JPS6022854A - Digital signal modulating and demodulating system - Google Patents

Digital signal modulating and demodulating system

Info

Publication number
JPS6022854A
JPS6022854A JP13139983A JP13139983A JPS6022854A JP S6022854 A JPS6022854 A JP S6022854A JP 13139983 A JP13139983 A JP 13139983A JP 13139983 A JP13139983 A JP 13139983A JP S6022854 A JPS6022854 A JP S6022854A
Authority
JP
Japan
Prior art keywords
circuit
signal
identification
integration
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13139983A
Other languages
Japanese (ja)
Inventor
Shigeaki Ogose
生越 重章
Kiyoshi Tanaka
喜好 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13139983A priority Critical patent/JPS6022854A/en
Publication of JPS6022854A publication Critical patent/JPS6022854A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2017Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes are non-linear, e.g. generalized and Gaussian minimum shift keying, tamed frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2334Demodulator circuits; Receiver circuits using non-coherent demodulation using filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To decrease the effect of waveform deterioration by applying 2-bit summed up quantity conversion to a signal at a transmission side, and appling the GMSK (Gaussian-filtered Minimum Shift Keying) modulation thereto, transmitting it and allowing the reception side to apply the detected signal with full wave rectification to identify sequentially the integration value between two time slots. CONSTITUTION:An input signal is transmitted through the summed up quantity conversion circuit comprising an exclusive OR circuit 12 and a delay circuit 14 having a delay time of 2T (T is input signal time slot) and through a GMSK modulation circuit 13. The signal is detected by a detection circuit 22 at the reception side and a base band signal is led to a full-wave rectification circuit 23. An output of the rectifier circuit 23 is inputted to integration circuits 24, 25 for 2T period where the integration period is shifted by one time slot period T. The output of the integration circuits 24, 25 is identified by identification circuits 28, 29 at the end of period of integration and outputted to an output terminal 31 through a selection circuit 30.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ディジタル通信方式に関する。特に、符号量
干渉等により受信出力波形が劣化している場合に通ずる
ディジタル信号の変復調方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a digital communication system. In particular, it relates to a digital signal modulation/demodulation method that is applicable when the received output waveform is degraded due to code amount interference or the like.

〔従来技術の説明〕[Description of prior art]

従来のディジタル通信方式の受信側においては、データ
遷移点の中間点において2値識別する方法が広く用いら
れている。しかし、ディジタル無線通信などで狭帯域信
号を得るために、送信側で基底帯域制限を行った信号を
受信側で検波した場合には、帯域制限が厳しいほど時間
軸上の波形の広がりが増大するため、検波出力は符号量
干渉を受け、再生したディジタル情報の誤り率特性は劣
化する欠点があった。
On the receiving side of conventional digital communication systems, a method of performing binary identification at intermediate points of data transition points is widely used. However, in order to obtain narrowband signals in digital wireless communications, etc., when a signal whose base band is limited on the transmitting side is detected on the receiving side, the more severe the band limitation is, the wider the waveform on the time axis becomes. Therefore, the detected output is subject to code amount interference, and the error rate characteristics of the reproduced digital information deteriorate.

第1図はGMSK (ガウシャウスフィルタード・ミニ
マム・シフト・キーイング)変調された信号の検波出力
波形の一例を示すもので、Soは従来の識別闇値、tl
は識別夕・イミノジである。識別タイミングt1におc
する検波出力波形の開きはhlである。この波形ではア
イアパーチャが小さくなっているため雑音余裕が小さく
、このため、識別出力の誤り率が増加する。
Figure 1 shows an example of the detection output waveform of a GMSK (Gaussian filtered minimum shift keying) modulated signal, where So is the conventional discrimination value, tl
is the identification Yu/Iminoji. c at identification timing t1
The opening of the detected output waveform is hl. In this waveform, the eye aperture is small, so the noise margin is small, and therefore the error rate of the identification output increases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記のような欠点を除去するため、符号量干
渉等により波形劣化が生じた場合にも良好な誤り率特性
が得られる通信方式を提供することを目的とする。
SUMMARY OF THE INVENTION In order to eliminate the above-mentioned drawbacks, it is an object of the present invention to provide a communication system that can obtain good error rate characteristics even when waveform deterioration occurs due to code amount interference or the like.

〔発明の特徴〕[Features of the invention]

本発明は、受信出力波形が劣化した場合でも、受信出力
波形を全波整流し、2タイムスロフトにわたり積分を実
行することにより、積分終了時点では大きな雑音余裕の
ものに識別でき、識別後の符号系列の前後のデータには
一定の関係を有することに着目したもので、送信側で2
ヒノI・の和分論理変換を行い、受信側で上記の積分を
1タイムスロツトずらして2つの回路で行い、2つの積
分放電フィルタの積分出力を識別してiiIられる再生
符号系列を1タイムス1」ソト毎に選択したものをtl
調信号とすることを特徴とする。
In the present invention, even if the received output waveform is degraded, by full-wave rectifying the received output waveform and performing integration over two time slots, it can be identified as having a large noise margin at the end of the integration, and the code after the identification is This method focuses on the fact that there is a certain relationship between the data before and after the series, and the sending side
Hino I.'s summation logic conversion is performed, and on the receiving side, the above integration is shifted by one time slot and performed using two circuits, and the integral outputs of the two integral discharge filters are identified, and the reproduced code sequence obtained by III is generated by one time slot. ” tl the selected items for each sort
It is characterized by being a modulated signal.

なお、本願発明は同一発明者による先願(特願昭58−
31804 )をさらに推し進めたものである。
Note that the present invention is based on an earlier application by the same inventor (Japanese Patent Application No. 1983-
31804).

〔発明の原理〕[Principle of the invention]

本発明の動作原理をGMSK (Gaussian4i
1tered旧nimuma 5hift Keyin
g )を用いた場合を例にとって説明する。
The operating principle of the present invention is described in GMSK (Gaussian4i).
1tered old nimuma 5hift Keyin
The case using g) will be explained as an example.

第1図(alはG M S Hの検波信号アイパターン
の一例であり、同図(blはその検波信号を全波整流し
た信号を示す。同図(alにおいて従来の識別タイミン
グt1におけるアイの開きは符号量干渉により少なくな
っている。一方、時刻も2におけるアイの開きは、時刻
t1におけるアイの開きより犬きい。いま、時刻t2に
おいて識別を行うものとし、第1図(ajおよびfbl
における再生符号系列をそれぞれdiおよびdi′ と
する。符号系列diおよびdi′ は識別閾値S1、ゑ
2、s3に対し −−−−−−−(11 −−−−−−−−(2+ で与えられるものとする。このときdi−di’ とな
り、伝送符号系列をbiとずれぽ、diはbiが変化し
た場合に「1」、変化しない場合にl−OJをとる。
Figure 1 (al is an example of the detected signal eye pattern of G M S H, and in the same figure (bl is a signal obtained by full-wave rectification of the detected signal). In the same figure (al, the eye pattern at the conventional identification timing t1 is The eye aperture is smaller due to code amount interference. On the other hand, the eye aperture at time 2 is smaller than the eye aperture at time t1. Now, it is assumed that identification is performed at time t2, and as shown in FIG.
Let the reproduced code sequences in 2 and 2 be di and di', respectively. It is assumed that the code sequences di and di' are given by -------(11 ----------(2+) for the identification thresholds S1, E2, and s3. In this case, di-di' becomes , the transmission code sequence is shifted from bi, and di takes "1" when bi changes, and takes l-OJ when it does not change.

このことから di−旧■bi1 (■は排他的論理和)−旧−(3)
と表わすことができる。
From this, di-old ■bi1 (■ is exclusive OR)-old-(3)
It can be expressed as

第2図は時刻L1を始点として、第1図(blに示ず信
号を2タイムスロット2T(Tはデータの繰り返し周期
)にわたり積分を実行した場合の積分器出力の軌跡を示
す。いま、積分の終了と同時に識別を行うものとし、こ
れによりiMられる再生符号系列をdi″とする。di
″は次式で与えられるように識別するものとする。
Figure 2 shows the locus of the integrator output when the signal shown in Figure 1 (bl) is integrated over two time slots 2T (T is the data repetition period) with time L1 as the starting point. Identification is performed at the same time as the end of , and the reproduced code sequence that is iMed by this is di''.di
″ shall be identified as given by the following equation.

一一−−−(4) ここで、S4、S5は第2図における識別闇値を表わす
。なお、積分器出力は識別後直ちに放電されて、次の積
分を開始する。
11---(4) Here, S4 and S5 represent the discrimination darkness values in FIG. Note that the integrator output is immediately discharged after identification to start the next integration.

式(2)におりる符号系列drPlと式(4)におりる
符号系列df’の関係を示したものが表である。
The table shows the relationship between the code sequence drPl in equation (2) and the code sequence df' in equation (4).

(以下不貞余白) これかられかるように、符号系列di″とdi′の間に
は di″=旧′■ 旧−s ’ −−−−−−−(51あ
る関係がある。さらに、式(5)に式(3)を代入する
ことにより、 di” = bi ebf−t −−−−−(61が得
られる。符号系列di″は伝送符号系列biとその2タ
イムスロット前の符号系列b t’−2との間に変化が
ある場合に11」、変化がない場合にはrOJをとる。
(Hereinafter, unfaithful margins) As we will see, there is a relationship between the code sequences di'' and di': di''=old'■ old-s' -----------(51).Furthermore, the formula ( By substituting equation (3) into 5), di'' = bi ebf-t ------(61) is obtained. The code sequence di'' is the transmission code sequence bi and the code sequence b two time slots before. 11'' if there is a change between t'-2 and rOJ if there is no change.

そこで、送信側において、情報信号aiに対して bi= ai の bi−2−−−−−−−−−(力で
与えられる2ヒノ1−の和分論理変換を行った符号系列
biを送信する。このようにして、送信側の情報信号a
+が受信側で再生される。
Therefore, on the transmitting side, the code sequence bi obtained by performing the summation logic conversion of bi=ai of bi-2−−−−−−−−(2 hino 1− given by the force) on the information signal ai is transmitted. In this way, the information signal a on the transmitting side
+ is played on the receiving side.

符号系列d+lFは2T毎の周期で得られることから、
時刻t1からtl →2Tまで積分ず・る積分lJ文電
電フィルタよび時刻t1+’pからt+43Tまで積分
する積分放電フィルタの積分出力を識別して得られた符
号系列を周期1゛毎に交互に選ぶことにより情報信号a
iが復調される。
Since the code sequence d+lF is obtained with a period of every 2T,
Code sequences obtained by identifying the integral outputs of the zu-ru integral lJ station filter that integrates from time t1 to tl → 2T and the integral discharge filter that integrates from time t1+'p to t+43T are selected alternately every 1゛ cycle. Therefore, the information signal a
i is demodulated.

〔実施例による説明〕[Explanation based on examples]

第3図は本発明実施例方式のブロック構成図である。送
信装置では、入力端子11には送信すべき信号が入力す
る。この信号は排他的論理和回路12の一方の入力に導
かれ、その出力は送信回路13に入力する。また排他的
論理和回路12の出力は分岐されて、遅延回路14を介
して排他的論理和回路12の他方の入力に接続される。
FIG. 3 is a block diagram of the system according to the embodiment of the present invention. In the transmitter, a signal to be transmitted is input to an input terminal 11 . This signal is guided to one input of the exclusive OR circuit 12, and its output is input to the transmitting circuit 13. Further, the output of the exclusive OR circuit 12 is branched and connected to the other input of the exclusive OR circuit 12 via a delay circuit 14.

この遅延回路14は入力信号のタイムスし2ノドの2個
分(2T)の遅延を与える回路である。送信回路13の
出力は送信出力端子15から伝送路18に送出される。
This delay circuit 14 is a circuit that delays the input signal by two times (2T). The output of the transmitting circuit 13 is sent to the transmission line 18 from the transmitting output terminal 15.

受信装置では、伝送路18から受信入力端子21に到来
する信号は受信回路22でベースバンド信号に復調され
、その出力は全波整流回路23に入力される。全波整流
回路23の出力は2個の積分回路24.25およびタイ
ミング信号発生回路26に分岐して与えられる。積分回
路24の出力は識別回路28に接続され、積分回路25
の出力は識別回路29に接続される。積分回路24.2
5および識別回路2日、29にはそれぞれタイミング信
号発生回路26から、タイミング信号が供給される。識
別回路28および29の出力は選択回路30の入力に接
続され、この選択回路30の出力は受信出力端子31に
導かれる。この選択回路30は、同しくタイミング信号
発生回路2Gの出力信号で制御される。この積分回路お
よび識別回路を組合〜已て積分、識別およびリセットを
繰り返ずように構成された回路は、積分フィルタとして
市販の集積回路として入手することができる。
In the receiving device, a signal arriving at a receiving input terminal 21 from a transmission path 18 is demodulated into a baseband signal by a receiving circuit 22, and the output thereof is input to a full-wave rectifier circuit 23. The output of the full-wave rectifier circuit 23 is branched and applied to two integration circuits 24 and 25 and a timing signal generation circuit 26. The output of the integration circuit 24 is connected to the identification circuit 28, and the output of the integration circuit 25 is connected to the identification circuit 28.
The output of is connected to the identification circuit 29. Integrating circuit 24.2
Timing signals are supplied to the identification circuits 5 and 29 from the timing signal generation circuit 26, respectively. The outputs of the identification circuits 28 and 29 are connected to the input of a selection circuit 30, and the output of this selection circuit 30 is guided to a reception output terminal 31. This selection circuit 30 is similarly controlled by the output signal of the timing signal generation circuit 2G. A circuit configured to repeat integration, identification, and reset by combining the integrating circuit and the identifying circuit can be obtained as a commercially available integrated circuit as an integrating filter.

このように構成された装置の動作を説明すると、送信装
置では、入力端子11に送信ずべき信号(符号系列ai
)が入力する。その信号は排他的論理和回路I2おまひ
2タイムスロノ1−の遅延を与える遅延回路14により
、2ビットの和分論理変換が施され送信信号(符号系列
bi)となる。
To explain the operation of the device configured in this way, the transmitting device receives a signal to be transmitted (code sequence ai
) is input. The signal is subjected to 2-bit summation logic conversion by a delay circuit 14 which provides a delay of 1-2 times, and becomes a transmission signal (code sequence bi).

受信装置では、積分回路24および積分回lNl52.
’、)は入力信号の2タイムス四ノl−(2T)の周期
で411分およびリセットの動作を繰り返す。しかも、
積分回路24と積分回路25の動作の周期は1タイムス
ロツト(IT)だけずれるように構成される。この様子
を第4図のタイムヂャ−1・に示ず。すなわち、第4図
Aは積分回路24の積分動作と、識別回路28の識別動
作および積分回路24のす七ソ1−動作を示す。また、
第4図Bは積分回路25の積分動作と、識別回路29の
識別動作および積分回路25のリセット動作を示す。選
択回路30は識別回路28および29の識別出力を交互
に1タイムスl:’ ノI・(1′F)の周期で選択し
て出力端子31に送出する。
In the receiving device, an integrating circuit 24 and an integrating circuit 1N152.
', ) repeats the reset operation for 411 minutes at a cycle of 2 times 4 times (2T) of the input signal. Moreover,
The operating periods of the integrating circuit 24 and the integrating circuit 25 are configured to be shifted by one time slot (IT). This situation is not shown in time chart 1 of FIG. That is, FIG. 4A shows the integrating operation of the integrating circuit 24, the discriminating operation of the discriminating circuit 28, and the 1-operation of the integrating circuit 24. Also,
FIG. 4B shows the integration operation of the integration circuit 25, the identification operation of the identification circuit 29, and the reset operation of the integration circuit 25. The selection circuit 30 alternately selects the identification outputs of the identification circuits 28 and 29 at a cycle of 1 time l:'I·(1'F) and sends it to the output terminal 31.

ここで、送出回路13の入力のベースバンド信号は第1
図(alのような信号である。この信号は上記式(7)
に示すように、入力信号符号系列と、2ビット前の送信
信号符号系列との排他的論理和をとるもので、その2つ
の符号系列に変化があったか変化がなかったかを表す出
力信号となる。これが、受信装置の受信回路22の出力
に現九る。この信号が全S整流回路23で全波整流され
ると、第1図(blに示す信号となる。この信号を2T
にわたり積分することは、信号が2Tにわたり変化した
か否かを識別することになる。すなわち、この2Tに時
間に信号がrl IJであると、積分回路の出力は第2
図のPのように、正の値になる。また信号が100」で
あると積分回路の出力は第2図のQのように負の値にな
る。さらに、この2Tの間に信号が「10」あるいは「
Ol」と変化すると、積分回路の出力は第2図のRのよ
うになる。第2図でP、 Q、 Hのそれぞれに複数の
軌跡が描かれているのは、例えば同じ「11」であって
もそれ以前の値により、信号波形が異なりその積分の軌
跡が異なることを示す。
Here, the input baseband signal of the sending circuit 13 is the first baseband signal.
The signal is as shown in the figure (al). This signal is expressed by the above equation (7).
As shown in the figure, the exclusive OR of the input signal code sequence and the transmission signal code sequence 2 bits earlier is performed, resulting in an output signal indicating whether there has been a change or no change in the two code sequences. This is present at the output of the receiving circuit 22 of the receiving device. When this signal is full-wave rectified by the all-S rectifier circuit 23, it becomes the signal shown in FIG.
Integrating over will identify whether the signal has changed over 2T. In other words, if the signal is rl IJ at this 2T time, the output of the integrating circuit is the second
As shown by P in the figure, it becomes a positive value. If the signal is 100'', the output of the integrating circuit will be a negative value as shown by Q in FIG. Furthermore, during this 2T, the signal is "10" or "
2, the output of the integrating circuit becomes as indicated by R in FIG. The reason why multiple trajectories are drawn for each of P, Q, and H in Figure 2 is that, for example, even if the same number is "11", the signal waveform will differ depending on the previous value, and the locus of its integration will differ. show.

第2図で84およびS5は識別回路28.29の識別の
闇値を示す。すなわち−1二記式(4)の識別を行うこ
とにより、2ビツトにわたり信号に変化があったかなか
ったかを識別することになる。これを1タイムスロツト
の周期で交互に選択すると、これはちょうど上記式(6
)で説明したように、2夕・fムスロソト前の符号系列
との間に変化がある場合には「1」、変化がない場合に
は「0」となっ−ζ送信情報信号の符号系列atを再現
することになる。
In FIG. 2, 84 and S5 indicate the discrimination values of the discrimination circuits 28 and 29. That is, by performing the identification of the -1 binary notation (4), it is possible to identify whether or not there has been a change in the signal over two bits. If this is selected alternately at a period of one time slot, this is exactly the equation (6
), if there is a change from the previous code sequence, it will be "1", and if there is no change, it will be "0". will be reproduced.

このように、本発明の方式は受信側で2ピノ1−にわた
り積分を実行して信号の識別を行うので、従来方式の1
点で識別を行う場合に比べると、符号量干渉がある信号
では、その識別のための信号の開きははるかに大きくな
り、符号量干渉があっても誤り率の小さい復調を行うこ
とができる。
In this way, the method of the present invention performs signal identification by performing integration over 2 pins on the receiving side, so it is different from the conventional method.
Compared to the case where identification is performed at a point, the difference in the signal for identification becomes much larger when there is code amount interference, and even if there is code amount interference, demodulation can be performed with a small error rate.

本発明の方式ば上述のGMSK無線伝送方式、ベースバ
ンド伝送のほか、TFM方式にも有9J>に通用するこ
とができる。
The method of the present invention can be applied not only to the above-mentioned GMSK wireless transmission method and baseband transmission, but also to the TFM method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば符号量干渉などに
より検波出力に得られる信号波形が劣化した場合にも、
雑音余裕の大きい識別を行うことができる。また、本発
明の送信装置および受信装置は簡単な回路構成により実
現することができる優れた利点がある。
As explained above, according to the present invention, even when the signal waveform obtained in the detection output is degraded due to code amount interference etc.
Identification can be performed with a large noise margin. Furthermore, the transmitting device and receiving device of the present invention have the excellent advantage of being realized with a simple circuit configuration.

【図面の簡単な説明】 第1図は本発明実施例方式の信号波形を説明する図。 第2図は積分回路の出力信号波形を示す図。 第3図は本発明は実施例装置の回路構成図。 第4図は積分回路および識別回路の動作タイムチャート
。 12・・・排他的論理和回路、13・・・送信回路、1
4・・・遅延回路、22・・・受信回路、23・・・全
波整流回路〜24.5・・・積分回路、26・・・タイ
ミング信号発生量Fl&、28.29・・・識別回路、
30・・・選択回路。 特11’F出191人 日本電信電話公社代理人 弁理
士 井 出 直 孝 t+ b −一+ t1t2tI◆2T −一÷4 爪 1 図 ’153 辺
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating signal waveforms in an embodiment of the present invention. FIG. 2 is a diagram showing the output signal waveform of the integrating circuit. FIG. 3 is a circuit diagram of a device according to an embodiment of the present invention. FIG. 4 is an operation time chart of the integrating circuit and the discriminating circuit. 12... Exclusive OR circuit, 13... Transmission circuit, 1
4... Delay circuit, 22... Receiving circuit, 23... Full wave rectifier circuit ~ 24.5... Integrating circuit, 26... Timing signal generation amount Fl&, 28.29... Identification circuit ,
30...Selection circuit. Special 11'F 191 people Nippon Telegraph and Telephone Public Corporation agent Patent attorney Ide Nao Takashit+ b -1+ t1t2tI◆2T -1÷4 Nail 1 Figure '153 side

Claims (1)

【特許請求の範囲】 (11送信装置には、 送信すべき2値ディジタル情報信号に2ビツトの和分論
理変換を施す手段を備え、 受信装置には、 受信されたベースバンド信号を全波整流する手段と、 この全波整流する手段の出力信号を入力として信号の遷
移点のほぼ中間点から2タイムスロフトにわたり積分を
行いその積分の結果を識別しその直後にリセソトシて上
記積分を繰り返すように構成された第一の識別再生回路
と、 この第一の識別再生回路と同等の回路で構成され上記全
波整流する手段の出力信号を入力として上記第一の識別
再生回路とはlタイムスロットずれた周期で動作する第
二の識別再生回路と、上記第一の識別再生回路および上
記第二の識別再生回路の識別出力を1タイムスロット毎
に交互に選択する手段と を備えたことを特徴とするディジタル信号変復調方式。
[Claims] (11) The transmitting device is provided with means for performing 2-bit summation logic conversion on the binary digital information signal to be transmitted, and the receiving device is provided with means for performing full-wave rectification on the received baseband signal. and means for integrating the output signal of the full-wave rectifying means over two time lofts from approximately the midpoint of the transition point of the signal, identifying the result of the integration, and immediately resetting and repeating the above integration. and a first identification and regeneration circuit configured with a circuit equivalent to the first identification and regeneration circuit, which receives the output signal of the full-wave rectifying means and is l time slot shifted from the first identification and regeneration circuit. and means for alternately selecting the identification outputs of the first identification and regeneration circuit and the second identification and regeneration circuit every time slot. Digital signal modulation/demodulation method.
JP13139983A 1983-07-18 1983-07-18 Digital signal modulating and demodulating system Pending JPS6022854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13139983A JPS6022854A (en) 1983-07-18 1983-07-18 Digital signal modulating and demodulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13139983A JPS6022854A (en) 1983-07-18 1983-07-18 Digital signal modulating and demodulating system

Publications (1)

Publication Number Publication Date
JPS6022854A true JPS6022854A (en) 1985-02-05

Family

ID=15057061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13139983A Pending JPS6022854A (en) 1983-07-18 1983-07-18 Digital signal modulating and demodulating system

Country Status (1)

Country Link
JP (1) JPS6022854A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316337A (en) * 1989-03-13 1991-01-24 Hitachi Ltd Timing extraction system and communication system utilizing same
EP0417390A2 (en) * 1989-09-11 1991-03-20 Electrocom Automation Inc. GMSK narrowband modem
WO2006027539A1 (en) * 2004-09-08 2006-03-16 British Telecommunications Public Limited Company Decoding of multilevel gmsk signals
US8085881B2 (en) 2004-09-08 2011-12-27 British Telecommunications Public Limited Company High data rate demodulation system
CN109004981A (en) * 2018-08-01 2018-12-14 华南理工大学 A kind of visual optic communication detection method based on blurring effect

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316337A (en) * 1989-03-13 1991-01-24 Hitachi Ltd Timing extraction system and communication system utilizing same
EP0417390A2 (en) * 1989-09-11 1991-03-20 Electrocom Automation Inc. GMSK narrowband modem
US5090026A (en) * 1989-09-11 1992-02-18 Electrocom Automation, Inc. Gmsk narrowband modem
WO2006027539A1 (en) * 2004-09-08 2006-03-16 British Telecommunications Public Limited Company Decoding of multilevel gmsk signals
US8085881B2 (en) 2004-09-08 2011-12-27 British Telecommunications Public Limited Company High data rate demodulation system
CN109004981A (en) * 2018-08-01 2018-12-14 华南理工大学 A kind of visual optic communication detection method based on blurring effect

Similar Documents

Publication Publication Date Title
US5218620A (en) Spread spectrum communication device
US4964138A (en) Differential correlator for spread spectrum communication system
US6434194B1 (en) Combined OOK-FSK/PPM modulation and communication protocol scheme providing low cost, low power consumption short range radio link
US7079567B2 (en) Digital modulation system using extended code set
US5063571A (en) Method and apparatus for increasing the data rate for a given symbol rate in a spread spectrum system
US5353301A (en) Method and apparatus for combining multipath spread-spectrum signals
EP0622920A1 (en) Spread spectrum receiving apparatus
US5347537A (en) Spread spectrum communication device
US20120314815A1 (en) Method and Receiving Unit for the Detection of Data Symbols
JPS609239A (en) Code transmission system
US6876692B2 (en) System for code division multi-access communication
US7103089B2 (en) Multibit spread spectrum signaling
JPS6022854A (en) Digital signal modulating and demodulating system
EP0089467B1 (en) Method and system for pulse signal transmission
US7545845B2 (en) Wireless communication system, wireless transmitter, wireless receiver, wireless communication method, wireless transmission method and wireless reception method
US5539783A (en) Non-coherent synchronization signal detector
US6940837B1 (en) Spread spectrum demodulator
US5724382A (en) Multimode spread spectrum communication system tolerant to varying channel characteristics
JPH06197090A (en) Data transmitter-receiver
EP0387839B1 (en) MSK signal detector
JPS59158657A (en) Digital signal demodulating system
JPH09172391A (en) Spread spectrum communication system
JPH07107128A (en) Digital modulating/demodulating method and digital modulator
JPS60154754A (en) Transmitter-receiver of digital signal
KR20030009975A (en) Minimum offset codging of the digital communication