し、凹部の深さを変化させて逆耐圧をめた。第2
図にその結果を示す。第2図から明らかな様に、凹部を
形成することにより、逆耐圧は向上し凹部の深さが0.
16μm以上にすることにより逆耐圧ははソ一定の値と
なる。又第2図で逆耐圧のばらつきを示した様に、凹部
を形成することにより逆耐圧のバラツキも減少せしめる
ことが出来る。
The recesses 4 were formed to alleviate surface cracks and improve reverse pressure resistance. In order to increase the depth of the recess 4 necessary to alleviate surface cracking, the n-type GaAs layer was made sufficiently thick and an n-type ion implantation layer was formed under the same ion implantation conditions as in the example, to increase the depth of the recess. The reverse pressure resistance was increased by changing the temperature. Second
The results are shown in the figure. As is clear from FIG. 2, by forming the recess, the reverse breakdown voltage is improved and the depth of the recess is 0.
By setting the thickness to 16 μm or more, the reverse breakdown voltage becomes a constant value. Furthermore, as shown in FIG. 2, the variation in reverse breakdown voltage can be reduced by forming the recess.

イオン注入後短時間アニール法を用いたのは、所望の容
量−電圧特性を得るために用いた。通常の電気炉アニー
ルを用いるとn” GaAs層からの拡散のため所望の
容量−電圧特性が得られない。又電気炉アニールを用い
ると第2図の点線で示した様に短時間アニールに比して
逆耐圧が低下する。
The short-time annealing method after ion implantation was used to obtain desired capacitance-voltage characteristics. If normal electric furnace annealing is used, desired capacitance-voltage characteristics cannot be obtained due to diffusion from the n'' GaAs layer.Furthermore, if electric furnace annealing is used, as shown by the dotted line in Figure 2, the desired capacitance-voltage characteristics cannot be obtained compared to short-time annealing. As a result, the reverse breakdown voltage decreases.

この理由については明らかでないが、横方向拡散による
のではないかと考えている。
Although the reason for this is not clear, we believe that it is due to lateral diffusion.

発明の効果 以上実施例で詳述した如く、本発明によれば、所望の容
量変化比、併択的Qが得られるのみならず、逆耐圧を向
上せしめることが出来る超階段型可変容量ダイオードの
製造方法でその工業的価値は大である。
Effects of the Invention As described in detail in the embodiments, the present invention provides a super-step type variable capacitance diode that not only provides a desired capacitance change ratio and optional Q, but also improves reverse breakdown voltage. Its manufacturing method has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(8)〜(d)は本発明の一実施例の超階段型可
変容量ダイオードの製造工程を示す断面図、第2図は逆
耐圧の凹部の深さ依存性を示す図である。。 1・−n+型GaAs基板、2−−−−= n−型Ga
As層、3・・・・・S 13N4膜、4 ・・・凹部
、5・・ Siイオン、6・ ・・イオン注入層、7 
ノヨノトキ接触、8・・ オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 凹gT5つ深′:!:(/Ltmう
FIGS. 1(8) to (d) are cross-sectional views showing the manufacturing process of a super-step type variable capacitance diode according to an embodiment of the present invention, and FIG. 2 is a diagram showing the dependence of the reverse breakdown voltage on the depth of the recess. . . 1.-n+ type GaAs substrate, 2----= n-type Ga
As layer, 3... S 13N4 film, 4... Concave portion, 5... Si ion, 6... Ion implantation layer, 7
Noyonotoki contact, 8... Ohmic electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 concave gT 5 deep':! :(/Ltm

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の低比抵抗GaAs基板上に、これと同−導
電形を有する高比抵抗GaAs層をエピタキシャル成長
により形成する工程、前記高比抵抗GaAs層に凹部を
形成する工程、前記高比抵抗GaAs層に形成した凹部
に同−導電形の不純物をイオン注入法で導入し短時間ア
ニールでイオン注入した不純物を活性化する工程、前記
四部にショットキ接触を形成する工程を含むことを特徴
とする可変容量ダイオードの製造方法。
a step of forming a high resistivity GaAs layer having the same conductivity type on a low resistivity GaAs substrate of a first conductivity type by epitaxial growth; a step of forming a recess in the high resistivity GaAs layer; The method is characterized by including the steps of introducing impurities of the same conductivity type into the recesses formed in the GaAs layer by ion implantation, activating the ion-implanted impurities by short-time annealing, and forming Schottky contacts in the four portions. Manufacturing method of variable capacitance diode.
JP8641184A 1984-04-27 1984-04-27 Manufacture of variable capacitance diode Pending JPS60229378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8641184A JPS60229378A (en) 1984-04-27 1984-04-27 Manufacture of variable capacitance diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8641184A JPS60229378A (en) 1984-04-27 1984-04-27 Manufacture of variable capacitance diode

Publications (1)

Publication Number Publication Date
JPS60229378A true JPS60229378A (en) 1985-11-14

Family

ID=13886123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8641184A Pending JPS60229378A (en) 1984-04-27 1984-04-27 Manufacture of variable capacitance diode

Country Status (1)

Country Link
JP (1) JPS60229378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300570A (en) * 1987-05-29 1988-12-07 Nec Corp Manufacture of gallium arsenide hyper abrupt varactor diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300570A (en) * 1987-05-29 1988-12-07 Nec Corp Manufacture of gallium arsenide hyper abrupt varactor diode

Similar Documents

Publication Publication Date Title
US4466176A (en) Process for manufacturing insulated-gate semiconductor devices with integral shorts
US6083814A (en) Method for producing a pn-junction for a semiconductor device of SiC
EP0094891B1 (en) Method of fabricating a vertical power mosfet structure
US4798810A (en) Method for manufacturing a power MOS transistor
US4598461A (en) Methods of making self-aligned power MOSFET with integral source-base short
JP2003533047A (en) Method for implanting hydrogen into buffer region of punch-through non-epitaxial IGBT
US4516143A (en) Self-aligned power MOSFET with integral source-base short and methods of making
JPH051623B2 (en)
CA1197023A (en) Self-aligned power mosfet with integral source-base short and methods of making
US4672403A (en) Lateral subsurface zener diode
US4983536A (en) Method of fabricating junction field effect transistor
US4870467A (en) Monolithic temperature compensated voltage-reference diode and method of its manufacture
US3951693A (en) Ion-implanted self-aligned transistor device including the fabrication method therefor
US4758537A (en) Lateral subsurface zener diode making process
US20060094179A1 (en) IGBT with amorphous silicon transparent collector
US8314002B2 (en) Semiconductor device having increased switching speed
JPS60229378A (en) Manufacture of variable capacitance diode
US4381952A (en) Method for fabricating a low loss varactor diode
US4837608A (en) Double gate static induction thyristor and method for manufacturing the same
RU1830156C (en) Method of producing semiconducting device
US4886762A (en) Monolithic temperature compensated voltage-reference diode and method for its manufacture
US5407857A (en) Method for producing a semiconductor device with a doped polysilicon layer by updiffusion
JPH05326925A (en) Shottky barrier semiconductor device
KR920003320B1 (en) Manufacturing method of self-aligned vertical double diffusion type with very small source region
JPS624339A (en) Semiconductor device and manufacture thereof