JPS60227693A - Method of increasing yield of gamma-cyclodextrin - Google Patents

Method of increasing yield of gamma-cyclodextrin

Info

Publication number
JPS60227693A
JPS60227693A JP59084101A JP8410184A JPS60227693A JP S60227693 A JPS60227693 A JP S60227693A JP 59084101 A JP59084101 A JP 59084101A JP 8410184 A JP8410184 A JP 8410184A JP S60227693 A JPS60227693 A JP S60227693A
Authority
JP
Japan
Prior art keywords
cyclodextrin
starch
reaction
gamma
terpenoids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59084101A
Other languages
Japanese (ja)
Other versions
JPH0441998B2 (en
Inventor
Mitsukatsu Sato
充克 佐藤
Hiroto Nagano
長野 寛人
Yoshiaki Yagi
八木 佳明
Tomoyuki Ishikura
石倉 知之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanraku Inc
Sanraku Ocean Co Ltd
Original Assignee
Sanraku Inc
Sanraku Ocean Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanraku Inc, Sanraku Ocean Co Ltd filed Critical Sanraku Inc
Priority to JP59084101A priority Critical patent/JPS60227693A/en
Publication of JPS60227693A publication Critical patent/JPS60227693A/en
Publication of JPH0441998B2 publication Critical patent/JPH0441998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:A specific enzyme forming cyclodextrin is allowed to act on terpenoids and starch whereby gamma-cyclodextrin is selectively obtained in high yield. CONSTITUTION:A starch which can be converted into cyclodextrins such as starch from potatoes or sweet potatoes and its hydrolyzate is converted into 2- 40wt% aqueous suspension, then 1-20units/g starch of cyclodextrin glycosyltransferase and 0.05-2.0wt% (based on the starch) of a tetra- or pentacyclic terpenoid, glycyrrhizin, peryandllin or steviosides are added to the suspension to effect reaction on standing or under stirring at 40-70 deg.C for 5-72hr to effect high-yield production of gamma-cyclodextrin.

Description

【発明の詳細な説明】 本発明は、γ−サイクpデキストリンの増収方法に関し
、更に詳しくは、サイクロデキストリンへ変換可能な澱
粉類にサイクロデキストリングリコジルトランスフェラ
ーゼを作用せしめてサイクロデキストリンを製造するに
際し、反応液に4環(1) 式又は5環式テルペノイド類を共存させることを特徴と
するγ−サイクロデキストリンの増収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the yield of γ-cyclop-dextrin, and more specifically, when producing cyclodextrin by allowing cyclodextrin lycodyltransferase to act on starch that can be converted to cyclodextrin, The present invention relates to a method for increasing the yield of γ-cyclodextrin, which is characterized by allowing a 4-ring (1) or 5-ring terpenoid to coexist in the reaction solution.

サイクロデキストリンは、ブドウ糖分子がα−1,4−
結合で環状に結合した非還元性の糖であり、グルコース
残基がそれぞれ6個、7個、8個のα−9β−2γ−サ
イクロデキストリンが一般によく知られている。これら
の中、殊中r−サイクロデキストリンは、α−又はβサ
イクロデキストリンに比し水に対する溶解性が高く、さ
らに生体内α−アミラーゼによる分解度が優れている点
や、かつ分子サイズの大きなダスト分子を包接せしめ得
る見地より特に食品、医薬品の製剤分野への広汎な応用
が考えられ、その効率よい製造方法の開発が望まれてい
た。
Cyclodextrin is a glucose molecule with α-1,4-
α-9β-2γ-cyclodextrin, which is a non-reducing sugar linked in a cyclic form by a bond, and has 6, 7, and 8 glucose residues, respectively, is generally well known. Among these, r-cyclodextrin in particular has higher solubility in water than α- or β-cyclodextrin, is more easily decomposed by α-amylase in the body, and has a large molecular size. From the standpoint of being able to clathrate molecules, it is thought that it will have a wide range of applications, particularly in the fields of food and pharmaceutical formulations, and the development of an efficient production method has been desired.

しかしながら、現在までのところ、γ−サイクロデキス
トリンを選択的に製造し得るサイクロデキストリングリ
コジルトランスフェラーゼ(以下rCD生成酵素」とい
う)は見い出されていす、また、γ−サイクロデキスト
リンの製造は澱粉溶(2) 液にそれ自体公知のCD生成酵素を作用させて得られる
α−1β−及びγ−サイクロデキストリンを包含する反
応液からグル沖過剤を用いて分画採取する方法等が知ら
れているにすぎない(例えば、の製造方法においては、
全サイクロデキストリン中のγ−サイクロデキストリン
の含有量が少ないことより、上記製造方法はγ−サイク
ロデキストリンの選択的製造法としては欠点がある。
However, to date, no cyclodextrin lycosyltransferase (hereinafter referred to as rCD-forming enzyme) that can selectively produce γ-cyclodextrin has been discovered, and the production of γ-cyclodextrin has been limited to starch soluble ) A method is known in which a reaction solution containing α-1β- and γ-cyclodextrin obtained by treating the solution with a CD-producing enzyme known per se is collected as a fraction using a glue filtration agent. (For example, in the manufacturing method of
Since the content of γ-cyclodextrin in all cyclodextrins is small, the above production method has a drawback as a method for selectively producing γ-cyclodextrin.

そこで、本発明者等は、選択的なγ−サイクロrキスト
リンの製造方法を開発すべく検討を重ねた結果、サイク
ロデキストリンへ変換可能ガ澱粉類にそれ自体公知のC
D生成酵素を作用さするに際し、4環式又は5環式のテ
ルペノイド類を共存させることにより生成される全サイ
クロデキストリン中のγ−サイクロデキストリンの含有
量を飛躍的に増大させることに成功し本発明を完成した
Therefore, as a result of repeated studies to develop a method for selectively producing γ-cyclo-r-kistrin, the present inventors discovered that the known carbon
This book has succeeded in dramatically increasing the content of γ-cyclodextrin in the total cyclodextrin produced by coexisting tetracyclic or pentacyclic terpenoids when acting on the D-generating enzyme. Completed the invention.

本発明にいう、サイクロデキストリンへ変換可能な澱粉
類とは、それ自体公知のCD生成酵素を作用させてサイ
クロデキストリン類(α−2β−1γ−のいずれであっ
てもよい)を生成し得るものであれば、その種類、起源
を問わないが、一般に罵れいしよ、甘しょ、トウモロコ
シ、モチトウモロコシ、大麦、小麦、タピオカなどの任
意の原料から得られる澱粉や、その分解反応生成物を挙
げることができる。ここに、澱粉分解反応生成物として
は、白色デキストリン、黄色デキストリン、ブリテラシ
ュガムなどの焙焼デキストリン;酸化澱粉、低粘性変性
澱粉などの化工澱粉;リン酸澱粉、酢酸澱粉ガどで代表
される澱粉エーテル、澱粉エステルなどの澱粉誘導体;
放射線や中性子線を照射したり、高周波処理若しくは湿
熱処理した澱粉などの物理的処理澱粉等を挙げることが
できる。
In the present invention, starches that can be converted into cyclodextrins are those that can produce cyclodextrins (which may be either α-2β-1γ-) by the action of a known CD-generating enzyme. If so, starch obtained from any raw material such as starch, sweet potato, corn, waxy corn, barley, wheat, tapioca, etc., regardless of its type or origin, and its decomposition reaction products can be mentioned. can. Here, starch decomposition reaction products include roasted dextrins such as white dextrin, yellow dextrin, and Britelash gum; modified starches such as oxidized starch and low-viscosity modified starch; starch ethers represented by phosphoric acid starch, acetic acid starch, etc. , starch derivatives such as starch esters;
Examples include physically treated starches such as starches that have been irradiated with radiation or neutron beams, or subjected to high frequency treatment or moist heat treatment.

CD生成酵素としては、それ自体公知のCD生成酵素(
E C,2,4,1,19)であれば、α−サイクロデ
キストリン、β−サイクロデキストリン及び/又は、γ
−サイクロデキストリンのいずれかを生成する酵素であ
っても用いることができる。例えば、バチリス−マセラ
ンス(Bacillus macerans ) zク
レプジーラ・ニュウモニア(Klebsiellapn
eumoni&e )、アルカリ/くチリス(Alka
riBacillus )、ミクロコツカス・パリアン
ス(Mlcrococcus variins )、ミ
クロコツカスeルテウス(M、 1uteus )等及
びそれらの類縁菌が生産するものが挙げられる(例えば
、フレグランスジャーナルA63 (1983)、特開
昭55−138390号、特公昭52−31949号公
報参照)。これらのうち、特に好適なものとしては、バ
チリス・オーペンシス、バチリス・サーキュランス、バ
チリス・メガ◇ テリュウム等由来−β−サイクロデキストリンを優先的
に生産するタイプのCD生成酵素が挙られる。
As the CD-producing enzyme, there are known CD-producing enzymes (
E C,2,4,1,19), α-cyclodextrin, β-cyclodextrin and/or γ
- Enzymes that produce any of the cyclodextrins can also be used. For example, Bacillus macerans z Klebsiella pneumonia
eumoni&e), alkaline/kutilis (Alka
riBacillus), Micrococcus variins, Micrococcus e luteus (M, 1uteus), etc., and those produced by their related bacteria (for example, Fragrance Journal A63 (1983), JP-A-55-138390, (See Japanese Patent Publication No. 52-31949). Among these, particularly preferred are CD-generating enzymes of the type that preferentially produce β-cyclodextrin derived from Bacillus opensis, Bacillus circulans, Bacillus megaterium, and the like.

4環式又は5環式テルペノイド類としては、植物界に広
く遊離基として、また糖と結合した配糖(5) 体、酸と結合したエステル体として分布する化合物又は
それらから化学的処理によって得られる誘導体をも包含
する。これらのテルペノイド類のうち、γ−CD1食品
又は医薬品の製剤分野への用途という観点からすれば、
それ自体食品添加物として使用可能なものが好ましく、
その具体的彦ものとしては、グリチルリチン、ペリアン
ドリン若しくはステビオシトと総称される甘味成分若し
くはそれらに由来するアグリコン(遊離基)部若しくは
、該配糖体の各種グリコジル誘導体(例えば、特公昭5
7−18779号公報参照)、又は、これらを適当な二
官能性架橋剤でダル化せしめた誘導体若しくは、適当な
高分子基体に結合せしめた誘導体などが挙げられる。
Tetracyclic or pentacyclic terpenoids are compounds widely distributed in the plant world as free radicals, sugar-bonded glycosides, and acid-bonded esters, or compounds obtained from these by chemical treatment. It also includes derivatives such as Among these terpenoids, γ-CD1 from the viewpoint of application in the field of food or pharmaceutical formulations,
It is preferable that it can be used as a food additive itself.
Specific examples include sweet components collectively called glycyrrhizin, periandrin, and steviocyto, aglycone (free radical) moieties derived therefrom, and various glycosyl derivatives of the glycosides (for example,
7-18779), derivatives obtained by dulling these with an appropriate bifunctional crosslinking agent, or derivatives obtained by bonding them to an appropriate polymeric substrate.

また、本発明にいう、澱粉類とCD生成酵素の反応は、
澱粉類の水性懸濁溶液または水溶液にCD生成酵素を添
加するそれ自体公知の方法をいい、例えば、澱粉類の水
溶液濃度2〜40重量パーセント、好ましくは、5〜2
0重量パーセントの水溶液若しくは水性懸濁液に、1〜
20 units /(6) g(澱粉)、好ましくは、5〜10 units/g(
澱粉)の、CD生成酵素を添加し、静置又は攪拌下に反
応せしめる方法であって、その反応温度は、用いるCD
生成酵素によって、最適温度が選択されるべきであって
、臨界的でないが、一般に40〜70℃、好ましくは5
0〜60℃において実施される。
Furthermore, the reaction between starch and CD-generating enzyme according to the present invention is as follows:
Refers to a method known per se of adding a CD-generating enzyme to an aqueous suspension or solution of starches, for example, at a concentration of an aqueous solution of starches of 2 to 40 percent by weight, preferably 5 to 2 percent by weight.
1 to 0 weight percent aqueous solution or suspension
20 units/(6) g (starch), preferably 5-10 units/g (
A method in which a CD-generating enzyme is added to starch and allowed to react while standing or stirring, and the reaction temperature is determined depending on the CD used.
Depending on the enzyme produced, the optimum temperature should be selected and is not critical, but generally 40-70°C, preferably 50°C.
Conducted at 0-60°C.

そして、かかる反応液に4環式又は5環式テルペノイド
類を共存せしめる方法は、反応初期よ如共存せしめるか
、又は、反応の途中から共存せしめてもよいが、通常反
応初期より共存せしめるのがよい。共存せしめる該テル
ペノイド類の量は、その種類によって相違し、特に、そ
の誘導体を用いる場合は、特定が困難であるが、一般に
澱粉類に対して、0.05〜2.0重量部好ましくは、
0.1〜1重量部を用いるのがよい。また、該テルペノ
イド類を共存せしめた反応液は、懸濁状(不均一系)で
あるか、溶液状(均−系)であるかを問わず、本発明の
効果を奏することができる。
As for the method of causing the tetracyclic or pentacyclic terpenoids to coexist in the reaction solution, it is possible to make them coexist from the beginning of the reaction, or from the middle of the reaction, but it is usually preferable to make them coexist from the beginning of the reaction. good. The amount of the terpenoids to be allowed to coexist varies depending on the type, and is difficult to specify especially when using derivatives thereof, but it is generally 0.05 to 2.0 parts by weight based on the starch, preferably,
It is preferable to use 0.1 to 1 part by weight. Furthermore, the effects of the present invention can be achieved regardless of whether the reaction solution containing the terpenoids is in the form of a suspension (heterogeneous system) or a solution (homogeneous system).

該チル(ノイド類を共存せしめた後の反応は、上記の温
度で、5〜72時間、好ましくは、16〜48時間継続
することによって実施することができる。
The reaction after the chilloids are allowed to coexist can be carried out at the above temperature for 5 to 72 hours, preferably for 16 to 48 hours.

かくして、反応液中には、該テルペノイド類を包接する
か、あるいは何らかの相互作用によってテルペノイド類
と付加した、γ−サイクロデキストリンが選択的に高収
率で得られる。さらに本発明の効果は、単にα−又はβ
−サイクロデキストリンに比し、γ−ザイクロデキスト
リンの生成比を高め得るのみでなく、対糖からのr−サ
イクロデキストリンへの転換率をも向上し得る点で従来
法よシ著しく優れているといえる。
In this way, γ-cyclodextrin, which includes the terpenoids or is added to the terpenoids through some kind of interaction, is selectively obtained in a high yield in the reaction solution. Furthermore, the effect of the present invention is simply α- or β
- Compared to cyclodextrin, it is significantly superior to the conventional method in that it not only increases the production ratio of γ-cyclodextrin but also improves the conversion rate of sugar to r-cyclodextrin. I can say that.

この反応液からγ−サイクロデキストリンを単離採集す
るには、通常α−2β−9γ−サイクロデキストリンが
混在する糖液からγ−サイクロデキストリンを分離回収
するそれ自体公知の方法(例えば、前出の特開昭57−
146600号公報)に準じて実施することができる。
To isolate and collect γ-cyclodextrin from this reaction solution, a method known per se (for example, the method described above) is used to separate and collect γ-cyclodextrin from a sugar solution in which α-2β-9γ-cyclodextrin is usually mixed. Japanese Unexamined Patent Publication 1987-
146600).

例えば、上記反応液を多孔性ポリマーから成る疎水性の
合成吸着樹脂、イオン交換樹脂及び/又はグルシ適用樹
脂を用いて処理するか、適当々ソルベントを用いること
によシ、γ−サイクロデキイクロデキストリンの含有量
が飛躍的に増大していることによって、極めて容易に実
施できる。
For example, the reaction solution may be treated with a hydrophobic synthetic adsorption resin made of a porous polymer, an ion exchange resin, and/or a glue-applied resin, or by using an appropriate solvent, γ-cyclodextrin This can be carried out extremely easily due to the dramatic increase in the content of .

以下、本発明を実施例によって、更に詳細に説ノ 明するが、本発明の技術的範囲はこれに限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the technical scope of the present invention is not limited thereto.

実施例1 馬鈴薯澱粉50.9を800 mlの水によく懸濁して
おき、澱粉液化酵素ネオスビターゼ(長潮産業(株)製
)を0.03g添加し、攪拌下加温し、80℃10分間
保持することによシ、液化澱粉液とした後、120℃で
10分間処理後、50℃まで冷却した。この液化澱粉液
に市販グリチルリチン(グリチノンA最純、(株)常磐
植物化学研究所製)25g及びBaclllus oh
bensig由来のCGTags(特開昭49−124
285号公報参照)を500単位添加し、全量を1.0
0Qmlとした。この時反応液の−1は7.0に希重曹
液にて調整した。
Example 1 Potato starch (50.9 g) was well suspended in 800 ml of water, 0.03 g of starch liquefying enzyme Neosvitase (manufactured by Nagashio Sangyo Co., Ltd.) was added, heated with stirring, and held at 80°C for 10 minutes. This resulted in a liquefied starch solution, which was then treated at 120°C for 10 minutes and then cooled to 50°C. To this liquefied starch solution, 25 g of commercially available glycyrrhizin (glytinone A most pure, manufactured by Tokiwa Phytochemical Research Institute Co., Ltd.) and Bacillus oh were added.
CGTags derived from bensig (JP-A-49-124
285 Publication)) was added to make the total amount 1.0
It was set to 0Qml. At this time, -1 of the reaction solution was adjusted to 7.0 with a diluted sodium bicarbonate solution.

(9) 酵素反応を50℃で65時間行ったところ、反応液中の
各サイクロデキストリン量は、高速液体クロマトグラフ
ィーによる分析の結果γ−サイクロデキストリンが20
g、β−サイクロデキストリンが1.4g生成されてい
た。r−サイクロデキストリン生成量は仕込み澱粉重量
当り、4oq6の高転換率でアシ、この時α−サイクロ
デキストリンはほとんど生成されなかった。
(9) When the enzymatic reaction was carried out at 50°C for 65 hours, the amount of each cyclodextrin in the reaction solution was analyzed by high performance liquid chromatography.
g, β-cyclodextrin was produced in an amount of 1.4 g. The amount of r-cyclodextrin produced was a high conversion rate of 4 oq6 per weight of starch charged, and almost no α-cyclodextrin was produced at this time.

上記反応液を100℃5分間熱処理後45℃まで冷却し
、21の一ダイヤイオンHP−20(三菱化成工業(株
)製)を充填し九カラムに通液後、SV −2、0で4
5℃の温水にて溶出したところ、最初に未反応の澱粉及
びデキストリンが溶出され次にサイクロデキストリン類
が溶出された。サイクロデキストリン類の溶出画分の高
速液体クロマトグラフィー分析の結果固形分当りのγ−
サイクロデキストリン含量は93.5q6であった。更
にこのサイクロデキストリン類画分を固形分含量30%
まで濃縮したところ常温にて0.5.jirのβ−サイ
クロデキストリンが晶析された。β−サイクロデキスト
(10) リンを戸別後世液を5℃まで冷却し、−夜装置したとこ
ろ針状のγ−サイクロデキストリンが得られ、戸別後、
減圧乾燥により結晶γ−サイクロデキストリンが102
g得られた。本結晶の純度は高速液体クロマトグラフィ
ーで検定したところ、99.5%であった。結晶母液は
再度常温にて放置してβ−サイクロデキストリンを晶析
せしめ、次いで5℃に冷却することによシ、純度99.
2%のγ−サイクロデキストリン結晶が4.6g得られ
、全体で14.8.9のγ−サイクロデキストリンが得
られた。対澱粉収率は29.6%であった。
The above reaction solution was heat-treated at 100°C for 5 minutes, cooled to 45°C, filled with 21 Diamond Ion HP-20 (manufactured by Mitsubishi Chemical Industries, Ltd.) and passed through a nine column.
When the mixture was eluted with warm water at 5°C, unreacted starch and dextrin were eluted first, and then cyclodextrins were eluted. As a result of high performance liquid chromatography analysis of the elution fraction of cyclodextrins, γ-
Cyclodextrin content was 93.5q6. Furthermore, this cyclodextrin fraction was reduced to a solid content of 30%.
When concentrated to 0.5% at room temperature. jir β-cyclodextrin was crystallized. β-cyclodextrin (10) When the liquid was cooled to 5°C and heated overnight, needle-shaped γ-cyclodextrin was obtained.
Crystalline γ-cyclodextrin is reduced to 102 by drying under reduced pressure.
g was obtained. The purity of this crystal was tested by high performance liquid chromatography and was found to be 99.5%. The crystal mother liquor was again left at room temperature to crystallize β-cyclodextrin, and then cooled to 5°C to obtain a purity of 99.
4.6 g of 2% γ-cyclodextrin crystals were obtained, giving a total of 14.8.9 γ-cyclodextrin. The yield based on starch was 29.6%.

添加したダリチルリチンは反応液を通したHP−20の
カラムよシ更に80%エタノール液で溶出することによ
シ完全に回収出来た。回収したグリチルリチ/は溶媒を
減圧濃縮によシ除去し、再び反応に用いることが出来た
The added dalicyrrhizin was completely recovered by passing the reaction solution through an HP-20 column and eluting it with an 80% ethanol solution. The solvent of the recovered glycyrrhizic acid was removed by concentration under reduced pressure, and it could be used again for the reaction.

実施例2 馬鈴薯澱粉50gを実施例1と同様に800−の液化澱
粉液としだ後120℃10分間処理後、50℃まで冷却
した。この液化澱粉液に市販ステヒ、t−サイト(5T
EVIX−80、タマ生化学(株)製)10g及びB、
 6hbens1g由来のCG Tame (実施例1
と同じ)を500単位添加し、全量を1,000m1と
した。この時反応液の−は6.5であった。
Example 2 In the same manner as in Example 1, 50 g of potato starch was poured into an 800-g liquefied starch solution, treated at 120°C for 10 minutes, and then cooled to 50°C. This liquefied starch solution was added with commercially available Stehi, t-site (5T
EVIX-80, manufactured by Tama Biochemical Co., Ltd.) 10g and B,
CG Tame derived from 6hbens1g (Example 1
500 units of (same as ) were added to make the total volume 1,000 ml. At this time, - of the reaction solution was 6.5.

酵素反応を50℃で68時間行々っだところ、反応液の
高速液体クロマトグラフィーによる分析サイクロデキス
トリンが111.5.9生成されていた。又α−サイク
ロデキストリンはほとんど生成されなかった。γ−サイ
クロデキストリン生成量は仕込み澱粉重量当り、24チ
の高転換率であった。
When the enzymatic reaction was carried out at 50° C. for 68 hours, analysis of the reaction solution by high performance liquid chromatography revealed that 111.5.9 cyclodextrins were produced. Moreover, almost no α-cyclodextrin was produced. The amount of γ-cyclodextrin produced was a high conversion rate of 24 g per weight of starch charged.

上記反応液は100℃5分間の熱処理後、固形分濃度4
0チまで濃縮後5℃で一夜放置したととる、β−サイク
ロデキストリンが晶析したので、戸別したところ、10
.29の結晶β−サイクロデキス) IJンが得られた
。晶析母液を実施例1と同様にして精製したところ、純
度99.5%のγ−サイクロデキストリン8.4gが結
晶として得られた。
After heat treatment at 100°C for 5 minutes, the above reaction solution had a solid content of 4.
After concentrating to 0% and leaving it overnight at 5℃, β-cyclodextrin crystallized, so I went door to door and found that 10
.. Crystalline β-cyclodextrin (29) IJ was obtained. When the crystallization mother liquor was purified in the same manner as in Example 1, 8.4 g of γ-cyclodextrin with a purity of 99.5% was obtained as crystals.

対澱粉収率は16.8%であった。The yield based on starch was 16.8%.

又反応に用いたステビオサイドは実施例1と同様に回収
し、再び反応に使用出来た。
Moreover, the stevioside used in the reaction was recovered in the same manner as in Example 1 and could be used again in the reaction.

実施例3 馬鈴薯澱粉50gを実施例1と同様に800 mlの液
化澱粉液とした後、120℃10分間処理後50℃まで
冷却した。この液化澱粉液に市販グリチルレチン酸(ア
グリチノン、(株)・常磐植物化学研究所製)5g及び
B、、 ohbensia由来のCGTai+e(実施
例1と同じ)を500単位添加し、全量を1.000m
/とじた。この時反応液のpI(は希重曹液にて7.0
に調整した。
Example 3 50 g of potato starch was made into 800 ml of liquefied starch liquid in the same manner as in Example 1, treated at 120°C for 10 minutes, and then cooled to 50°C. To this liquefied starch solution, 5 g of commercially available glycyrrhetinic acid (Agritinone, manufactured by Tokiwa Phytochemical Research Institute) and 500 units of CGTai+e derived from B. ohbensia (same as Example 1) were added, and the total amount was 1.000 m
/ Closed. At this time, the pI of the reaction solution (7.0 with diluted sodium bicarbonate solution)
Adjusted to.

酵素反応を50℃でスターラーによシ常時攪拌しながら
65時間行なったところ、高速液体クロマトグラフィー
による分析の結果、γ−サイクロデキストリンが8.2
1及びβ−サイクロデキストリンが12.’25g生成
されていた。
When the enzyme reaction was carried out at 50°C for 65 hours with constant stirring using a stirrer, analysis by high performance liquid chromatography revealed that γ-cyclodextrin was 8.2
1 and β-cyclodextrin are 12. '25g was produced.

上記反応液を実施例2と同様の操作により精製したとこ
ろ、純度99.3%のγ−サイクロデキスト、リンが5
゜8g及び純度99.0%のβ−サイクロデキストリン
が9.8g得られた。
When the above reaction solution was purified by the same operation as in Example 2, it was found that γ-cyclodext with a purity of 99.3% and phosphorus were
8 g of β-cyclodextrin with a purity of 99.0% was obtained.

(13) 反応に使用したグリチルレチン酸は実施例1と同様に回
収し、再び反応に使用出来た。
(13) Glycyrrhetinic acid used in the reaction was recovered in the same manner as in Example 1 and could be used again in the reaction.

特許出願人 三楽オーシャン株式会社 (14)Patent applicant Sanraku Ocean Co., Ltd. (14)

Claims (1)

【特許請求の範囲】 1、 サイクロデキストリンへ変換可能な澱粉類にサイ
クロデキストリングリコジルトランスフェラーゼを作用
せしめてサイクロデキストリンを製造するに際し、反応
液に4環式又は5環式テルペノイド類を共存させること
を特徴とするγ−サイクロデキストリンの増収方法。 2.4環式又は5環式テルペノイド類がグリチルリチン
、ペリアンドリン又はステビオシトと総称される天然産
物又はそれらの誘導体である特許請求の範囲第1項記載
の方法。
[Scope of Claims] 1. When producing cyclodextrin by allowing cyclodextrin lycosyltransferase to act on starch that can be converted into cyclodextrin, it is possible to coexist tetracyclic or pentacyclic terpenoids in the reaction solution. A method for increasing the yield of γ-cyclodextrin. 2. The method according to claim 1, wherein the four- or pentacyclic terpenoids are natural products collectively referred to as glycyrrhizin, periandrin, or steviocyto, or derivatives thereof.
JP59084101A 1984-04-27 1984-04-27 Method of increasing yield of gamma-cyclodextrin Granted JPS60227693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59084101A JPS60227693A (en) 1984-04-27 1984-04-27 Method of increasing yield of gamma-cyclodextrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084101A JPS60227693A (en) 1984-04-27 1984-04-27 Method of increasing yield of gamma-cyclodextrin

Publications (2)

Publication Number Publication Date
JPS60227693A true JPS60227693A (en) 1985-11-12
JPH0441998B2 JPH0441998B2 (en) 1992-07-10

Family

ID=13821123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084101A Granted JPS60227693A (en) 1984-04-27 1984-04-27 Method of increasing yield of gamma-cyclodextrin

Country Status (1)

Country Link
JP (1) JPS60227693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291067A2 (en) * 1987-05-14 1988-11-17 Consortium für elektrochemische Industrie GmbH Process for preparing cyclo-octa-amylose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699498A (en) * 1980-03-11 1981-08-10 Hayashibara Biochem Lab Inc Rreparation of alpha-glycosyl steviol glycoside
JPS58870A (en) * 1981-06-20 1983-01-06 Hayashibara Biochem Lab Inc Method of sweetening food or beverage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699498A (en) * 1980-03-11 1981-08-10 Hayashibara Biochem Lab Inc Rreparation of alpha-glycosyl steviol glycoside
JPS58870A (en) * 1981-06-20 1983-01-06 Hayashibara Biochem Lab Inc Method of sweetening food or beverage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291067A2 (en) * 1987-05-14 1988-11-17 Consortium für elektrochemische Industrie GmbH Process for preparing cyclo-octa-amylose

Also Published As

Publication number Publication date
JPH0441998B2 (en) 1992-07-10

Similar Documents

Publication Publication Date Title
JP3751033B2 (en) Method for producing long-chain inulin
US4668626A (en) Method for the preparation of branched cyclodextrins
JPH0262239B2 (en)
DE3689607T2 (en) Cyclodextrin absorbent material and its use.
JP2798433B2 (en) Highly sweetened sugar-added stevia sweetener and process for producing the same
JPS61197602A (en) Novel branched cyclodextrin and its production
JPS6342697A (en) Enzymatic synthesis of cyclodextrine
JP3078923B2 (en) Novel branched cyclodextrin and method for producing the same
US5550222A (en) Process for producing gamma-cyclodextrin
EP0607264B1 (en) Increased cyclodextrin production
JPH0320121B2 (en)
JPS60227693A (en) Method of increasing yield of gamma-cyclodextrin
JPS6170996A (en) Production of maltosyl-alpha-cyclodextrin
EP0565106B1 (en) Method of preparing branched cyclodextrin
JP2845386B2 (en) Process for producing a macrocyclic cyclodextrin mixture containing an inner branched macrocyclic cyclodextrin
JPS61212297A (en) Production of branched cyclodextrin
JP2571199B2 (en) Method for producing highly soluble cyclodextrin
JPS63216492A (en) Production of neotrehalose and centose
JP3122203B2 (en) Novel heterobranched cyclodextrin and method for producing the same
JP3816554B2 (en) Novel branched cyclodextrin and method for producing the same
JPS61236801A (en) Novel branched alpha-cyclodextrin and its preparation
JP2863262B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-bonded to the side chain portion of a branched cyclodextrin by an α-bond, and a method for producing the same
JPH06141879A (en) Method for purifying cyclic inulooligosaccharide
WO1992001805A1 (en) Process for producing sugar and transfusion
JP2700423B2 (en) Glucosyl-cyclodextrin production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees