JPS5940314B2 - oxide piezoelectric material - Google Patents

oxide piezoelectric material

Info

Publication number
JPS5940314B2
JPS5940314B2 JP54066137A JP6613779A JPS5940314B2 JP S5940314 B2 JPS5940314 B2 JP S5940314B2 JP 54066137 A JP54066137 A JP 54066137A JP 6613779 A JP6613779 A JP 6613779A JP S5940314 B2 JPS5940314 B2 JP S5940314B2
Authority
JP
Japan
Prior art keywords
temperature
piezoelectric material
present
curve
oxide piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54066137A
Other languages
Japanese (ja)
Other versions
JPS55158687A (en
Inventor
洋八 山下
勝徳 横山
英夫 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54066137A priority Critical patent/JPS5940314B2/en
Publication of JPS55158687A publication Critical patent/JPS55158687A/en
Publication of JPS5940314B2 publication Critical patent/JPS5940314B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は酸化物圧電材に係る。[Detailed description of the invention] The present invention relates to oxide piezoelectric materials.

さらに詳しくは、(1−x)PbTi03−xPb(M
el/2、W赳)03二成分基本組成においてx=0.
01〜0.20であり、かつPb原子の一部をBrで0
.5〜20原子%置換したPbSr〔(Mel/2W込
)Ti)O。(式中、MeはMnZnの少なくとも1種
)系酸化物系圧電材料に関する。さらには副成分として
、MnO、Ni0およびFe2O3の少なくとも一種を
0.05〜2.0重量%添加含有せしめた前記酸化物圧
電材料に関する。周知のように圧電材料は超音波用振動
素子、メカニカルフィルターなどのトランスデューサ用
素子、セラミックフィルター、セラミック共振子用素子
、振動計、加速計などの索子として広い一分野で利用さ
れている。
More specifically, (1-x)PbTi03-xPb(M
el/2, W 赳) 03 In the two-component basic composition, x=0.
01 to 0.20, and some of the Pb atoms are 0 with Br.
.. PbSr [(Mel/2W included) Ti)O substituted with 5 to 20 atom %. (wherein, Me is at least one kind of MnZn)-based oxide-based piezoelectric material. Furthermore, the present invention relates to the oxide piezoelectric material containing 0.05 to 2.0% by weight of at least one of MnO, Ni0, and Fe2O3 as a subcomponent. As is well known, piezoelectric materials are used in a wide range of fields as ultrasonic vibration elements, transducer elements such as mechanical filters, ceramic filters, ceramic resonator elements, vibration meters, accelerometers, and the like.

このような利用に対してPbTi03−PbZr03二
元系酸化物圧電材料について改良を加えたものが開発さ
れている。例えば上記PbTi03−PbZr03二元
系にBi2O3、Cr2O3、Mno332noなどの
添加物を加えて圧電特性の改善を図ることが試みられて
いる。またPbTi03−PbZr03−Pb(Mg%
Nb2/3)03三元系の圧電材料も開発されている。
しかしながらこれらの圧電材料は強誘電性キュリー温度
が300℃程度で、それ以上の温度下で使用し得なかつ
た。また上記圧電材料の誘電率は1000程度で、高周
波領域での応用には適さない。他方、誘電率が150〜
250と小さい値を持つPbTiO3系材料も報告され
ているが、焼結後に起るひび割れのため直径20−以上
の大型焼結体を得ることができず、分極条件も200℃
において印加電圧6OKV/cmと非常に厳しいために
、製品の歩止りが低い等の欠点がそれぞれ存在した。
For such uses, an improved PbTi03-PbZr03 binary oxide piezoelectric material has been developed. For example, attempts have been made to improve the piezoelectric properties by adding additives such as Bi2O3, Cr2O3, and Mno332no to the PbTi03-PbZr03 binary system. In addition, PbTi03-PbZr03-Pb (Mg%
Nb2/3)03 ternary piezoelectric materials have also been developed.
However, these piezoelectric materials have a ferroelectric Curie temperature of about 300° C., and cannot be used at temperatures higher than that. Further, the dielectric constant of the piezoelectric material is about 1000, which makes it unsuitable for application in a high frequency range. On the other hand, the dielectric constant is 150~
PbTiO3-based materials with a small value of 250°C have also been reported, but due to cracks that occur after sintering, it is not possible to obtain large sintered bodies with a diameter of 20°C or more, and the polarization conditions are also limited to 200°C.
Since the applied voltage was very strict at 6 OKV/cm, there were drawbacks such as a low yield of the product.

本発明の目的は、以上の問題点を解決し、キュリー温度
が高くて300℃以上の高温でも安定に使用でき、かつ
数MH2以上の高周波領域の用途に適し、さらに従来の
PbTi03系圧電材料に比較してはるかに分極操作の
容易なPbTiO3系酸化物圧電材料を提供することに
ある。すなわち、本発明に係る酸化物圧電材料は、Pb
TiO3−Pb(Me−W−)Os二元系(ただしMe
はMn、Znの少なくとも一種)においてPbの一部を
Brで置換したものであり、さらに必要ならばMnO,
NiOおよびFe2O3の少なくとも一種の酸化物を少
量添加含有せしめることによりさらに信頼性を高めたも
のである。
The purpose of the present invention is to solve the above problems, have a high Curie temperature, can be used stably even at high temperatures of 300°C or higher, is suitable for applications in the high frequency range of several MH2 or higher, and is compatible with conventional PbTi03-based piezoelectric materials. The object of the present invention is to provide a PbTiO3-based oxide piezoelectric material whose polarization operation is much easier than that of the present invention. That is, the oxide piezoelectric material according to the present invention contains Pb
TiO3-Pb(Me-W-)Os binary system (however, Me
is at least one of Mn and Zn) in which a part of Pb is replaced with Br, and if necessary, MnO,
Reliability is further improved by adding a small amount of at least one oxide of NiO and Fe2O3.

さらに詳しくは、(1−x)PbTiO3−XPb(M
eWl/2.)03二成分基本組成(ただしMe,Zn
の少なくとも一種)において、x=0、01〜0.20
であり、かつPb原子の一部をSrで0.5〜2.0原
子%置換したものである。
More specifically, (1-x)PbTiO3-XPb(M
eWl/2. )03 Two-component basic composition (Me, Zn
(at least one type of), x=0, 01 to 0.20
And some of the Pb atoms are replaced with Sr by 0.5 to 2.0 atomic %.

すなわち一般式で表わせばPbl−Asra〔(Mel
/2W?)XTil?x)03(式中MeはMn,Zn
少なくとも一種)である組成において、x=0.01〜
0.20,a=0.005〜0.20であることを特徴
とする酸化物圧電材料である。さらに必要に応じ、副成
分としてMnO,NiOおよびFe2O3の少なくとも
1種を0.05〜2.0重量%添加含有せしめた酸化物
圧電材料である。このような本発明の酸化物圧電材料は
一般的には粉末冶金的方法によつて容易に製造すること
ができる。
That is, if expressed as a general formula, Pbl-Asra [(Mel
/2W? )XTil? x) 03 (in the formula, Me is Mn, Zn
x=0.01~
0.20, and a=0.005 to 0.20. The oxide piezoelectric material further contains 0.05 to 2.0% by weight of at least one of MnO, NiO, and Fe2O3 as a subcomponent, if necessary. Such an oxide piezoelectric material of the present invention can generally be easily manufactured by a powder metallurgy method.

例えば、PbO,TiO2,SrO,WO3NiO,F
e2O3およびMeO(MeはMn,Znの少なくとも
一種)などの原料酸化物を所定の割合に正確に秤取し、
これらをボールミルなどによつてよく混合する。なお、
この際用いる原料は加熱によつて酸化物に転する化合物
例えは水酸化物,炭酸塩,シユウ酸塩などであつてもよ
い。次いで前記混合物を例えば600〜900℃程度の
温度で予備焼成し、さらにボールミルなどによつて粉砕
して調製粉末とする。しかる後この調製粉末に水あるい
はポリビニルアルコールなどの粘結剤を添加配合して、
0.5〜2t0n/Cd程度の圧力で加圧成形した後、
1100〜1200℃程度の温度で焼成する。この焼成
において一つの組成分たるPbOの一部が蒸発揮散する
恐れもあるので焼成は閉炉内で行ない。また最高温度で
の保持は一般に0.5〜3時間程度で充分である。さら
に、本発明について詳述する。まず、(1−x)PbT
iO3−XPb(Me?w?)03の基本組成(ただし
MeはMn,Znの少なくとも一種)において、x=0
.01〜0.20と限定した理由は、X<0.01では
焼結性が悪く緻密な磁器が得られず、X>0.20では
キユリ一温度が400℃以下に低下し300℃以上の高
温で安定して使用できない上に、誘電率も250以上と
なつて高周波領域における使用が困難となるからである
For example, PbO, TiO2, SrO, WO3NiO, F
Accurately weigh raw material oxides such as e2O3 and MeO (Me is at least one of Mn and Zn) to a predetermined ratio,
These are thoroughly mixed using a ball mill or the like. In addition,
The raw materials used in this case may be compounds that are converted into oxides by heating, such as hydroxides, carbonates, and oxalates. Next, the mixture is preliminarily calcined at a temperature of, for example, about 600 to 900° C., and further pulverized using a ball mill or the like to obtain a prepared powder. After that, water or a binder such as polyvinyl alcohol is added to this prepared powder and blended.
After pressure molding at a pressure of about 0.5 to 2t0n/Cd,
It is fired at a temperature of about 1100 to 1200°C. During this firing, there is a possibility that a part of PbO, which is one of the components, may evaporate and diffuse, so the firing is performed in a closed furnace. Further, it is generally sufficient to maintain the temperature at the maximum temperature for about 0.5 to 3 hours. Furthermore, the present invention will be explained in detail. First, (1-x)PbT
In the basic composition of iO3-XPb(Me?w?)03 (Me is at least one of Mn and Zn), x=0
.. The reason for limiting the range to 0.01 to 0.20 is that when X<0.01, sinterability is poor and dense porcelain cannot be obtained, and when This is because it cannot be stably used at high temperatures and has a dielectric constant of 250 or more, making it difficult to use in a high frequency range.

次に、SrによるPbの置換量を0.5〜20原子%と
限定したのは、0.5原子%より少なくてはPbTiO
3系圧電材料の分極を容易にし、また磁器の焼結を容易
にするという効果がほとんど現れないからであり、20
原子%より多くてはキユリ一温度が350℃以下となり
高温での使用が困難となるからである。
Next, the reason why the amount of Pb substitution by Sr was limited to 0.5 to 20 at.% is that if it is less than 0.5 at.%, PbTiO
This is because the effect of facilitating the polarization of the 3-type piezoelectric material and the sintering of porcelain is hardly achieved, and 20
This is because if the amount is more than atomic %, the temperature will be lower than 350° C., making it difficult to use at high temperatures.

さらに、副成分としてのMnO,NiOおよびVe2O
3の少なくとも一種の添加含有量を、0.05〜2.0
重量%と限定したのは、0.05重量%より少なくては
、PbTiO3系セラミツクの温度特性,経時特性およ
び機械品質係数を改善するというこれら副成分の効果を
示さず、2.0重量%より多くてはセラミツクの焼結性
が悪くなるからである。
Furthermore, MnO, NiO and Ve2O as subcomponents
The added content of at least one of 3 is 0.05 to 2.0
The reason why these subcomponents are limited to 2.0% by weight is that if the amount is less than 0.05% by weight, these subcomponents will not show the effect of improving the temperature characteristics, aging characteristics, and mechanical quality coefficient of PbTiO3 ceramic. This is mainly because the sinterability of the ceramic deteriorates.

かくして、本発明により次に掲げるような効果を得るこ
とができる。
Thus, the following effects can be obtained by the present invention.

第1に、PbTiO3はキユリ一温度が500℃付近に
あつて有望な圧電材料とされていたが、焼結性に難点が
あるため実用性がなかつたのに較ベ本発明ではPb(M
e3/2Wν2)03(ただしMeはMn,Znの少な
くとも一種)を特に一方の成分として用いており、また
Pbの一部をSrで置換しているために、これが一方で
は鉱化剤的に働き焼結を容易化ならしめている。
First, PbTiO3 was considered to be a promising piezoelectric material due to its Kiyuri temperature of around 500°C, but it was not practical due to difficulties in sintering.
Since e3/2Wν2)03 (Me is at least one of Mn and Zn) is used as one of the components, and a part of Pb is replaced with Sr, it acts as a mineralizer. This makes sintering easier.

この焼結の容易化は結局焼結温度を低下せしめることに
なり、組成の一部を成すPbOの蒸発揮散を抑制し、も
つて最終的に緻密な圧電材料が容易に得られることにな
る。またPbTiO3系セラミツクスにおいては、グレ
インの成長を抑える様に焼成を行う事が重要であるが、
本発明においてはPb原子の一部をSrで置換すること
により、グレインの成長を1〜3μm以下に抑える事が
でき、焼結も容易にする事ができるという効果がある。
This facilitation of sintering ultimately lowers the sintering temperature, suppresses the evaporation and dissipation of PbO, which forms part of the composition, and finally makes it easier to obtain a dense piezoelectric material. Furthermore, in PbTiO3 ceramics, it is important to perform firing to suppress grain growth.
In the present invention, by substituting some of the Pb atoms with Sr, grain growth can be suppressed to 1 to 3 μm or less, and sintering can be facilitated.

第2に、Pbの一部をSrで置換することにより、分極
が困難であつたPbTiO3系セラミツクの分極を容易
にすることができる。
Second, by substituting a portion of Pb with Sr, it is possible to easily polarize PbTiO3 ceramic, which has been difficult to polarize.

すなわち、従来のPbTiO3系セラミツクは、分極条
件として180〜200℃の高温で60〜80KV/C
mの電圧を必要としたが、本発明の圧電材料は80〜1
00℃,40〜60KV/Cmという緩和された条件で
充分に分極することができる。第3に、MnO,NiO
およびFe2O3の少なくとも一種を添加含有せしめる
ことにより、従来のPbTiO3系セラミツクに比較し
て温度特性,経時特性および機械品質係数を大幅に改善
することができ、さらに例えば50(X)×1t,10
0tx20Wx1t等の大型形状の焼結体を容易に製造
することができる。
In other words, conventional PbTiO3 ceramics have polarization conditions of 60 to 80 KV/C at a high temperature of 180 to 200°C.
m, whereas the piezoelectric material of the present invention requires a voltage of 80 to 1
Sufficient polarization can be achieved under relaxed conditions of 00° C. and 40 to 60 KV/Cm. Thirdly, MnO, NiO
By adding and containing at least one of Fe2O3 and Fe2O3, the temperature characteristics, aging characteristics, and mechanical quality coefficient can be significantly improved compared to conventional PbTiO3 ceramics.
Large-sized sintered bodies such as 0tx20Wx1t can be easily manufactured.

次に、本発明の実施例について記載する。Next, examples of the present invention will be described.

焼結された試料を20φ×1.0WrLtに研磨し、両
面に銀電極を焼き付け100℃,60KY/Cmの条件
で分極した後、PrOc,IREVOl,l37C54
9)1378〜1395などに示された標準回路方法に
よつて圧電特性を各々測定した。
The sintered sample was polished to 20φ x 1.0WrLt, and silver electrodes were baked on both sides and polarized at 100°C and 60KY/Cm, then PrOc, IREVOl, l37C54
9) The piezoelectric properties were each measured by the standard circuit method shown in Nos. 1378 to 1395.

これらの測定結果を、それら焼結体の組成比とともに第
1表に示す。なお、第1表において、F,Tは焼成温度
(C)を、Dは比重(23℃で測定)を、εは誘電率(
1Hz,23℃で測定)を、Ktは電気機械結合係数(
イ)を、Qmは機械的品質係数を、Tcはキユリ一温度
をそれぞれ示す。これらの試料中、実施例7、参考例2
の試料について分極温度による電気機械結合係数Ktの
値を測定したところ第1図に示す結果を得た。第1図に
おいて曲線aは実施例7の場合を、曲線bは参考例2の
場合を示す。本発明の実施例は、従来のPbTiO3系
セラミツクに比較して分極が容易になつていることがわ
かる。次に、これらの試料中実施例1,13および参考
例4の試料について、温度による誘電率の変化を測定し
たところ、第2図に示す結果を得た。
These measurement results are shown in Table 1 along with the composition ratios of these sintered bodies. In Table 1, F and T are the firing temperature (C), D is the specific gravity (measured at 23°C), and ε is the dielectric constant (
1Hz, 23℃), Kt is the electromechanical coupling coefficient (measured at 1Hz, 23℃)
a), Qm represents the mechanical quality factor, and Tc represents the temperature of the yoke. Among these samples, Example 7 and Reference Example 2
When the value of the electromechanical coupling coefficient Kt depending on the polarization temperature was measured for the sample, the results shown in FIG. 1 were obtained. In FIG. 1, curve a shows the case of Example 7, and curve b shows the case of Reference Example 2. It can be seen that the examples of the present invention are easier to polarize than the conventional PbTiO3 ceramics. Next, changes in dielectric constant due to temperature were measured for the samples of Examples 1 and 13 and Reference Example 4 among these samples, and the results shown in FIG. 2 were obtained.

第2図において、曲線aは実施例1の場合を、曲線bは
実施例13の場合を、曲線cは後考例4の場合を示す。
本発明の実施例1(曲線a)および13(曲線b)はキ
ユリ一温度が高く、300℃以上での使用が可能である
ことがわかる。さらに、同じ試料について電気機械結合
係数Ktの温度に対する変化を測定したところ、第3図
に示す結果を得た.第3図において、曲線aは実施例1
の場合を、曲線bは実施例13の場合を、曲線cは参考
例4の場合を示す。
In FIG. 2, curve a shows the case of Example 1, curve b shows the case of Example 13, and curve c shows the case of Example 4.
It can be seen that Examples 1 (curve a) and 13 (curve b) of the present invention have a high temperature and can be used at temperatures of 300° C. or higher. Furthermore, when we measured the change in electromechanical coupling coefficient Kt with respect to temperature for the same sample, we obtained the results shown in Figure 3. In FIG. 3, curve a represents Example 1.
Curve b shows the case of Example 13, and curve c shows the case of Reference Example 4.

この図によると本発明の実施例1および13は、いずれ
もキユリ一温度が高いためKtは常温〜400℃の広い
温度範囲でほとんど一定である。第2図および第3図に
示した結果は、本発明に係る圧電材料は、圧電材料とし
ては最高の使用温度で利用し得ることを示している。さ
らにまた、実施例9の試料と、これと基本組成を等しく
するが副成分としてMnO,NiO,Fe2O3の少な
くとも一種を添加含有せしめたものである実施例19,
20および21の試料でセラミツク共振子を作成し、周
波数定数Nt(Hz.m)の経時特性を求めたところ第
4図において、曲線aは実施例9の場合を、曲線B,c
およびdはそれぞれ実施例19,20および21の場合
を示す。
According to this figure, in both Examples 1 and 13 of the present invention, Kt is almost constant over a wide temperature range from room temperature to 400° C. because the temperature is high. The results shown in FIGS. 2 and 3 show that the piezoelectric material according to the present invention can be used at the highest operating temperature for a piezoelectric material. Furthermore, the samples of Example 9 and Example 19, which had the same basic composition but added and contained at least one of MnO, NiO, and Fe2O3 as subcomponents,
Ceramic resonators were made using samples Nos. 20 and 21, and the time-dependent characteristics of the frequency constant Nt (Hz.m) were determined. In FIG. 4, curve a is for Example 9, curves B and c are
and d indicate the cases of Examples 19, 20 and 21, respectively.

MnO,NiOを添加含有せしめることにより、経時特
性が良好となることがわかる。さらに、上記と同じ試料
のセラミツク共振子について共振周波数の温度特性と経
時特性を測定したところ、第2表に示す結果を得た。M
nO,NiOを添加含有せしめることにより、温度特性
および経時特性が改善されることがわかる。また、実施
例19,20の試料はFe2O3を含有した組成である
がMnOと同様に良好な特性を示し、添加含有を特性を
示し、添加含有の効果を示している。第5図は実施例8
の組成VC.MnOを添加した時の機械的品質係数Qm
の変化を示す。第5図においてaは実施例8の組成を、
B,c,d,e,f,g,h,iは、それぞれ実施例2
5,26,27,28,29,30,31,32を示し
、iは参考例7を示す。副成分の添加によりQmが飛躍
的に向上している事を示している。以上の実施例から明
らかなように本発明に係る圧電材料は300℃以上の高
温でも安定して使用でき、また高周波領域で使用できる
など多くの特長をもつている。
It can be seen that the addition of MnO and NiO improves the aging characteristics. Furthermore, the temperature characteristics and aging characteristics of the resonant frequency of the ceramic resonator of the same sample as above were measured, and the results shown in Table 2 were obtained. M
It can be seen that the addition of nO and NiO improves the temperature characteristics and aging characteristics. In addition, although the samples of Examples 19 and 20 have compositions containing Fe2O3, they exhibit good characteristics similar to MnO, exhibiting characteristics of the added content, and showing the effects of the added content. Figure 5 shows Example 8
Composition of VC. Mechanical quality factor Qm when MnO is added
shows the change in In FIG. 5, a indicates the composition of Example 8,
B, c, d, e, f, g, h, i are respectively Example 2
5, 26, 27, 28, 29, 30, 31, 32, and i indicates Reference Example 7. This shows that Qm is dramatically improved by adding the subcomponents. As is clear from the above examples, the piezoelectric material according to the present invention has many features such as being able to be used stably even at high temperatures of 300° C. or higher and being usable in a high frequency range.

また温度特性,経時特性などの変化率も少ないので、各
種の変換素子としてすぐれた機能を発揮することができ
る。かくして本発明に係る酸化物圧電材料は例えば次の
ような用途に適するものと言える。
Furthermore, since the rate of change in temperature characteristics, aging characteristics, etc. is small, it can perform excellent functions as various conversion elements. Thus, the oxide piezoelectric material according to the present invention can be said to be suitable for, for example, the following uses.

(1)高温物体の振動,加速度測定,および圧力測定、
500′Cに近い温度に達する物体や温度変化のはげし
い物体の振動や加速度を測定することができる。
(1) Vibration, acceleration measurement, and pressure measurement of high-temperature objects;
It is possible to measure the vibration and acceleration of objects that reach temperatures close to 500'C or objects that experience rapid temperature changes.

同様に高温物体内の圧力も測定できる。(2)高温物体
の超音波応用 高温物体の超音波加工の際の超音波発生源として使用し
たり、高温物体の超音波検査用素子などとしても使用で
きる。
Similarly, pressure inside hot objects can be measured. (2) Ultrasonic application for high-temperature objects It can be used as an ultrasonic generation source during ultrasonic processing of high-temperature objects, or as an element for ultrasonic inspection of high-temperature objects.

(3)強力超音波の発生 通常の圧電材料は大振幅動作をさせると発熱のため温度
が上昇して使えなくなるが、本発明に係る圧電材料は3
00℃以上の使用にも耐え得るので、大振幅動作による
強力超音波の発生に有利である。
(3) Generation of powerful ultrasonic waves When ordinary piezoelectric materials are operated with large amplitude, the temperature rises due to heat generation and the piezoelectric material according to the present invention becomes unusable.
Since it can withstand use at temperatures above 00°C, it is advantageous for generating powerful ultrasonic waves through large amplitude operation.

(4)高周波における応用 従来の圧電材料は誘電率が1000程度と大き過ぎるた
め高周波領域での用途に適さないと言う難点があつた。
(4) Application in high frequency applications Conventional piezoelectric materials have a dielectric constant of about 1000, which is too large, making them unsuitable for use in high frequency ranges.

一般にインピーダンスZはZ=d/(2πF.ε.s)
(ここでD,sは試料の厚さと断面積、fは使用周波数
、εは誘電率である。)で与えられる。従つて、dはf
に反比例して薄くする必要がある。結局Z(X)1/(
F2.ε。
Generally, impedance Z is Z=d/(2πF.ε.s)
(Here, D and s are the thickness and cross-sectional area of the sample, f is the operating frequency, and ε is the dielectric constant.) Therefore, d is f
It is necessary to make it thinner in inverse proportion to . In the end, Z(X)1/(
F2. ε.

s)となるが、fが高くなれば、Zは2乗で効いてきて
、急速に減少する。Zの整合にはsかεを小さくする必
要があるが、sには加工上の限界もあるので、εを小さ
くする方が有利である。本発明の圧電材料は誘電率εが
180〜300程度で従来のものとくらべ地〜HOであ
る。従つて従来の材料で10MHzまで使用可能ならば
、本発明の材料を使えば50MHzぐらいまで可能とな
る。
s), but as f becomes higher, Z becomes effective as a square and rapidly decreases. It is necessary to make s or ε small for Z matching, but since s also has a processing limit, it is advantageous to make ε small. The piezoelectric material of the present invention has a dielectric constant ε of about 180 to 300, which is lower than that of conventional piezoelectric materials. Therefore, if conventional materials can be used up to 10 MHz, the material of the present invention can be used up to about 50 MHz.

(5)リニアスキャン型超音波診断装置用プロープ超音
波診断装置用プロープにおける音波変換素子は、高周波
化に伴つて大型形状化、薄板化が要求される。
(5) Probe for linear scan type ultrasound diagnostic equipment The sound wave conversion element in the probe for ultrasound diagnostic equipment is required to be larger in size and thinner as the frequency becomes higher.

素子の大型形状化、薄板化は従来の圧電材料では困難で
あつたが、本発明の材料によれば焼結性が良好なために
機械的強度に優れた大型薄板化(例えは、長さ50〜1
00Trm、幅15−20Tm1厚さ200μm)が容
易に実現される。以上述べたように第6図に三元系図で
示す如き本発明の圧電材料を使用すれば従来不可能であ
つた用途にも有用であることがわかる。
It was difficult to make the element larger and thinner with conventional piezoelectric materials, but the material of the present invention has good sinterability, so it can be made large and thin with excellent mechanical strength (for example, 50-1
00Trm, width 15-20Tm, thickness 200μm) can be easily realized. As described above, it can be seen that the use of the piezoelectric material of the present invention as shown in the ternary diagram in FIG. 6 is useful for applications that were previously impossible.

なお高周波用フイルタ、共振子として使用する場合、周
波数の温度特性、経時特性が問題となるが、これらの変
化率も小さいので満足して充分実用に供しうる。
Note that when used as a high frequency filter or resonator, the temperature characteristics and aging characteristics of the frequency become a problem, but since the rate of change in these characteristics is also small, it can be satisfactorily used for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る酸化物圧電材料の特性例を示すもの
で第1図は分極温度と電気機械結合係数Kt(1)の関
係曲線図、第2図は温度と誘電率の関係曲線図、第3図
は温度と電気機械結合係数Kt(1)の関係曲線図、第
4図は時間と周波数定数Nt(Hz.m)の関係曲線図
、第5図は添加物量と機械品質係数Qmの関係曲線図、
第6図は組成を示す三元系図、をそれぞれ示す。
The drawings show characteristic examples of the oxide piezoelectric material according to the present invention, and FIG. 1 is a relationship curve between polarization temperature and electromechanical coupling coefficient Kt(1), FIG. 2 is a relationship curve between temperature and dielectric constant, and FIG. Figure 3 is a relationship curve between temperature and electromechanical coupling coefficient Kt(1), Figure 4 is a relationship curve between time and frequency constant Nt (Hz.m), and Figure 5 is a relationship curve between additive amount and mechanical quality factor Qm. relationship curve diagram,
Figure 6 shows a ternary genealogy showing the composition.

Claims (1)

【特許請求の範囲】 1 (1−x)PbTiO_3−xPb(Me1/2W
1/2)O_3二成分基本組成(ただしMe=Mn、Z
nの少なくとも1種)において、x=0.01〜0.2
0であり、かつPb原子の一部をSrで0.5〜20原
子%置換したことを特徴とする酸化物圧電材料。 2 副成分としてMnO、NiOおよびFe_2O_3
の少なくとも一種を、0.05〜2.0重量%添加含有
することを特徴とする特許請求の範囲第1項記載の酸化
物圧電材料。
[Claims] 1 (1-x)PbTiO_3-xPb(Me1/2W
1/2) O_3 two-component basic composition (Me=Mn, Z
n), x = 0.01 to 0.2
0, and a part of Pb atoms are replaced with 0.5 to 20 at. % of Sr. 2 MnO, NiO and Fe_2O_3 as subcomponents
The oxide piezoelectric material according to claim 1, wherein the oxide piezoelectric material contains at least one of the following in an amount of 0.05 to 2.0% by weight.
JP54066137A 1979-05-30 1979-05-30 oxide piezoelectric material Expired JPS5940314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54066137A JPS5940314B2 (en) 1979-05-30 1979-05-30 oxide piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54066137A JPS5940314B2 (en) 1979-05-30 1979-05-30 oxide piezoelectric material

Publications (2)

Publication Number Publication Date
JPS55158687A JPS55158687A (en) 1980-12-10
JPS5940314B2 true JPS5940314B2 (en) 1984-09-29

Family

ID=13307166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54066137A Expired JPS5940314B2 (en) 1979-05-30 1979-05-30 oxide piezoelectric material

Country Status (1)

Country Link
JP (1) JPS5940314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522024B2 (en) * 1988-09-08 1996-08-07 富士電機株式会社 Method for manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JPS55158687A (en) 1980-12-10

Similar Documents

Publication Publication Date Title
US3268453A (en) Piezoelectric ceramic compositions
Ouchi et al. Piezoelectric Properties of Pb (Mg1/3Nb2/3) O3 PbTiO3‐PbZrO3 Ceramics Modified with Certain Additives
Banno et al. Piezoelectric properties and temperature dependences of resonant frequency of WO3-MnO2-modified ceramics of Pb (Zr-Ti) O3
US3518199A (en) Piezoelectric ceramics
CA2027922C (en) Ferroelectric ceramics
US3594321A (en) Piezoelectric ceramic
US4062790A (en) Piezoelectric ceramic compositions
US3424686A (en) Piezoelectric ceramic materials
JPS5841790B2 (en) oxide piezoelectric material
JPS5940314B2 (en) oxide piezoelectric material
US3649540A (en) Piezoelectric ceramic compositions
JPS6023512B2 (en) oxide piezoelectric material
JP4361990B2 (en) Piezoelectric ceramic composition
US3546120A (en) Piezoelectric ceramic compositions
JPS5831750B2 (en) oxide piezoelectric material
US3518198A (en) Piezoelectric ceramics
JPS5831749B2 (en) oxide piezoelectric material
JPH08293635A (en) Piezoelectric ceramic
US3649539A (en) Piezoelectric ceramic compositions
JPS5917983B2 (en) oxide piezoelectric material
JPS5831748B2 (en) oxide piezoelectric material
US3682826A (en) Oxide piezoelectric materials
JPS6358782B2 (en)
JPS6023514B2 (en) oxide piezoelectric material
US3487019A (en) Piezoelectric ceramic