JPS6022837B2 - oxide piezoelectric material - Google Patents

oxide piezoelectric material

Info

Publication number
JPS6022837B2
JPS6022837B2 JP54076925A JP7692579A JPS6022837B2 JP S6022837 B2 JPS6022837 B2 JP S6022837B2 JP 54076925 A JP54076925 A JP 54076925A JP 7692579 A JP7692579 A JP 7692579A JP S6022837 B2 JPS6022837 B2 JP S6022837B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
temperature
present
coupling coefficient
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076925A
Other languages
Japanese (ja)
Other versions
JPS562687A (en
Inventor
洋八 山下
勝徳 横山
忠 井戸
英夫 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54076925A priority Critical patent/JPS6022837B2/en
Publication of JPS562687A publication Critical patent/JPS562687A/en
Publication of JPS6022837B2 publication Critical patent/JPS6022837B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は酸化物圧電材料に係り、特に(1一x)PbT
j03一xSrTi032成分基本組成から成る酸化物
圧電材料の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to oxide piezoelectric materials, particularly (11x)PbT
This invention relates to improvements in oxide piezoelectric materials having a basic composition of j03-xSrTi032 components.

Z周知のように圧電材料は超音波振動
子、メカニカルフィルター、セラミック共振子、振動計
、加速計などの素子として広い分野で利用されている。
このような利用に対してPbTi03‐PbZの3二元
系やPbTi03‐P故の3‐Pb(MgI/州b2/
3)03Z三元系にBi203,Cr203,Mh02
,Ni0などの添加物を加えたものも開発されているが
、これらの氏電材料は強姦電性キュリー温度が30ぴC
程度でそれ以上の温度下で使用し得なかった。また上記
圧電材料の議鰭率は100の崖度で高周波2領域での使
用には適さない。
As is well known, piezoelectric materials are used in a wide range of fields as elements such as ultrasonic vibrators, mechanical filters, ceramic resonators, vibrometers, and accelerometers.
For such uses, the 3-binary system of PbTi03-PbZ and the 3-Pb (MgI/state b2/
3) Bi203, Cr203, Mh02 in 03Z ternary system
, Ni0 and other additives have been developed, but these electrostatic materials have a rape electrostatic Curie temperature of 30 picoC.
It could not be used at higher temperatures. Further, the piezoelectric material has a slope ratio of 100, making it unsuitable for use in the high frequency 2 range.

又これらの材料を高周波で使用した場合には厚み方向の
結合係数Ktと広がり方向の結合係数Kpがほぼ同様な
値であるため広がり方向の結合係数Kpのオーバートー
ンによるスブリアスが発生しやすい欠点が存在した。こ
のため高周波における応用においてはKt/Kpの比が
約3.0以上のものが望ましいとされていた。また厚み
方向の結合係数Ktと広がり方向の結合係数Kpの値が
大きく異なる結合係数の異方性を有するPbTi03系
材料も報告されているが、競鯖後に起るヒビ割れのため
直径2仇舷以上の大型暁結体を得る事が出釆ず、また分
極条件も200℃において印加電圧6肌Vノ伽と非常に
厳しいために放電破壊を起しやすく大型の振動子を得る
事が困難であった。
In addition, when these materials are used at high frequencies, the coupling coefficient Kt in the thickness direction and the coupling coefficient Kp in the spreading direction are approximately the same value, so there is a drawback that spurious noise is likely to occur due to overtone of the coupling coefficient Kp in the spreading direction. Were present. For this reason, in high frequency applications, it has been considered desirable to have a Kt/Kp ratio of about 3.0 or more. In addition, PbTi03-based materials have been reported that have coupling coefficient anisotropy in which the values of the coupling coefficient Kt in the thickness direction and the coupling coefficient Kp in the spreading direction are significantly different, but due to cracks that occur after being cut, the diameter of It was not possible to obtain a large Akatsuki crystal as described above, and the polarization conditions were extremely severe, with an applied voltage of 6 V at 200°C, making it easy to cause discharge breakdown and making it difficult to obtain large oscillators. there were.

またPbTiQ−SrTiQ系材料も報告されているが
副成分を加えない場合ではPbTi03が7伍hoそ%
以上では鱗綾が不可能とされており、実用出来る様な振
動子の作成は不可能であった。
Also, PbTiQ-SrTiQ-based materials have been reported, but when no subcomponents are added, PbTi03 is 75%.
With the above, scale twilling was considered impossible, and it was impossible to create a vibrator that could be put to practical use.

本発明の目的は以上の問題点を解決したもので、キュリ
ー温度が高くて300℃以上の高温でも安定に使用出来
、厚み方向の結合係数であるKtと広がり方向の結合係
数Kpの値に充分な異方性を有し、譲露率が180〜2
500と小さく、暁結が容易なため500伽以上の大型
振動子が得られ、かつ従来のPbTi03材料に比較し
てはるかに分極操作の容易な酸化物圧電材料を提供する
ものである。
The purpose of the present invention is to solve the above-mentioned problems.It has a high Curie temperature, can be used stably even at high temperatures of 300°C or higher, and has a sufficient value for the coupling coefficient Kt in the thickness direction and the coupling coefficient Kp in the spreading direction. It has anisotropy with a yield rate of 180~2
The object of the present invention is to provide an oxide piezoelectric material that is as small as 500 mm and easy to crystallize, making it possible to obtain large oscillators of 500 mm or more, and that is much easier to polarize than conventional PbTi03 materials.

本発明は(Pb,一xSrx)Ti03 x=0.01
〜0.20の組成から成りこれに副成分として、Mg0
,Zn○,Cr203,A夕203,Ga203,Ta
203の少なくとも一つを0.1〜2.の重量%添加し
た酸化物圧電材料である。このような本発明の酸化物圧
電材料は一般的には粉末冶金的方法によって容易に製造
する事が出来る。
The present invention is (Pb, -xSrx)Ti03x=0.01
~0.20, and as a subcomponent, Mg0
, Zn○, Cr203, Ayu203, Ga203, Ta
At least one of 203 is 0.1 to 2. % by weight of oxide piezoelectric material. Such an oxide piezoelectric material of the present invention can generally be easily manufactured by a powder metallurgy method.

例えばPb○,Ti02,SrCQおよびMg0,Zn
○,Cr203,A&03,Ga203,Ta203な
どの原料酸化物を所定の割合に正確に秤取し、これらを
ボールミルなどによってよく混合する。なお、この際用
いる原料は加熱によって酸化物に転ずる化合物、例えば
水酸化物、炭酸塩、シュー酸塩などであってもよい。
For example, Pb○, Ti02, SrCQ and Mg0, Zn
○, Cr203, A&03, Ga203, Ta203, and other raw material oxides are accurately weighed out in predetermined proportions, and mixed well using a ball mill or the like. Note that the raw material used at this time may be a compound that converts into an oxide upon heating, such as a hydroxide, carbonate, or oxalate.

次いで前記混合物を例えば600〜900℃程度の温度
で予備焼成し、さらにボールミルなどによって粉砕して
調製粉末とする。
Next, the mixture is preliminarily calcined at a temperature of, for example, about 600 to 900° C., and further pulverized using a ball mill or the like to obtain a prepared powder.

しかる後この調製粉末に水あるいはポリビニルアルコー
ルなどの粘結剤を添加配合して、0.5〜幻on/の程
度の圧力で加圧成形した後、1000〜1250o○程
度の温度で焼成する。この焼成において一つの組成分た
るPb○の一部が蒸発陣散する恐れもあるので焼成は閉
炉内で行ない、また最高温度での保持は一般に0.5〜
3時間程度で充分である。さらに、本発明について詳述
する。
Thereafter, water or a binder such as polyvinyl alcohol is added to the prepared powder, and the powder is press-molded at a pressure of 0.5 to 1000 degrees Celsius, followed by firing at a temperature of approximately 1000 to 1250 degrees Celsius. During this firing, there is a risk that some of the Pb○, which is one of the components, may evaporate and dissipate, so the firing is carried out in a closed furnace, and the maximum temperature is generally maintained at 0.5~
About 3 hours is sufficient. Furthermore, the present invention will be explained in detail.

まず(1−x)PbTi03‐ねてTi03基本組成に
おいてx=0.01〜0.20と限定した理由はx<0
.01では酌結性が悪く、繊密な磁器が得られずx>0
.20ではキュリー温度が350oo以下に低下し、3
00℃以上の高温で安定して使用出来ない上に、広がり
方向の結合係数であるKpが増大し、結合係数の異方向
が小さくなるためである。
First, the reason for limiting x to 0.01 to 0.20 in the basic composition of (1-x)PbTi03-NateTi03 is that x<0
.. 01 has poor cupping properties and cannot produce delicate porcelain x>0
.. At 20, the Curie temperature drops below 350oo, and at 3
This is because it cannot be stably used at high temperatures of 00° C. or higher, and the coupling coefficient Kp in the spreading direction increases, and the coupling coefficient in different directions becomes smaller.

又、誘電率も250以上となり高周波領域における使用
が困難となるためである。
Further, the dielectric constant is 250 or more, making it difficult to use in a high frequency range.

また副成分であるMg○,Zn○,Cr203,A〆2
03,Ga203,Tも03の添加含有量を0.1〜2
.の重量%と限定したのは0.1重量%より少なくては
PbTi03系セラミックの凝結性および分極特性を改
善するというこれらの劇成分の効果が得られず、2.0
重量%より多くては磁器の比抵抗が低下し、充分な電界
を印奴する事が困難となるためである。かくして、本発
明により次に掲げるような効果を得ることができる。
In addition, the subcomponents Mg○, Zn○, Cr203, A〆2
03, Ga203, T also has an additive content of 03 of 0.1 to 2.
.. The reason for this is that if the content is less than 0.1% by weight, the effect of these effective ingredients in improving the coagulation properties and polarization properties of PbTi03-based ceramics cannot be obtained;
This is because if the amount exceeds % by weight, the specific resistance of the porcelain will decrease, making it difficult to apply a sufficient electric field. Thus, the following effects can be obtained by the present invention.

第1に、PbTi03はキュリー温度が500oo付近
にあって有望な圧電材料とされていたが、暁結性に難点
があるため実用性がなかったの較べ、本発明ではSrT
iQを特に一方の成分として用いてお0り、また副成分
としてMg0,Zn○,Cr203,A夕203,Ga
2Q,Ta203を添加しているめに、これらが、一方
では硬化剤的に働き暁結を容易化ならしめている。
First, PbTi03 had a Curie temperature of around 500 oo and was considered to be a promising piezoelectric material, but it was not practical due to its poor crystallization properties.In contrast, in the present invention, SrT
In particular, iQ is used as one component, and Mg0, Zn○, Cr203, A203, Ga are used as subcomponents.
Since 2Q and Ta203 are added, on the one hand they act as a hardening agent and facilitate hardening.

この暁結の容易化は結局暁結温度を低下せしめることに
なり、組成の−部を成すPb○夕の蒸発陣散を抑制し、
もつて最終的に大型で繊密な圧電材料が容易に得られる
ことになる。第2に、本発明に係る酸化物圧電材料は、
従来分極が困難であったPbTi03系セラミックの分
極を容易にすることができる。
This facilitation of dawning eventually lowers the dawning temperature, suppressing the evaporation of Pb, which forms part of the composition, and
Finally, a large and dense piezoelectric material can be easily obtained. Second, the oxide piezoelectric material according to the present invention is
It is possible to easily polarize PbTi03 ceramic, which has been difficult to polarize in the past.

すなわち、従来のPbTi03系セラミックは、分極条
件として180〜20ぴ○の高温で60〜80KV/伽
の電圧を必要としたが、本発明の圧電材料は80〜10
0qo、40〜6腿V/仇という緩和された条件で充分
に分極することができる。このため分極時における放電
破壊を起しにくく、大型の振動子を容易に得る事が出来
る。第3にPbの一部をCrで置換する事により分極後
の機械的強度の経時変化を改善出来る。すなわち従来の
PbTi03材料では分極後1000時間ほどで機械的
強度の減少が起こり、ヒビ割れを生じて大型振動子の作
成が困難であったのに対して本発明の材料ではこれを大
幅に改善出釆るという効果がある。
That is, while the conventional PbTi03-based ceramic required a voltage of 60 to 80 KV/K at a high temperature of 180 to 20 P○ as polarization conditions, the piezoelectric material of the present invention
Sufficient polarization can be achieved under relaxed conditions of 0 qo and 40 to 6 thigh V/en. Therefore, discharge breakdown during polarization is less likely to occur, and a large oscillator can be easily obtained. Thirdly, by substituting a part of Pb with Cr, changes in mechanical strength over time after polarization can be improved. In other words, with the conventional PbTi03 material, the mechanical strength decreased approximately 1000 hours after polarization, causing cracks and making it difficult to create large oscillators, whereas the material of the present invention significantly improves this. It has the effect of simmering.

次に本発明の実施例について記載する。Next, examples of the present invention will be described.

競結された試料を200×1.仇収‘こ研磨し両面に銀
亀極を焼き付け100℃,6皿V/伽の条件で分極した
後、Proc.IRE.Vo〆.137(1処9)13
78〜1395などに示された標準回路方法によって圧
電特性を各々測定した。
The assembled samples were divided into 200×1. After polishing, baking silver electrodes on both sides and polarizing at 100°C and 6 plate V/g, Proc. IRE. Vo〆. 137 (1 place 9) 13
The piezoelectric properties were each measured by the standard circuit method shown in No. 78-1395.

これらの測定結果をそれらの凝結体の組成比とともに第
1表に示す。なお、第1表においてF.T.は焼成温度
(00)をDは比重(23℃で測定)をごは誘電率(I
KHz23℃で測定)をKtは厚み方向の結合係数(%
)をKpは広がり方向の結合係数(%)をKt/Kpは
結合係数の比を、Tcはキュリー温度(00)をそれぞ
れ示す。
The results of these measurements are shown in Table 1 together with the composition ratio of the aggregates. In addition, in Table 1, F. T. is the firing temperature (00), D is the specific gravity (measured at 23℃), and is the dielectric constant (I
Kt is the coupling coefficient in the thickness direction (%
), Kp indicates the coupling coefficient (%) in the spreading direction, Kt/Kp indicates the ratio of coupling coefficients, and Tc indicates the Curie temperature (00), respectively.

第 1 表 これらの試料中実施例20参考例2の試料について分極
温度に依る電気機械結合係数Ktの値を測定したところ
第1図に示す結果を得た。
Table 1 Among these samples, the values of the electromechanical coupling coefficient Kt depending on the polarization temperature were measured for the samples of Example 20 and Reference Example 2, and the results shown in FIG. 1 were obtained.

第1図において曲線aは実施例20の場合を曲線bは参
考例2の場合を示す。本発明の実施例は従来のPbTi
03系セラミックに比較して低温度でも充分な結合係数
Ktを得る事が出来、分極が容易になっている事がわか
る。次にこれらの試料中実施例2,9,20,27、参
考例7,8の試料の結合係数Kt,Kpの変化とKt/
Kpの比を測定したところ第2図に示す様な結果を得た
In FIG. 1, curve a shows the case of Example 20, and curve b shows the case of Reference Example 2. Embodiments of the present invention utilize conventional PbTi
It can be seen that a sufficient coupling coefficient Kt can be obtained even at a low temperature compared to the 03 series ceramic, and polarization is easier. Next, among these samples, changes in coupling coefficients Kt and Kp of Examples 2, 9, 20, 27 and Reference Examples 7 and 8 and Kt/
When the ratio of Kp was measured, the results shown in FIG. 2 were obtained.

第2図において試料a,b,c,dは実施例2,9,2
0,27を試料e,fは参考例7,8をそれぞれ示す。
In Fig. 2, samples a, b, c, and d are Examples 2, 9, and 2.
0 and 27 are samples e and f are reference examples 7 and 8, respectively.

SrTi03が2仇hoク%以下ではKpが15%以下
となりKt/Kpの比が3.0以上となり、結合係数の
異万性が充分に大きい事を示している。又、これらの試
料中実施例9,2併合考例7の電気機械結合係数Ktの
温度に対する変化を測定したところ第3図に示す結果を
得た。第3図において曲線aは実施例9の場合を曲線b
は実施例20の場合を曲線cは参考例7の場合を示す。
この図によると本発明の実施例9および20はいずれも
キュリー温度が高いためKtは常温〜35000の広い
温度範囲でほとんど一定である。この結果は本発明に係
る圧電材料は圧電材料としては最高の使用温度で利用し
得る事を示している。又、これらの試試料中SrTi0
3のmoク%の異なる実施例2,13,19,27、参
考例7,8の議霞率を測定したところ第4図に示す様な
結果が得られた。第4図においてa,b,c,dはそれ
ぞれ実施例2,13,19,27をe,fは参考例7,
8を示す。誘電率の値はSrTi03が2仇noク以下
では250以下となり、通常のPZTが100晩華度で
あるのに比較して充分に小さく、高周波においての応用
で有利である。
When SrTi03 is 2.0% or less, Kp is 15% or less and the Kt/Kp ratio is 3.0 or more, indicating that the anisotropy of the coupling coefficient is sufficiently large. Furthermore, when the change in the electromechanical coupling coefficient Kt of Examples 9 and 2 and Combined Consideration Example 7 among these samples with respect to temperature was measured, the results shown in FIG. 3 were obtained. In FIG. 3, curve a corresponds to curve b for Example 9.
Curve c shows the case of Example 20, and curve c shows the case of Reference Example 7.
According to this figure, since both Examples 9 and 20 of the present invention have high Curie temperatures, Kt is almost constant over a wide temperature range from room temperature to 35,000. This result shows that the piezoelectric material according to the present invention can be used at the highest operating temperature for a piezoelectric material. In addition, SrTi0 in these sample samples
When the haze ratios of Examples 2, 13, 19, 27 and Reference Examples 7 and 8 having different moc% of 3 were measured, the results shown in FIG. 4 were obtained. In FIG. 4, a, b, c, and d represent Examples 2, 13, 19, and 27, respectively; e and f represent Reference Example 7;
8 is shown. The dielectric constant value of SrTi03 is 250 or less when the temperature is 2°C or less, which is sufficiently small compared to the 100°F of ordinary PZT, and is advantageous in high frequency applications.

第5図は実施例1茂参考例2の組成において直径5.瓜
枕の円板振動子を作成し、分極後の機械的強度を示すt
an6の経時変化を調べた結果を示す。
Figure 5 shows the composition of Example 1 and Reference Example 2 with a diameter of 5. Create a melon disc oscillator and show the mechanical strength after polarization t
The results of examining changes in an6 over time are shown.

第5図において曲線aは実施例13を曲線bは参考例2
の場合をそれぞれ示す。Sr置換を行なわない参考例2
の組成では分極後10餌時間以上ではねn6が急激に上
昇し振動子にヒビ割れが生じたのに対し実施例13の場
合ではねn6の変化は認められず、Sr置換に依り機械
的強度の経時変化が改善されている事を示す。
In FIG. 5, curve a is Example 13 and curve b is Reference Example 2.
Each case is shown below. Reference example 2 without Sr substitution
With the composition of Example 13, the n6 value rapidly increased and cracks appeared in the vibrator after 10 feeding hours after polarization, whereas in the case of Example 13, no change in the n6 value was observed, and the mechanical strength decreased due to Sr substitution. This shows that the change over time has been improved.

以上の実施例から明らかなように本発明に依る圧電材料
は300qo以上の高温でも安定して使用出釆、また高
周波領域で使用できるなど多くの特長をもっている。ま
た分極条件が容易なため大型の振動子の作成が可能とな
り、機械的強度の経時変化も優れているため従来までは
応用が限られていたPbTi03材料のすぐれた機能を
発揮する事が出来る。かくして本発明に係る酸化物圧電
材料は例えば次の様な用途に適するものと言える。
As is clear from the above examples, the piezoelectric material according to the present invention has many advantages, such as being able to be used stably even at high temperatures of 300 qo or more, and being usable in a high frequency range. Furthermore, since the polarization conditions are easy, it is possible to create large-sized resonators, and the change in mechanical strength over time is also excellent, making it possible to demonstrate the excellent functions of PbTi03 material, which has had limited applications up until now. Thus, the oxide piezoelectric material according to the present invention can be said to be suitable for the following uses, for example.

(1} 高温物体の振動、加速度測定、および圧力測定
、500つ0に近い温度に達する物体や温度変化のはげ
しい物体の振動や加速度を測定することができる。
(1) Vibration, acceleration, and pressure measurements of high-temperature objects. Vibration and acceleration of objects that reach temperatures close to 500 degrees or that experience rapid temperature changes can be measured.

同様に高温物体内の圧力も測定できる。■ 高温物体の
超音波応用 高温物体の超音波加工の際の超音波発生源として使用し
たり、高温物体の超音波検査用素子などとしても使用で
きる。
Similarly, pressure inside hot objects can be measured. ■ Ultrasonic application for high-temperature objects It can be used as an ultrasonic source during ultrasonic processing of high-temperature objects, or as an element for ultrasonic inspection of high-temperature objects.

剛 強力超音波の発生 通常の圧電材料は大振幅動作をさせると発熱のため温度
が上昇して使えなくなるが、本発明に係る圧電材料は3
0び0以上の使用にも耐え得るので、大振幅動作による
強力超音波の発生に有利である。
Rigid Generation of powerful ultrasonic waves Normal piezoelectric materials generate heat when operated with large amplitude, making them unusable, but the piezoelectric material according to the present invention has three
Since it can withstand use at zero and above zero, it is advantageous for generating powerful ultrasonic waves through large amplitude operation.

{41 高周波における応用 従来の圧電材料は誘電率が100の華度と大き過ぎるた
め高周波領域での用途に適さないと言う難点があった。
{41 Application in High Frequency Conventional piezoelectric materials have a dielectric constant of 100 degrees Fahrenheit, which is too large, making them unsuitable for use in the high frequency range.

一般にインピーダンスZはZ=d/(2mf・ご・s)
(ここでd,sは試料の厚さと断面積、fは使用周波数
、ごは誘電率である。)で与えられる。従って、dはf
に反比例して薄くする必要がある。結局ZQI/(f2
・ご・s)となるが、fが高くなれば、Zは2乗で効い
てきて、急速に減少する。Zの整合にはsかごを小さく
する必要があるが、sには加工上の限界もあるので、ご
を小さくする方が有利である。本発明の圧電材料は誘電
率‘が150〜25の里度で従来のものとくらべ1/5
〜1/10である。従って従来の材料でlmMH2zま
で使用可能ならば、本発明の材料を使えば50MHzぐ
らいまで可能となる。‘5’リニャスキャン型超音波診
断袋魔用プロープ超音波診断装置用プロープにおける音
波変換素子は、高周波化に伴って大型形状化、薄板化が
要求される。
Generally, impedance Z is Z=d/(2mf・go・s)
(Here, d and s are the thickness and cross-sectional area of the sample, f is the frequency used, and d is the dielectric constant.) Therefore, d is f
It is necessary to make it thinner in inverse proportion to . After all ZQI/(f2
・go・s) However, as f becomes higher, Z becomes effective as a square and rapidly decreases. Although it is necessary to make the s cage small for Z matching, there is also a processing limit on s, so it is more advantageous to make the cage smaller. The piezoelectric material of the present invention has a dielectric constant of 150 to 25, which is 1/5 that of conventional materials.
~1/10. Therefore, if the conventional material can be used up to 1mMHz2z, the material of the present invention can be used up to about 50MHz. '5' Linear Scan Type Ultrasonic Diagnostic Probe Sonic transducer elements in probes for ultrasonic diagnostic equipment are required to be larger in size and thinner as the frequency becomes higher.

素子の大型形状化、薄板化は従来の圧電材料では困難で
あったが、本発明の材料によれば暁結性が良好なために
機械的強度に優れた大型薄板化(例えば、長さ50〜l
ow舷、幅15〜20燭、厚さ200ムm)が容易に実
現される。以上述べたように本発明の圧電材料を使用す
れば従来の不可能であった用途にも有用である事がわか
る。
It was difficult to make the element larger and thinner with conventional piezoelectric materials, but the material of the present invention has good accretion properties, so it can be made into a large and thin plate with excellent mechanical strength (for example, a length of 50 mm). ~l
(overboard, width 15-20 mm, thickness 200 mm) can be easily realized. As described above, it can be seen that the use of the piezoelectric material of the present invention is useful for applications that were previously impossible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る酸化物圧電材料を特性例を示すもの
で、第1図は分極温度と電気機械結合係数Kt(%)の
関係曲線図、第2図はSrTi03のモル数と電気機械
結合係数Kt(%)Kp(%)およびその比の関係曲線
図、第3図は温度と電気機械結合係数Kt(%)の関係
曲線図、第4図はSrTi03のモル数と誘電率の関係
曲線図、第5図は時間とはn6の関係曲線図をそれぞれ
示す。 第1図第2図 第3図 第4図 第5図
The drawings show characteristic examples of the oxide piezoelectric material according to the present invention. Fig. 1 shows the relationship between polarization temperature and electromechanical coupling coefficient Kt (%), and Fig. 2 shows the relationship between the number of moles of SrTi03 and electromechanical coupling. Figure 3 is a relationship curve between coefficient Kt (%) Kp (%) and their ratio. Figure 3 is a relationship curve between temperature and electromechanical coupling coefficient Kt (%). Figure 4 is a relationship curve between the number of moles of SrTi03 and permittivity. 5 and 5 respectively show curve diagrams of the relationship between time and n6. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 (1−x)PbTiO_3−xSrTiO_3系2
成分系材料においてx=0.01〜0.20の組成から
成り、これに副成分としてMgO,ZnO,Cr_2O
_3,Ga_2O_3,Ta_2O_3の少なくとも一
つを0.1〜2.0重量%添加した事を特徴とする酸化
物圧電材料。
1 (1-x)PbTiO_3-xSrTiO_3 system 2
The component material has a composition of x=0.01 to 0.20, and MgO, ZnO, Cr_2O as subcomponents.
An oxide piezoelectric material characterized in that 0.1 to 2.0% by weight of at least one of Ga_2O_3, Ga_2O_3, and Ta_2O_3 is added.
JP54076925A 1979-06-20 1979-06-20 oxide piezoelectric material Expired JPS6022837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54076925A JPS6022837B2 (en) 1979-06-20 1979-06-20 oxide piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54076925A JPS6022837B2 (en) 1979-06-20 1979-06-20 oxide piezoelectric material

Publications (2)

Publication Number Publication Date
JPS562687A JPS562687A (en) 1981-01-12
JPS6022837B2 true JPS6022837B2 (en) 1985-06-04

Family

ID=13619283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54076925A Expired JPS6022837B2 (en) 1979-06-20 1979-06-20 oxide piezoelectric material

Country Status (1)

Country Link
JP (1) JPS6022837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184263A (en) * 1981-05-08 1982-11-12 Nec Corp Piezoelectric ceramic

Also Published As

Publication number Publication date
JPS562687A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
Yamashita et al. (Pb, Ca)((Co1/2W1/2), Ti) O3 piezoelectric ceramics and their applications
JPH0782024A (en) Piezoelectric ceramic composition
JPS5939913B2 (en) Method of manufacturing piezoelectric porcelain
CN100360466C (en) Doped and modified piezoelectric ceramic of potassium sodium bismuth titanate and preparation method
JP2001342065A (en) Piezoelectric ceramic composition
JPS5841790B2 (en) oxide piezoelectric material
JPS6022837B2 (en) oxide piezoelectric material
JPS6023512B2 (en) oxide piezoelectric material
JP4361990B2 (en) Piezoelectric ceramic composition
US3649540A (en) Piezoelectric ceramic compositions
JPS5831750B2 (en) oxide piezoelectric material
JPS5831749B2 (en) oxide piezoelectric material
JPS6023515B2 (en) oxide piezoelectric material
JPS6358782B2 (en)
JPS6023514B2 (en) oxide piezoelectric material
JPS5940314B2 (en) oxide piezoelectric material
JPS5917983B2 (en) oxide piezoelectric material
JPH01242464A (en) Piezoelectric or pyroelectric ceramic composition
JPS5941313B2 (en) oxide piezoelectric material
RU2596837C1 (en) Piezoelectric ceramic material
JPS5831748B2 (en) oxide piezoelectric material
JPH02303172A (en) Piezoelectric porcelain composition
JP3228648B2 (en) Piezoelectric ceramic composition
JPS5941312B2 (en) oxide piezoelectric material
KR910006708B1 (en) Oxide piezo-electric material