JPS60229037A - Method for developing electrostatic latent image - Google Patents

Method for developing electrostatic latent image

Info

Publication number
JPS60229037A
JPS60229037A JP59085814A JP8581484A JPS60229037A JP S60229037 A JPS60229037 A JP S60229037A JP 59085814 A JP59085814 A JP 59085814A JP 8581484 A JP8581484 A JP 8581484A JP S60229037 A JPS60229037 A JP S60229037A
Authority
JP
Japan
Prior art keywords
magnetic
particles
toner
magnetic particles
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59085814A
Other languages
Japanese (ja)
Inventor
Kenjiyu Oka
岡 建樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP59085814A priority Critical patent/JPS60229037A/en
Publication of JPS60229037A publication Critical patent/JPS60229037A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To form soft magnetic brush bristles, and to obtain a fine sharp image high in density by using the mixture of ferromagnetic particles of a ferromagnetic material, and binder type magnetic particles obtained by dispersing a fine magnetic powder into a binder resin. CONSTITUTION:The ferromagnetic particles and the binder type magnetic particles are mixed in advance, and this mixture is placed in an empty chamber 7, and after a developing device is preliminarily runned, an insulating magnetic toner is supplied to a toner replenishing vessel 6. Said toner is carried in the arrow (a) direction along the outer circumference of a developing sleeve 2 by rotation of a magnetic roller 3 in the direction of arrow (b) and rotation of the sleeve 2 in the direction of arrow (a), and when the toner passes through the empty chamber 7, it is mixed and stirred with the magnetic particles, triboelectrifying each other separately. As a result of mixing and stirring, the insulating magnetic toner and the magnetic particles, both being the components of the magnetic developer, are united continuously in a constant mixing ratio, and a magnetic brush made of the magnetic developer is formed with certainty in a developing zone A.

Description

【発明の詳細な説明】 技術分野 本発明は電子写真法の一工程である静電潜像現ノM−L
:圧1−PIB1奢−ノー 従来技術 既に、実用化されているこの種の現像方法として、磁性
トナーのみからなる粉体現像剤を用いる一成分現像方法
かある。しめ化、この−成分現像方法は、トナーに関し
ては現像時に導電性を、転写時には絶縁性をという互い
に相反する条件を要求されるという点で困難な問題があ
り、現状では、複写プロセス1こあまり負担がかがらず
、転写特性が良好な高抵抗を有する磁性トナーを使用し
、種々の対策を講して現像特性の向上を図っている。
Detailed Description of the Invention Technical Field The present invention relates to electrostatic latent image development M-L, which is a step of electrophotography.
: Pressure 1-PIB1 Deluxe-No Prior Art As a developing method of this type that has already been put into practical use, there is a one-component developing method using a powder developer consisting only of magnetic toner. This component development method has a difficult problem in that the toner requires contradictory conditions such as conductivity during development and insulation during transfer.Currently, the copying process requires less than one step. A magnetic toner with high resistance that does not impose a burden and has good transfer characteristics is used, and various measures are taken to improve the development characteristics.

この種の対策の一つとして、既に、本出願人によって、
現像スリーブの外周面上に感賞吸着されている磁性粒子
に対して絶縁性磁性トナーを供給することにより、前記
現像スリーブの外周面上において前記磁性粒子と絶縁性
磁性トナーとの混合物からなる磁性現像剤を調製し、こ
の調製された磁性現像剤を用いて静電潜像担体表面に担
持される静電潜像を現像する形態の静電潜像現像方法か
提案されている。
As one of these types of measures, the applicant has already
By supplying insulating magnetic toner to the magnetic particles adsorbed onto the outer circumferential surface of the developing sleeve, magnetic particles consisting of a mixture of the magnetic particles and insulating magnetic toner are formed on the outer circumferential surface of the developing sleeve. An electrostatic latent image developing method has been proposed in which a developer is prepared and the prepared magnetic developer is used to develop an electrostatic latent image carried on the surface of an electrostatic latent image carrier.

この現像方法によれば、磁性粒子の混入によりて磁性ト
ナーの摩擦帯電の確実化、透磁率の向上による搬送力増
大や、これに起因するトナー凝集の防止、現像領域での
実質磁界、電界強度の増大等が図られ、現像特性の大巾
な向上を期待できる。
According to this development method, the mixing of magnetic particles ensures triboelectric charging of the magnetic toner, increases the conveyance force by improving magnetic permeability, prevents toner agglomeration caused by this, and improves the effective magnetic field and electric field strength in the development area. As a result, a significant improvement in development characteristics can be expected.

しかし、その反面、使用される磁性粒子の種類に応して
は、種々の欠点を生しることが本発明者等によって確認
されている。
However, on the other hand, the present inventors have confirmed that various drawbacks occur depending on the type of magnetic particles used.

例えば、平均粒径100〜200μm程度の鉄粉からな
る磁性粒子では、長期使用によって磁性粒子表面にトナ
ーが融着して劣化を生しるし、現像画像中にカブリを生
じ易く画像の解像度ら低い。
For example, in the case of magnetic particles made of iron powder with an average particle diameter of about 100 to 200 μm, toner adheres to the surface of the magnetic particles and deteriorates after long-term use, and fog is likely to occur in developed images, resulting in low image resolution.

池方、強磁性のフェライトからなる磁性粒子では、画質
を高めるために磁性粒子自体を小粒径化すると、磁気刷
子形成時に磁性粒子間で生じる磁気吸引力が強過ぎて磁
気刷子の穂が硬く、各磁性粒子が磁気刷子担体上で連鎖
状若しくはフィン状に凝集し、これが現像剤の搬送障害
となり、ソリッド状の現像画像中に白スノ等のトラブル
を発生させる他、フェライトの体積固有抵抗は109Ω
・elfl程度と低いため、静電潜像担体表面の電荷が
逃げてしまい潜像が乱れ、画像欠損等を生じたり、磁性
粒子が静電潜像担体の画像部に付着したりする問題があ
り、また、エツジ効果らあまり得られず、細線の再現が
シャープでないという欠点がある。
Ikegata: With magnetic particles made of ferromagnetic ferrite, when the particle size of the magnetic particles themselves is reduced in order to improve image quality, the magnetic attraction force generated between the magnetic particles during magnetic brush formation is too strong, resulting in hard magnetic brush ears. , each magnetic particle aggregates in a chain or fin shape on the magnetic brush carrier, which hinders the transport of the developer and causes problems such as white smudges in the solid developed image. 109Ω
・Because it is as low as elf, there are problems such as charge on the surface of the electrostatic latent image carrier escaping, causing disturbance of the latent image, resulting in image defects, and magnetic particles adhering to the image area of the electrostatic latent image carrier. In addition, there are drawbacks in that the edge effect cannot be obtained much and the reproduction of fine lines is not sharp.

しかも、磁性粒子が静電潜像担体表面に付着した場合、
フェライトは極めて硬いので、ブレードクリーナで静電
潜像担体表面に残留するトナーを除去する際、静電潜像
担体表面に傷がつくという欠点がある。
Moreover, when magnetic particles adhere to the surface of the electrostatic latent image carrier,
Since ferrite is extremely hard, it has the disadvantage that the surface of the electrostatic latent image carrier is scratched when toner remaining on the surface of the electrostatic latent image carrier is removed using a blade cleaner.

なお、抵抗が低いことによる問題は、フェライト単体粒
子を絶縁性材料で被覆することによって解決できるが、
磁気刷子の穂が硬く現像画像に白スジが発生する問題は
そのまま残されている。しかも、抵抗が低い場合とは逆
に、磁性粒子の帯電量が増大し過ぎて、現像バイアスの
高い場合などに、静電潜像担体表面の非画像部に磁性粒
子が付着することがあり、それが原因となって静電潜像
担体を損傷する問題がある。
Note that the problem caused by low resistance can be solved by covering the ferrite single particles with an insulating material.
The problem of the hard ears of the magnetic brush, which causes white streaks on developed images, remains. Moreover, contrary to the case where the resistance is low, when the amount of charge of the magnetic particles increases too much and the development bias is high, the magnetic particles may adhere to the non-image area on the surface of the electrostatic latent image carrier. This causes a problem of damaging the electrostatic latent image carrier.

発明の目的 本発明は、前述の現像特性の向上を期待できる本出願人
の提案に係る静電潜像現像方法を前記諸欠点に鑑みて改
良したもので、その目的は、穂のソフトな磁気刷子を形
成できると共に、磁性粒子の凝集が発生することなく、
及び磁性粒子の静電潜像担体表面への付着か発生するこ
とのない静電潜像現像方法を提供することにある。
Purpose of the Invention The present invention is an improvement of the electrostatic latent image developing method proposed by the present applicant, which is expected to improve the development characteristics described above, in view of the above-mentioned drawbacks. It is possible to form a brush without causing agglomeration of magnetic particles.
Another object of the present invention is to provide an electrostatic latent image developing method that does not cause adhesion of magnetic particles to the surface of an electrostatic latent image carrier.

発明の構成 以上の目的を達成するため、本発明に係る静電潜像現像
方法は、現像スリーブの外周面上に磁気吸着されている
磁性粒子に対して絶縁性磁性トナーを供給することによ
り、前記現像スリーブの外周面上において前記磁性粒子
と絶縁性磁性トナーとの混合物からなる磁性現像剤を調
製し、この調製された磁性現像剤を用いて静電潜像担体
表面に担持される静電潜像を現像する形態の静電潜像現
像方法であって、前記磁性粒子として、強磁性粒子と、
バインダ樹脂中に磁性微粉末を分散させてなるバイング
型磁性粒子との混合物を用いることを特徴とする。
In order to achieve the above objects, the electrostatic latent image developing method according to the present invention supplies insulating magnetic toner to magnetic particles magnetically attracted on the outer peripheral surface of a developing sleeve. A magnetic developer made of a mixture of the magnetic particles and an insulating magnetic toner is prepared on the outer peripheral surface of the developing sleeve, and the prepared magnetic developer is used to reduce the electrostatic charge carried on the surface of the electrostatic latent image carrier. An electrostatic latent image developing method for developing a latent image, wherein the magnetic particles include ferromagnetic particles;
It is characterized by the use of a mixture with binder-type magnetic particles made by dispersing magnetic fine powder in a binder resin.

本発明において、現像スリーブの外周面上で調製される
磁性現像剤における絶縁性磁性トナーは、熱可塑性樹脂
中に磁性微粉末及び任意の着色剤を分散させたもの、あ
るいは必要に応じて、さらに帯電制御剤などを分散させ
たものが使用でき、9〜20μIの平均粒径、1012
Ω・Cl11以上の体積固有抵抗(if)”V/cmの
電界下で測定される抵抗値)を有するものを使用するの
が望ましい。
In the present invention, the insulating magnetic toner in the magnetic developer prepared on the outer peripheral surface of the developing sleeve is a thermoplastic resin containing magnetic fine powder and an arbitrary colorant dispersed therein, or, if necessary, further Those in which a charge control agent etc. are dispersed can be used, and the average particle size is 9 to 20μI, 1012
It is desirable to use one having a volume resistivity (if) (resistance value measured under an electric field of V/cm) of Ω·Cl11 or more.

前記熱可塑性樹脂としては、ポリスチレン、スチレン・
アクリル共重合樹脂、アクリル樹脂、エポキシ樹脂、弗
素樹脂、ポリエステルなどを使用すればよい。前記磁性
微粉末としては平均粒径3μI11以下の鉄粉、磁性酸
化鉄、フェライトなどを使用すれはよい。
As the thermoplastic resin, polystyrene, styrene, etc.
Acrylic copolymer resin, acrylic resin, epoxy resin, fluororesin, polyester, etc. may be used. As the magnetic fine powder, iron powder, magnetic iron oxide, ferrite, etc. having an average particle diameter of 3 μI11 or less may be used.

強磁性粒子としては、強磁性体粒子単体からなるものを
使用すればよく、要すれは、その強磁性本粒子単体の表
面を薄く樹脂などの絶縁性材料で被覆したものを使用し
てもよい。この強磁性粒子は、35〜9()μmの平均
粒径を有するものを使用するのが好適である。これは強
磁性粒子の平均粒径が35μI11未満では、現像剤の
搬送性か悪化して画像濃度か低下する傾向があり、また
、90μ【fiを超えると磁気刷子の穂が硬くなり、画
像に白スジが発生したり、キメの細かい画像が得難くな
るからである。強磁性体材料としては、例えば、ニッケ
ル、マンガン、マグネシウム、亜鉛その池の金属の酸化
物と鉄酸化物からなるソフトタイプのフェライトなどを
使用すればよい。この種の強磁性体材料は、通常、10
′〜10”□Ω・ctnの体積固有抵抗(5X11’E
\’/cill電界下で測定される抵抗値)を有してお
り、また、前記範囲の本積固有抵抗を有するのか好まし
い。
As the ferromagnetic particles, those consisting of a single ferromagnetic particle may be used, and if necessary, the surface of the single ferromagnetic particle may be thinly coated with an insulating material such as resin. . The ferromagnetic particles preferably have an average particle size of 35 to 9 μm. This is because if the average particle size of the ferromagnetic particles is less than 35μI11, the developer transportability deteriorates and the image density tends to decrease, and if it exceeds 90μ[fi, the magnetic brush ears become hard and the image deteriorates. This is because white streaks may occur and it may be difficult to obtain a fine-grained image. As the ferromagnetic material, for example, soft type ferrite made of oxides of metals such as nickel, manganese, magnesium, zinc, and iron oxide may be used. This type of ferromagnetic material typically has 10
'~10"□Ω・ctn volume resistivity (5X11'E
\'/cill (resistance value measured under an electric field), and preferably has a specific product resistivity within the above range.

バインダ型磁性粒子は、バインダ+31脂中に磁性微粉
末を、要すれば導電性制御剤、帯電制御剤などと共に分
散させ、粉砕、分級することによって得られ、その平均
粒径は2()〜55μm1の範囲のものが好適である。
Binder-type magnetic particles are obtained by dispersing magnetic fine powder in a binder + 31 fat, if necessary together with a conductivity control agent, a charge control agent, etc., and pulverizing and classifying the particles, and the average particle size thereof is 2( A range of 55 μm1 is preferred.

これはバインダ型磁性粒子の平均粒径か20μ箱未満で
は静電潜像担体表面に付着し易く、また、55μm1を
超えるとキメの細かな画像が得難くなるからである。磁
性微粉末としては、平均粒径3μω以下の鉄粉、磁性酸
化鉄、フェライトなどを使用し得るか、通常、60工ル
ステツド以上の保持力を有するバインダ型磁性粒子が得
られる様に、種類及びバインダ樹脂との混合比を選択す
るのが好ましい。また、バインダ樹脂としては、前記絶
縁性磁性トナーの樹脂と同様のもの以外に、熱硬化性樹
脂をも使用できる。
This is because if the average particle size of the binder type magnetic particles is less than 20 μm, they tend to adhere to the surface of the electrostatic latent image carrier, and if it exceeds 55 μm, it becomes difficult to obtain a fine-grained image. As the magnetic fine powder, iron powder, magnetic iron oxide, ferrite, etc. with an average particle size of 3 μω or less can be used, or the type and type are usually selected so as to obtain binder-type magnetic particles having a coercive force of 60 krusted or more. It is preferable to select the mixing ratio with the binder resin. Further, as the binder resin, in addition to the resin similar to the resin of the insulating magnetic toner, a thermosetting resin can also be used.

また、バインダ型磁性粒子は、1012Ω・eta以上
の体積固有抵抗(sxl 0”V/cmの電界下で測定
される抵抗値)を有するものを使用するのか好ましい。
Further, it is preferable to use binder type magnetic particles having a volume resistivity (resistance value measured under an electric field of sxl 0''V/cm) of 1012 Ω·eta or more.

これは、その体積固有抵抗が01”Ω・0111未満で
は、比較的低抵抗値を示す前記強磁性粒子の体積固有抵
抗との兼ね合いで粒子全体の抵抗か低下し、静電潜像担
体表面の電荷のリーク、あるいはエツジ′効果の底下に
伴なう細線再現性の悪化などを生しるからである。なお
、このバインダ型磁性粒子の平均粒径は、前記の様に2
0〜55It +nの範囲であるか、良好な磁性現像剤
の搬送性を得るためには、その平均粒径が強磁性粒子の
平均粒径よりも小さい方が好適である。
This is because when the volume resistivity is less than 01''Ω·0111, the resistance of the entire particle decreases in balance with the volume resistivity of the ferromagnetic particles, which exhibit a relatively low resistance value, and the surface resistance of the electrostatic latent image carrier decreases. This is because charge leakage or deterioration of thin line reproducibility due to the bottom edge effect may occur.As mentioned above, the average particle size of the binder type magnetic particles is 2.
It is preferable that the average particle size is in the range of 0 to 55 It +n, or that the average particle size is smaller than the average particle size of the ferromagnetic particles in order to obtain good magnetic developer transportability.

強磁性粒子とバインダ型磁性粒子との混合比は全磁性粒
子(強磁性粒子とバインダ型磁性粒子)中に占める強磁
性粒子の含有量力弓()〜70重量パーセン) (Il
t%)になる様にするのか望ましい。これは強磁性粒子
の含有量力弓01%未満では現像剤の搬送性が低下した
り、バインダ型磁性粒子か静電潜像担体表面に付着する
様になり、また、7fiu+L%以上では磁性粒子全体
の体積固有抵抗が低下し過ぎたり、磁性粒子の凝集を生
じる結果、画像に白スノか発生する様になるからである
The mixing ratio of ferromagnetic particles and binder-type magnetic particles is determined by the content of ferromagnetic particles in the total magnetic particles (ferromagnetic particles and binder-type magnetic particles) (~70% by weight) (Il
t%). This is because if the content of ferromagnetic particles is less than 01%, the developer transportability will deteriorate, or the binder-type magnetic particles will adhere to the surface of the electrostatic latent image carrier, and if the content is more than 7fiu+L%, the entire magnetic particle This is because the volume resistivity of the magnetic particles decreases too much or agglomeration of magnetic particles occurs, resulting in white spots appearing on the image.

χ麓刀 [現像装置1 本発明に孫る静電潜像現像方法は、前述の磁性現像剤を
現像スリーブの外周面上において調製することにより実
施されるのであるか、特に、その実施にあたっては、周
面に順次極性を異にして着磁された磁気ローラを非磁性
体で形成された現像スリーブで覆った構造の現像装置を
使用するのが有効である。この場合、内部の磁気ローラ
を固定して現像スリーブを回転させる方式、現像スリー
ブを固定して磁気ローラを回転させる方式、及び両者を
共に同方向に又は相互に逆方向に回転させる方式のいず
れの方式も採用できる。この種の現像装置としては、例
えば、添付図面に示す構造のものか挙げられる。
[Developing device 1] Is the electrostatic latent image developing method according to the present invention carried out by preparing the above-mentioned magnetic developer on the outer peripheral surface of the developing sleeve? It is effective to use a developing device having a structure in which a magnetic roller whose peripheral surface is magnetized with sequentially different polarities is covered with a developing sleeve made of a non-magnetic material. In this case, there are two methods: a method in which the internal magnetic roller is fixed and the developing sleeve is rotated, a method in which the developing sleeve is fixed and the magnetic roller is rotated, and a method in which both are rotated in the same direction or in mutually opposite directions. method can also be adopted. Examples of this type of developing device include those having the structure shown in the accompanying drawings.

添付図面に示す現像装置は、現像スリー7(2)の外周
面上にのみ磁性粒子を存在させる禄にしたことを特徴と
する。具体的には、導電性非磁性材から円筒状に形成し
た現像スリーブ(2)内に、外周部にS、N極を順次着
磁した磁気ローラ(3)を同軸に収納し、穂高規制板(
4)を設けたもので、磁性現像剤は磁気ローラ(3)の
矢印(1))方向の回転又は/及び現像スリーブ(2)
の矢印(a)方向の回転に基づいて、現像スリーブ(2
)の外周面上を矢印(a)方向に循環搬送される。さら
に、穂高規制板(4)の上流側には磁性現像剤の前規制
板(5)が設置されている。この前規制板(5)は絶縁
性磁性トナーを収納するためのトナー補給1(,6)の
ハウシング部材と一体に形成され、その先端は現像スリ
ーブ(2)の外周面上に対向している。そして、穂高規
制板(4)と前規制板(5)との間には磁性粒子(強磁
性粒子とバインダ型磁性粒子との混合物)を収納するた
めの空室(7)が形成されており、この空室(7)の上
方は開閉可能なカバー(8)で覆われ、現像スリーブ(
2)の外周面に向ってのみ開口している。
The developing device shown in the accompanying drawings is characterized in that magnetic particles are present only on the outer peripheral surface of the developing sleeve 7 (2). Specifically, a magnetic roller (3) whose outer periphery is sequentially magnetized with S and N poles is housed coaxially within a developing sleeve (2) formed in a cylindrical shape from a conductive non-magnetic material, and a height regulating plate is installed. (
4), the magnetic developer is rotated in the direction of the arrow (1) of the magnetic roller (3) and/or the developing sleeve (2).
Based on the rotation in the direction of arrow (a), the developing sleeve (2
) is circulated and transported in the direction of arrow (a). Furthermore, a magnetic developer front regulation plate (5) is installed upstream of the height regulation plate (4). This front regulating plate (5) is formed integrally with the housing member of the toner supply 1 (, 6) for storing insulating magnetic toner, and its tip faces the outer peripheral surface of the developing sleeve (2). . A cavity (7) for storing magnetic particles (a mixture of ferromagnetic particles and binder-type magnetic particles) is formed between the head height regulation plate (4) and the front regulation plate (5). The upper part of this empty space (7) is covered with a cover (8) that can be opened and closed, and the developing sleeve (
2) is open only toward the outer peripheral surface.

一方、トナー補給槽(6)の下部は前規制板(5)の上
流側に開口したトナー補給部(9)とされ、このトナー
補給部(9)の下部には補給槽底部形成板(10)か設
置されていると共に、孔明トスクレーパ(11)が現像
スリーブ(2)の外周面にいわゆる順方向に圧接する様
に設置されている。また、トナー補給槽(6)の下端で
あって現像スリーブ(2)か感光本ドラム(1)の表面
と対向する現像領域(A)の下方には、現像剤こぼれ防
止板(12)、 <13)が設置されている。
On the other hand, the lower part of the toner replenishing tank (6) is a toner replenishing part (9) that opens upstream of the front regulation plate (5), and the lower part of this toner replenishing part (9) is a replenishing tank bottom forming plate (10). ) is installed, and a perforated scraper (11) is installed so as to press against the outer peripheral surface of the developing sleeve (2) in a so-called forward direction. Further, below the developing area (A) at the lower end of the toner supply tank (6) and facing the surface of the developing sleeve (2) or the main photosensitive drum (1), there is a developer spill prevention plate (12). 13) is installed.

[現像方法1 以上の構成からなる現像装置により、磁性現像剤を用い
て感光体ドラム(1)の表面に担持されている静電潜像
を現像する場合、ます、最初にカバー(8)を開けて空
室(7)内に強磁性粒子とバインダ型磁性粒子とを予め
混合した磁性粒子が装填され、現像装置が予備作動され
た後に、トナー補給槽(6)内に絶縁性磁性トナーが装
填される。この際、空室(7)内に装填される磁性粒子
中に若干量の絶縁性磁性トナーか混入されていても良い
。そして、この状態で本現像装置によって静電潜像の現
像か可能となる。
[Developing method 1 When developing the electrostatic latent image carried on the surface of the photoreceptor drum (1) using a magnetic developer using the developing device configured as described above, first, the cover (8) is After opening and loading the empty chamber (7) with magnetic particles in which ferromagnetic particles and binder-type magnetic particles are mixed in advance, and the developing device is pre-operated, insulating magnetic toner is placed in the toner replenishing tank (6). loaded. At this time, a small amount of insulating magnetic toner may be mixed into the magnetic particles loaded into the empty chamber (7). In this state, the electrostatic latent image can be developed by the present developing device.

ここで、絶縁性磁性トナーは磁気ローラ(3)の矢印(
1〕)方向への回転及び現像スリーブ(2)の矢印(、
)への回転に基づいて現像スリーブ(2)の外周面上を
矢印(a)方向に搬送され、空室(7)を通過する際に
磁性粒子と混合撹拌され、トナーと磁性粒子とは各々摩
擦帯電される。そして、この混合撹拌の結果、磁性現像
剤の各成分である絶縁性磁性トナーと磁性粒子とは、こ
の時点で絶えず一定の混合比で・一体化され、現像領域
(A)においでは磁性現像剤からなる磁気刷子か確実に
形成される。ここで形成される磁気刷子は感光体ドラム
(1)の表面を摺擦し、その表面上の静電潜像を現像し
て顕像化する。現像に供された後、現像スリーブ(2)
の外周面に残留する磁性現像剤は、孔明きスクレーパ(
11)の孔を通じてトナー補給部(9)へと至り、そこ
で絶縁性磁性トナーを補給された後、再度現像に使用さ
れる。
Here, the insulating magnetic toner is attached to the magnetic roller (3) by the arrow (
1])) and rotate the developing sleeve (2) in the direction of the arrow (,
) is conveyed on the outer circumferential surface of the developing sleeve (2) in the direction of arrow (a), and as it passes through the empty chamber (7), it is mixed and stirred with magnetic particles, and the toner and magnetic particles are each Frictionally charged. As a result of this mixing and agitation, the insulating magnetic toner and magnetic particles, which are each component of the magnetic developer, are constantly integrated at a constant mixing ratio at this point, and in the development area (A), the magnetic developer A magnetic brush consisting of is reliably formed. The magnetic brush formed here rubs the surface of the photoreceptor drum (1), and develops the electrostatic latent image on the surface into a visible image. After being subjected to development, the developing sleeve (2)
Remove the magnetic developer remaining on the outer surface of the
It reaches the toner replenishing section (9) through the hole 11), where it is replenished with insulating magnetic toner and then used again for development.

現像バイアスとしては、通常の手法に基づいて直流電圧
を現像スリーブ(2)に印加するが、これに交流電圧を
重畳させても良く、また、現像スリーブ(2)を接地す
る様にしても良い。
As the developing bias, a DC voltage is applied to the developing sleeve (2) based on the usual method, but an AC voltage may be superimposed on this, or the developing sleeve (2) may be grounded. .

ところで、現像領域(A)に至る磁性現像剤の搬送量は
穂高規制板(・1)にて規制されるが、前規制板(5)
と現像スリーブ(2)とで形成される前規制ギャップは
、穂高規制板(4)と現像スリー7(2)とで形成され
る穂高規制ギヤ、ブよりら大きく設定されているため、
磁性粒子は全て前規制キャンプを通って空室(7)へ至
る。ここで穂高規制板(4)で規制された磁性粒子と絶
縁性磁性トナーが空室(7)内に滞溜して現像スリーブ
(2)の軸方向にも混合撹拌されるのであるが、それ呟
特に磁性粒子は空室(7)内でのみ撹拌され、トナー補
給部(9)からトナー補給槽(6)内に拡散されていく
ことはない。そして、現像領域(A)において磁気刷子
を形成する磁性現像剤のトナー濃度は、空室(7)に滞
溜する磁性粒子の量で決まる。従って、現像領域(A)
でのトナー濃度は常に一定値を保つこととなり、このト
ナー濃度は空室(7)内に予め装填される磁性粒子の量
に応じて調整することが可能である。
By the way, the amount of magnetic developer conveyed to the development area (A) is regulated by the height regulation plate (1), but the front regulation plate (5)
The pre-regulating gap formed by the developing sleeve (2) and the developing sleeve (2) is set to be larger than the brush height regulating gear and b, which are formed by the brush height regulating plate (4) and the developing sleeve 7 (2).
All magnetic particles pass through the pre-regulation camp and reach the empty chamber (7). Here, the magnetic particles regulated by the height regulating plate (4) and the insulating magnetic toner accumulate in the empty chamber (7) and are also mixed and stirred in the axial direction of the developing sleeve (2). In particular, the magnetic particles are stirred only within the empty chamber (7) and are not diffused into the toner supply tank (6) from the toner supply section (9). The toner concentration of the magnetic developer forming the magnetic brush in the development area (A) is determined by the amount of magnetic particles accumulated in the empty chamber (7). Therefore, the development area (A)
The toner concentration is always maintained at a constant value, and this toner concentration can be adjusted depending on the amount of magnetic particles loaded in advance into the empty chamber (7).

以上の現像方法にあっては、前規制ギャップは穂高規制
キャンプ上りも磁性現像剤を多く通過させることか必要
である。換言すれば、前規制キャップは磁性粒子を含む
絶縁性磁性トナーの全てを通過させる大きさが必要であ
り、前規制板(5)は空室(7)とトナー補給槽(6)
とを仕切り、空室(7)に滞溜する磁性粒子の補給槽(
6)内への拡散を防止する。前規制ギャップが狭くて穂
高規制ギャップよりも磁性現(!剤の通過が少ないと、
前規制板(5)の部分で磁性粒子の滞溜が生じ、良好な
現像を達成することはできない。また、磁性粒子を空室
(7)に滞溜させることは、磁性現像剤が空室(7)を
通過する際に絶縁性磁性トナーと磁性粒子との摩擦帯電
か十分性われるばかりが、軸方向のトナー濃度むらか効
果的に解消される。
In the above development method, it is necessary that the pre-regulating gap allows a large amount of the magnetic developer to pass through the head height regulating camp. In other words, the front regulation cap must be large enough to allow all of the insulating magnetic toner containing magnetic particles to pass through, and the front regulation plate (5) must be large enough to pass through the empty chamber (7) and the toner supply tank (6).
A replenishment tank (
6) Prevent internal spread. If the front regulation gap is narrower than the height regulation gap, the magnetic flux (!
Magnetic particles accumulate in the pre-regulating plate (5), making it impossible to achieve good development. Furthermore, allowing the magnetic particles to accumulate in the empty chamber (7) not only ensures sufficient frictional electrification between the insulating magnetic toner and the magnetic particles when the magnetic developer passes through the empty chamber (7), but also prevents the axial Toner density unevenness in the direction is effectively eliminated.

なお、現像スリーブ(2)による現像剤の搬送力を上昇
させるためには、現像スリーブ(2)の外周面をブラス
ト処理等により微小凹凸を形成すれば良い。
Note that, in order to increase the developer conveying force of the developing sleeve (2), minute irregularities may be formed on the outer circumferential surface of the developing sleeve (2) by blasting or the like.

[実験例1 以上の現像装置を用いて、本発明者等は、絶縁性磁性ト
ナーや磁性粒子(強磁性粒子、バインダ型磁性粒子)の
種類を変えて、あるいは現像領域(A)のギャップ、穂
高規制ギヤノブ、萌規制ギャップ等の現像条件を変えて
種々の実験を行い、それぞれ良好な結果を得た。ここで
、いくつかの実験例を記載する。
[Experimental Example 1] Using the above-described developing device, the present inventors changed the type of insulating magnetic toner and magnetic particles (ferromagnetic particles, binder-type magnetic particles), or changed the gap in the developing area (A), Various experiments were conducted by changing the developing conditions such as the height regulating gear knob and the height regulating gap, and good results were obtained for each. Here, some experimental examples will be described.

実験例−1 強磁性粒子: 平均粒径0 、5μmの酸化第2鉄63.3ut%、平
均粒径()、1μ「nの酸化亜鉛25.9wL%、及び
平均粒径13ハ1の酸化ニッケル10.8wt%の混合
物3 (10(11gと水1195gとを混合してスラ
リー化し、これにポリメタクリル酸ナトリウム塩、ダー
バ′ン7 (商品8二アール・ティ・パンデルビルト社
製)の25u+t%水溶液98gを加えて混合した後、
アトマイザ−で噴n乾燥し次いで、空気中1190’C
で2時間焼成して、フェライト [組成: (NiO)
、、= (ZnO)、、、(Fe=03)。、85]を
得、これを分級して得たもの。
Experimental example-1 Ferromagnetic particles: 63.3 ut% of ferric oxide with an average particle size of 0 and 5 μm, 25.9 wL% of zinc oxide with an average particle size of Mixture 3 (10) containing 10.8 wt% of nickel and 1195 g of water were mixed to form a slurry, and 25 u+t of polymethacrylic acid sodium salt, Durban'7 (Product 8 manufactured by 2R T Pandelbilt) was added to the slurry. After adding and mixing 98g of % aqueous solution,
Spray dry with an atomizer and then heat to 1190'C in air.
After firing for 2 hours, ferrite [composition: (NiO)
,,=(ZnO),,,(Fe=03). , 85] was obtained by classification.

平均粒径は50μm、保磁力は約Oエルステッド、体積
固有抵抗(5X 102V /c111の電界下で測定
、以後に示される磁性粒子は全てこの条件で測定)は1
.lX10°Ω・C翰で、真比重は4.8である。
The average particle size is 50 μm, the coercive force is about O Oe, and the volume resistivity (measured under an electric field of 5X 102V/c111; all magnetic particles shown below are measured under this condition) is 1.
.. The true specific gravity is 4.8 at 1×10°Ω・C wire.

バインダ型磁性粒子: スチレン・アクリル共重合樹脂、ハイマーSBM73(
商品名:三洋化成製)100重量部と、磁性酸化鉄、R
B−BL(商品名:チタン工業製、平均粒径0.5〜0
.6μ+n)200重量部と、カーボンブラック4重量
部とをボールミルにて20時間混合し三本ロールにて充
分に混合した後、放冷し、フェザ−ミルにて5+++m
以下に粗粉砕上さらにジェン)ミルにて微粉砕した後、
分級して得たもの。
Binder-type magnetic particles: Styrene-acrylic copolymer resin, Hymer SBM73 (
(Product name: Sanyo Chemical) 100 parts by weight, magnetic iron oxide, R
B-BL (Product name: Titanium Kogyo Co., Ltd., average particle size 0.5-0
.. 6μ+n) 200 parts by weight and 4 parts by weight of carbon black were mixed in a ball mill for 20 hours, thoroughly mixed with three rolls, allowed to cool, and mixed in a feather mill for 5+++ m
After coarsely pulverizing and further finely pulverizing in a Gen) mill,
What I got from the classification.

平均粒径は37μm、保磁力は200エルステツド、体
積固有抵抗は1014Ω・eIaで、真比重は2゜4で
ある。
The average grain size is 37 μm, the coercive force is 200 oersted, the volume resistivity is 1014 Ω·eIa, and the true specific gravity is 2°4.

絶縁性磁性トナー(負帯電性): スチレン・アクリル共重合樹脂、ブラオライトACL(
商品名:グッドイヤー製)100重量部と、磁性酸化鉄
、KBC−1(IOL(商品名二関東電化製、平均粒径
0,5−0.6,1/m )81’1重量部と、負帯電
性荷電制御剤、TRH(商品名:保土谷化学製)4重量
部と、カーボンブラック2重量部を混練し、粉砕、分級
して得たもの。
Insulating magnetic toner (negatively chargeable): Styrene/acrylic copolymer resin, Braolite ACL (
100 parts by weight of magnetic iron oxide, KBC-1 (IOL (trade name: manufactured by Goodyear, product name: manufactured by Goodyear, average particle size 0.5-0.6.1/m), 81'1 part by weight, This product was obtained by kneading 4 parts by weight of a negatively chargeable charge control agent, TRH (trade name: manufactured by Hodogaya Chemical Co., Ltd.) and 2 parts by weight of carbon black, followed by pulverization and classification.

平均粒径は13μω、体積固有抵抗(10″〜7cmの
電界化で測定、以後に示されるトナーは全てこの条件で
測定)は1×1015Ω・Cl3で、真比重は1.65
である。
The average particle diameter is 13μω, the volume resistivity (measured under an electric field of 10″ to 7cm, all toners shown below are measured under these conditions) is 1×1015Ω・Cl3, and the true specific gravity is 1.65.
It is.

磁性現像剤の調製: この様にして得た強磁性粒子、バインダ型磁性粒子、絶
縁性磁性トナーを用い、前述の現像装置を備えた粉像転
写型電子写真複写機において、空室(7)内に60gの
磁性粒子(強磁性粒子、バインダ型磁性粒子重量比1 
: 1の混合物)を装填すると共に、トナー補給槽(6
)内に絶縁性磁性トナーを装填した。この場合、現像領
域(A)に存在する磁性現像剤は、 強磁性粒子:バインダ型磁性粒子:絶縁性磁性トナー 10(1: 100 : 60 (重量比)の状態にあ
る。
Preparation of magnetic developer: Using the thus obtained ferromagnetic particles, binder-type magnetic particles, and insulating magnetic toner, in a powder image transfer type electrophotographic copying machine equipped with the above-mentioned developing device, empty chamber (7) 60g of magnetic particles (ferromagnetic particles, binder type magnetic particles weight ratio 1)
: At the same time, the toner supply tank (mixture 6) is loaded.
) was loaded with insulating magnetic toner. In this case, the magnetic developer present in the development area (A) has a ratio of ferromagnetic particles: binder type magnetic particles: insulating magnetic toner in a ratio of 1:100:60 (weight ratio).

現像条件 光導電層: Se系 現像スリーブ:直径24+111n、アルミニウム製回
転数80rp加 磁気ローラ:8極、磁束密度 800ガウス回転数? 
OOrp+。
Development conditions Photoconductive layer: Se-based developing sleeve: Diameter 24+111n, aluminum rotation speed 80 rpm Magnetic roller: 8 poles, magnetic flux density 800 Gauss rotation speed?
OOrp+.

前規制キャップ: 1.0籠1111 穂高規制ギャップ:0.35aui 現像ギャップ: 0.45m珀 感光感光ラム周速: 11cm/see静電潜像最高電
位: 6oov 現像バイアス: 直流200 V 実験結果 以上の状態の磁性現像剤、現像条件下で複写実験を行っ
たところ、現像画像に白スジやトナーのカブリがなく、
充分な画像濃度の複写画像か得られた。また、シャープ
で細線の再現性も良好で、強磁性粒子及びバインダ型磁
性粒子の感光体への付着も全くなく、A4サイズで6万
枚複写しても、初期と変らない良好な画像が得られた。
Front regulation cap: 1.0 basket 1111 Height regulation gap: 0.35aui Development gap: 0.45m Photosensitive ram circumferential speed: 11cm/see Electrostatic latent image maximum potential: 6oov Development bias: DC 200V More than experimental results When we conducted a copying experiment using the same magnetic developer under the developing conditions, there were no white streaks or toner fog in the developed image.
A copy image with sufficient image density was obtained. In addition, the reproducibility of fine lines is sharp, there is no adhesion of ferromagnetic particles or binder-type magnetic particles to the photoconductor, and even when 60,000 A4 size copies are made, images are as good as the initial one. It was done.

一方、空室(7)内に装填する磁性粒子中における強磁
性粒子とバインダ型磁性粒子との混合比を重量比でN)
:190ないし190:1(lの範囲で変化させて前記
現像条件下で実験したところ、強磁性粒子の含有量力弓
O〜70IIlt%の範囲で良好な結果が得られたが、
10u+t%未満では磁性粒子の搬送性が低下し、画像
濃度が不足した。また、70wt%を超えると、磁性現
像剤の凝集、画像に自スジの発生が認められた。
On the other hand, the mixing ratio of ferromagnetic particles and binder-type magnetic particles in the magnetic particles loaded into the empty chamber (7) is N)
:190 to 190:1 (I experimented under the above-mentioned development conditions by varying the content of ferromagnetic particles in the range of 0 to 70%, but
If the amount was less than 10 u+t%, the conveyance of the magnetic particles decreased, resulting in insufficient image density. Moreover, when it exceeded 70 wt%, agglomeration of the magnetic developer and generation of self-streaks on images were observed.

なお、この場合、空室(7)内に装填する磁性粒子の量
は、現像領域(A)に存在する磁性現像剤における磁性
粒子と絶縁性磁性トナーの混合比が、重量比にして20
0:60±20の範囲内に確実に収まる様適量に調整さ
れた状態で実験を行った。具体的には40〜100gの
範囲内で調整された。
In this case, the amount of magnetic particles loaded into the empty chamber (7) is such that the mixing ratio of magnetic particles and insulating magnetic toner in the magnetic developer present in the development area (A) is 20 in terms of weight ratio.
The experiment was conducted with the amount adjusted appropriately to ensure that it was within the range of 0:60±20. Specifically, it was adjusted within the range of 40 to 100 g.

実験例−2 強磁性粒子: 前記実験例−1と同一のもの バインダ型磁性粒子: 前記実験例−1と同一のもの 絶縁性磁性トナー(正帯電性): スチレン・アクリル共重合樹脂、ハイマーSBM73(
商品名:三洋化成製)100重量部と、磁性酸化鉄、R
B−BL (商品名:チタン工業製、平均粒径0,5−
(1,6μ+o)60重量部と、正帯電性荷電制御剤、
ニグロシンベースEX(商品名:オリエント化学製)5
重量部と、カーボンブラック3重量部を混練し、粉砕、
分級して得たもの。
Experimental Example-2 Ferromagnetic particles: Same as in Experimental Example-1 Binder-type magnetic particles: Same as in Experimental Example-1 Insulating magnetic toner (positively chargeable): Styrene-acrylic copolymer resin, Hymer SBM73 (
(Product name: Sanyo Chemical) 100 parts by weight, magnetic iron oxide, R
B-BL (Product name: Titanium Kogyo, average particle size 0.5-
(1,6μ+o) 60 parts by weight, a positively chargeable charge control agent,
Nigrosine Base EX (product name: Orient Chemical) 5
parts by weight and 3 parts by weight of carbon black were kneaded, crushed,
What I got from the classification.

平均粒径は14μm、体積固有抵抗は2×1015Ω・
amで、真比重は1.5である。
The average particle size is 14μm, and the volume resistivity is 2×1015Ω・
am, and the true specific gravity is 1.5.

磁性現像剤の調製 前記実験例−1と同様であり、現像領域(A)に存在す
る磁性現像剤は、 強磁性粒子:バインダ型磁性粒子:絶縁性磁性トナー 100 : 100 : 50 (重量比)の状態にあ
る。
Preparation of magnetic developer Same as in Experimental Example-1 above, and the magnetic developer present in the development area (A) has the following ratio: Ferromagnetic particles: Binder-type magnetic particles: Insulating magnetic toner 100:100:50 (weight ratio) is in a state of

現像条件 静電潜像最高電位: −600V 現像バイアス : 直流−25(l V池の条件は実験
例−1と同じ 実験結果 実験例−1と同様に良好な画像が得られた。
Development conditions: Highest potential of electrostatic latent image: -600V Development bias: DC -25 (l) V pond conditions were the same as in Experimental Example 1. Experimental Results: Similar to Experimental Example 1, a good image was obtained.

比較例−1 前記実験例−1で得た強磁性粒子10(lFiを前述の
現像装置の空室(7)内に装填する様に変更した以外は
、実験例−1と同じ条件下で実験した。
Comparative Example-1 Experiment was carried out under the same conditions as Experimental Example-1 except that the ferromagnetic particles 10 (lFi obtained in Experimental Example-1 were changed to be loaded into the empty chamber (7) of the developing device described above). did.

この場合、現像領域(A)に存在する磁性現像剤は“強
磁性粒子:絶縁性磁性トナーが100:20(重量比)
゛の状態であった。
In this case, the magnetic developer present in the development area (A) has a ratio of ferromagnetic particles to insulating magnetic toner of 100:20 (weight ratio).
It was in a state of ``.

実験の結果は、磁性現像剤全体としての磁化が強く、画
像中に白スジか多く見られた。また、細線再現が不十分
であった。
As a result of the experiment, the magnetization of the magnetic developer as a whole was strong, and many white streaks were observed in the image. Furthermore, fine line reproduction was insufficient.

比較例−2 前記実験例−1で得たバインダ型磁性粒子40gを前述
の現像装置の空室(7)内に装填する様に変更した以外
は、実験例−1と同じ条件下で実験した。この場合、現
像領域(A>に存在する磁性現像剤は゛バインダ型磁性
粒子:絶縁性磁性トナーが100:413(重量比)゛
の状態であった。
Comparative Example-2 An experiment was conducted under the same conditions as Experimental Example-1, except that 40 g of the binder-type magnetic particles obtained in Experimental Example-1 were loaded into the empty chamber (7) of the developing device described above. . In this case, the magnetic developer present in the development area (A>) was in a state of ``binder-type magnetic particles:insulating magnetic toner'' (weight ratio) of 100:413.

実験の結果は、画像濃度が不足し、非画像部へのバイン
ダ型磁性粒子の付着が見られた。
The results of the experiment showed that the image density was insufficient and adhesion of binder-type magnetic particles to non-image areas was observed.

発明の効果 以上の説明で明らかなように、本発明は絶縁性磁性トナ
ーによる現像に際して、現像スリーブの外周面に装填さ
れる磁性粒子として、強磁性材からなる強磁性粒子と、
バインダ樹脂中に磁性微粉末を分散させてなるバインダ
型磁性粒子との混合物を用いることを特徴とするため、
ソフトな磁気刷子の穂を形成することができると同時に
、強磁性粒子の凝集が防止されるために磁性現像剤の搬
送性を一段と向上させることができ、高濃度で、キメの
細かいシャープな画像を得ることができ、磁性粒子の静
電潜像担体表面への付着や磁性粒子の凝集による白スジ
の発生などがないという優れた効果を奏する。
Effects of the Invention As is clear from the above explanation, the present invention includes ferromagnetic particles made of a ferromagnetic material as magnetic particles loaded on the outer peripheral surface of the developing sleeve during development with an insulating magnetic toner.
Because it is characterized by using a mixture with binder-type magnetic particles made by dispersing magnetic fine powder in a binder resin,
It is possible to form soft magnetic brush ears, and at the same time, the aggregation of ferromagnetic particles is prevented, which further improves the conveyance of the magnetic developer, resulting in high-density, fine-grained, sharp images. This provides an excellent effect in that there is no adhesion of the magnetic particles to the surface of the electrostatic latent image carrier or the occurrence of white streaks due to aggregation of the magnetic particles.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る静電潜像現像方法を実施するための
現像装置を示す断面図である。 (A)・・・現像領域、(1)・・・感光体ドラム、(
2)・・・現像スリーブ、(3)・・・磁気ローラ、(
4)・・・穂高規制板、(5)・・・前規制板、(6)
・・・トナー補給槽、(7)・・・空室。 特許出願人 ミノルタカメラ株式会社
The drawing is a sectional view showing a developing device for carrying out the electrostatic latent image developing method according to the present invention. (A)...Development area, (1)...Photosensitive drum, (
2)...Developing sleeve, (3)...Magnetic roller, (
4)...Hot height regulation plate, (5)...Front regulation plate, (6)
...Toner supply tank, (7)...vacant. Patent applicant Minolta Camera Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)現像スリーブの外周面上1こ磁気vj、着されて
いる磁性粒子に対して絶縁性磁性Yナーを供給すること
9二より、前記現像スリーブの外周面上において前記磁
性粒子と絶縁性磁性トナーとの混合物からなる磁性現像
剤を調製し、この調製された磁性現像剤を用いて静電潜
像担体表面に担持される静電潜像を現像する形態の静電
潜像現像方法であって、 前記磁性粒子として、強磁性粒子と、/\インダ樹脂中
に磁性微粉末を分散させてなるバイング型磁性粒子との
混合物を用いることを特徴とする静電潜像現像方法。
(1) Supplying an insulating magnetic Y agent to the magnetic particles attached to the outer circumferential surface of the developing sleeve. An electrostatic latent image developing method in which a magnetic developer consisting of a mixture with a magnetic toner is prepared, and the prepared magnetic developer is used to develop an electrostatic latent image carried on the surface of an electrostatic latent image carrier. An electrostatic latent image developing method, characterized in that, as the magnetic particles, a mixture of ferromagnetic particles and baying type magnetic particles formed by dispersing magnetic fine powder in an inder resin is used.
JP59085814A 1984-04-26 1984-04-26 Method for developing electrostatic latent image Pending JPS60229037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085814A JPS60229037A (en) 1984-04-26 1984-04-26 Method for developing electrostatic latent image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085814A JPS60229037A (en) 1984-04-26 1984-04-26 Method for developing electrostatic latent image

Publications (1)

Publication Number Publication Date
JPS60229037A true JPS60229037A (en) 1985-11-14

Family

ID=13869324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085814A Pending JPS60229037A (en) 1984-04-26 1984-04-26 Method for developing electrostatic latent image

Country Status (1)

Country Link
JP (1) JPS60229037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506084A (en) * 1993-12-27 1996-04-09 Brother Kogyo Kabushiki Kaisha Magnetic developer and developing device using same
JPH10171150A (en) * 1996-12-06 1998-06-26 Hitachi Metals Ltd Three-component magnetic developer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506084A (en) * 1993-12-27 1996-04-09 Brother Kogyo Kabushiki Kaisha Magnetic developer and developing device using same
JPH10171150A (en) * 1996-12-06 1998-06-26 Hitachi Metals Ltd Three-component magnetic developer

Similar Documents

Publication Publication Date Title
JP4143266B2 (en) Developing device, image forming apparatus, and image forming process unit
JPH0448232B2 (en)
JPS6129856A (en) Electrostatic latent image developing method
JPS59192262A (en) Electrophotographic magnetic developer
JPS61180247A (en) Developer for electrostatic latent image
US5554479A (en) Image formation method
JP3817296B2 (en) Development device
JPH058424B2 (en)
JPS60229037A (en) Method for developing electrostatic latent image
JP2611192B2 (en) Electrostatic latent image developing method
JPS58184157A (en) Developing method of electrostatic image
JP4531307B2 (en) Image forming apparatus and process cartridge
JP3173321B2 (en) Development method
JPS60131545A (en) Developing method
JP2615565B2 (en) Electrostatic latent image developing method
JPS603675A (en) Electrostatic charge image developing device
JPH08272132A (en) Electrostatic latent image developer
JP2962040B2 (en) Method for developing one-component insulating magnetic toner
JPS619663A (en) Magnetic powder dispersed type microcarrier
JP3010917B2 (en) Method for developing one-component insulating magnetic toner
JPH0119580B2 (en)
JPS6325333B2 (en)
JPS5895748A (en) Transfer type magnetic toner particle
JPH0257302B2 (en)
JP3047073B2 (en) High density development method