JPS60227679A - Production of immobilized enzyme - Google Patents

Production of immobilized enzyme

Info

Publication number
JPS60227679A
JPS60227679A JP8568884A JP8568884A JPS60227679A JP S60227679 A JPS60227679 A JP S60227679A JP 8568884 A JP8568884 A JP 8568884A JP 8568884 A JP8568884 A JP 8568884A JP S60227679 A JPS60227679 A JP S60227679A
Authority
JP
Japan
Prior art keywords
fibroin
aqueous solution
enzyme
solution
foamy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8568884A
Other languages
Japanese (ja)
Inventor
Yukio Horikawa
堀川 幸雄
Hiroshi Nakayama
博 中山
Hiroshi Jinno
神野 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP8568884A priority Critical patent/JPS60227679A/en
Publication of JPS60227679A publication Critical patent/JPS60227679A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A specific fibroin and an enzyme is dissolved in water, the solution is foamed, then formed before the precipitation of fibroin or coagulation of the solution to facilitate the production of immobilized enzyme of high enzymatic activity and duration with a porous texture in industrial scales. CONSTITUTION:Starting silk such as bourettes are degummed to remove sericins and the product is dissolved in water. The solution is stirred to allow the crystals of fibroin to orient and air is bubbled to form a foam and an enzyme is dissolved in the foamed solution. Then, the foamed solution is subjected to solidification process, before precipitation of fibroin or coagulation of the solution to effect the production of an immobilized enzyme of high enzymatic activity, duration, and porous texture with strength enough to be practially used with industrial easiness and inexpensively.

Description

【発明の詳細な説明】 本発明は固定化酵素の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing immobilized enzymes.

酵素は、種々の化学反応に対して基質特異性が高く、又
反応条件が温和で且つ反応効率も高く、極めて有用な触
媒として現在食品工業、医薬品工業界、化粧品工業界に
広く利用さ口ている。しかしながら一般に酵素は水溶性
であるため、使用層の旧1収が困難であり、単に不経済
であるのみならず、反応生成物との分離が難しい欠点を
有している。
Enzymes have high substrate specificity for various chemical reactions, mild reaction conditions, and high reaction efficiency, and are currently widely used in the food, pharmaceutical, and cosmetic industries as extremely useful catalysts. There is. However, since enzymes are generally water-soluble, it is difficult to recover the used layer, which is not only uneconomical, but also has the disadvantage that separation from reaction products is difficult.

この背景の下に酵素の各種担体等への固定化が多く提案
されてきた。例えばガラスピーズ担体への共有結合、イ
オン結合による酵素の固定化をはじめ、ポリアクリルア
ミドゲル体への酵素の包括法等が広く研究され、又一部
実用化されている。
Against this background, many proposals have been made to immobilize enzymes on various carriers. For example, methods such as immobilization of enzymes by covalent bonding or ionic bonding to glass beads carriers, and methods for entrapping enzymes in polyacrylamide gel bodies have been widely studied, and some have been put into practical use.

しかしながら従来の酵素固定化担体の形状は主として粉
末状ないしはビーズ状あるいは膜状のものであった。固
定化酵素をカラム等に充填し、連続的に酵素反応を行な
わせる方法は、工業的に効率的かつ容易に利用する最も
有効な手段の一つである、カラム充填式の連続法では出
来る限り酵素と反応裁置との接触を多(するためには酵
素の固定化量を増加させるとともに、担体自体の表面積
を増加させることが肝要である。そのためには粒状担体
の場合粒径を小さくすれば表面積11増加噂る恭gゐが
反応液を流すのに大きな圧力を必要とするため自ずと粒
径を小さくするにも限界がある。
However, conventional enzyme-immobilized carriers have mainly been in the form of powders, beads, or membranes. The method of filling an immobilized enzyme in a column or the like and carrying out the enzymatic reaction continuously is one of the most effective means for industrial efficiency and ease of use. In order to increase the contact between the enzyme and the reaction medium, it is important to increase the amount of enzyme immobilized and to increase the surface area of the carrier itself. For this purpose, in the case of granular carriers, the particle size must be reduced. Since Kyogi, which is rumored to increase the surface area by 11, requires a large pressure to flow the reaction solution, there is a limit to reducing the particle size.

これを解決するために多孔質体に酵素を固定化すること
が試みられてはいるが、未だ満足すべきものはないのが
実状と云える。例えば活性基を有する種々の水不溶性多
孔体担体に酵素を化学結合1゛る方法、ウレタンプレポ
リマーに酵素力<f6液を添加して発泡固化し、ワレク
ンフオーム中に酵素を包括する方法が試みられているが
、いずtLも激しい化学反応を利用するため、酵素の失
活を引き起こし易く、かつ単位取量あるいは単位体積当
たりの酵素活性の高いものは得難い。
In order to solve this problem, attempts have been made to immobilize enzymes in porous materials, but the reality is that there is still no satisfactory result. For example, there is a method of chemically bonding an enzyme to various water-insoluble porous carriers having active groups, and a method of adding an enzyme force<f6 liquid to a urethane prepolymer and foaming and solidifying it to encapsulate the enzyme in a foam. Although many attempts have been made, all tL uses violent chemical reactions, which tends to cause deactivation of the enzyme, and it is difficult to obtain enzymes with high enzyme activity per unit yield or unit volume.

本発明者らは上述の問題点を解決すべく研究した結果、
本発明を完成したものであって、その目的とするところ
は優れた酵素活性と耐久性を自し、かつ実用的な強度を
有する細孔組繊を備えたII!8]疋化酵素を工業的に
容易かつ安価に製造する方法を提供するにある。上述の
目的は剪断力を作用し、結晶域を配向せしめたフィブロ
インと、酵素とを溶解した泡状水浴液を、水溶液中への
フィブロインの析出或いは水溶液の凝固が起こる曲に成
形工程に付し、細孔組織を備えた成形体となすことを特
徴とする固定化酵素の製造法により達成される。
As a result of the inventors' research to solve the above-mentioned problems,
The present invention has been completed, and its purpose is to have a microporous fiber structure with excellent enzyme activity and durability, as well as practical strength! 8] To provide a method for industrially easily and inexpensively producing a pharyngeal enzyme. The above purpose is to apply a shearing force to a foamy water bath solution in which fibroin with oriented crystal regions and an enzyme dissolved therein is subjected to a molding process in which precipitation of fibroin in the aqueous solution or coagulation of the aqueous solution occurs. This is achieved by a method for producing an immobilized enzyme, which is characterized by forming a molded body with a pore structure.

細孔組織を形成するフィブロインは成形体の耐水性及び
強度の点から結晶化度が20%以上であることが好まし
い。ここで結晶化度は試料のX線広角回折強度を測定し
、フィブロイン水溶液を4°CRH40%で成膜した非
晶性フィツロインフィルムのX線広角回折強度を対照と
して相対的に算出したものである。
The fibroin forming the pore structure preferably has a crystallinity of 20% or more from the viewpoint of water resistance and strength of the molded article. Here, the degree of crystallinity is calculated by measuring the X-ray wide-angle diffraction intensity of the sample and relative to the X-ray wide-angle diffraction intensity of an amorphous fibroin film formed from a fibroin aqueous solution at 4° CRH 40%. be.

本発明に適用される酵素の種類は特に限定されるもので
はないが、例えばアルドラーゼ、ホスファターゼ、アス
パラギナーゼ、インベルダーゼ、ウリカーゼ、ウロキナ
ーゼ、グルコシダーゼ、カラクトシダーゼ、リボスフレ
アーゼ、コリンエステラーゼ、ウレアーゼ、リパーゼ、
ホスホリパーゼ、アミラーゼ、デキストラナーゼ、カタ
ラーゼ、グルコースデヒドロゲナーゼ、NADPHデヒ
ドロゲナーゼ、チロシナーゼ、乳酸デヒドロゲナーゼ、
ペルオキシダーゼ、゛チトクロームCオキシダー5− 一ゼ、アミノ酸オキシダーゼ、グルコシルトランスフェ
ラーゼ、アミノ酸アヤチル!・ランスフェラーゼ、タレ
アチンホスホキナーゼ、グルコキナーゼ、フマラーゼ、
ホスホフラクトアルドラーゼ、アスパルターセ、クエン
酸リアーゼ、リボースホスフェートイソメラーゼ、グル
タチオンシンテターゼ、アスパラギンシンテターゼ等が
挙げられる。
The types of enzymes applicable to the present invention are not particularly limited, but include, for example, aldolase, phosphatase, asparaginase, inverdase, uricase, urokinase, glucosidase, calactosidase, ribosphrease, cholinesterase, urease, lipase,
Phospholipase, amylase, dextranase, catalase, glucose dehydrogenase, NADPH dehydrogenase, tyrosinase, lactate dehydrogenase,
Peroxidase, cytochrome C oxidase 5-1ase, amino acid oxidase, glucosyltransferase, amino acid ayatil!・Transferase, taleatin phosphokinase, glucokinase, fumarase,
Examples include phosphofructoaldolase, aspartase, citrate lyase, ribose phosphate isomerase, glutathione synthetase, and asparagine synthetase.

これらの酵素は単独でも2抽以上の酵素を併用してもよ
い。又、酵素に代替して酵素を産生蓄積した菌体を適用
してもよい。
These enzymes may be used alone or in combination with two or more enzymes. Furthermore, instead of enzymes, bacterial cells that have produced and accumulated enzymes may be used.

酵素の使用量は酵素の種類、精製度、使用目的等によっ
て異なり一概には決定出来ないが、単位重量当たりフィ
ブロインに対して通常0.1〜50重量%、好ましくは
1〜40重量%である。本発明に於いて泡状水溶液は種
々の方法により調製出来るが、その好ましい一例を示す
と次の通りである。
The amount of enzyme used varies depending on the type of enzyme, degree of purification, purpose of use, etc., and cannot be determined unconditionally, but it is usually 0.1 to 50% by weight, preferably 1 to 40% by weight, based on fibroin per unit weight. . In the present invention, the foamy aqueous solution can be prepared by various methods, and a preferred example thereof is as follows.

まゆ午糸、まゆ屑、ヒス、キキ、絹布屑、ブ′−レッ−
ト等の絹原料を常法に従い精練してセリシンを除去した
ものを以下に述べる方法により水溶液6− とする。
Eyebrow thread, eyebrow waste, hiss, kiki, silk cloth waste, black
Aqueous solution 6- is prepared by removing sericin by scouring silk raw materials such as silk according to a conventional method and using the method described below.

すなわち前記の精練ずみの絹原料を銅−エチレンジアミ
ン水溶液、水酸(1[−アンモニア水溶液、具化リチウ
ム水溶液、カルシウム、又はマグネシウム、又は曲鉛の
塩酸塩、あるいは硝酸塩の水溶液、チオシアン酸塩の水
溶液等のフィブロインを溶解させ得る溶媒に溶解し、更
にセルロース腺に代表される透析膜を介して透析脱塩せ
しめ、予めフィブロインの水溶液を調製しておく。こ\
で溶媒としては価格及び品質の安定性等力、)ら塩化カ
ルシウム、硝酸カルシウム、硝酸マグネシウムが好まし
い。この溶媒の塩濃度は通常10〜80車量%で溶解を
より容易にせしめるためにメチルアルコール、エチルア
ルコール、プロピルアルコール、アセトン、ジメチルフ
ォルムアミド、ジメチルスルホキシド等の水混和性溶媒
を添加することができる。
That is, the above-mentioned scouring silk raw material is mixed with a copper-ethylenediamine aqueous solution, a hydroxide (1[-ammonia aqueous solution, an embodied lithium aqueous solution, a calcium, magnesium, or curved lead hydrochloride or nitrate aqueous solution, a thiocyanate aqueous solution An aqueous solution of fibroin is prepared in advance by dissolving it in a solvent capable of dissolving fibroin, such as fibroin, and desalting it by dialysis through a dialysis membrane such as cellulose glands.
As the solvent, calcium chloride, calcium nitrate, and magnesium nitrate are preferred due to their price and quality stability. The salt concentration of this solvent is usually 10 to 80% by volume, and a water-miscible solvent such as methyl alcohol, ethyl alcohol, propyl alcohol, acetone, dimethylformamide, or dimethyl sulfoxide may be added to facilitate dissolution. can.

nU記の方法で得られるフィブロイン水溶液は適宜濃縮
又は希釈して用いることができ、通常1〜20重量%で
使用する。この様にして調製したフィブロイン水溶液に
は、フィブロインの結晶生成の促進や結晶化度の向上の
ため、メチルアルコール、エチルアルコール、プロピル
アルコール、グリセリン等の低級アルコール類、塩酸、
硫酸、りん酸等の無機酸、クエン酸、酢酸等の有機酸、
あるいは硫酸アンモニウム、硫酸す1−リウム、塩化ナ
トリウム、酢酸ナトリウム、クエン酸ナトリウム等の凝
固性塩を共存させておいてもよい。
The aqueous fibroin solution obtained by the method described above can be used after being appropriately concentrated or diluted, and is usually used in an amount of 1 to 20% by weight. The aqueous fibroin solution prepared in this manner contains lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and glycerin, hydrochloric acid,
Inorganic acids such as sulfuric acid and phosphoric acid, organic acids such as citric acid and acetic acid,
Alternatively, coagulating salts such as ammonium sulfate, 1-lium sulfate, sodium chloride, sodium acetate, and sodium citrate may be allowed to coexist.

フィブロインと酵素の混合液を泡状化と同時に、又は泡
状化する曲にフィブロイン水溶故に流速勾配を付与し勇
断力を作用させる。剪fljr力を作用させる手段とし
ては、例えば攪拌あるいは細孔やスリットを通過させる
等により達成することができる。フィブロイン特有の性
質からこのように剪断力を作用させた泡状水溶液を成形
して得られる成はホモミキサー、ディスパーザ−等の攪
拌機を用い、容量、フィブロイン濃度、成型時間等を8
gして、回転数、攪拌時間を適宜設定す屯1イ′ぷい。
Because the fibroin is dissolved in water, a flow velocity gradient is applied to the mixture of fibroin and enzyme at the same time as foaming, or at the same time as the foam is being foamed. The shearing force can be applied by, for example, stirring or passing through pores or slits. Due to the unique properties of fibroin, the volume, fibroin concentration, molding time, etc. are adjusted to 80% by using a stirrer such as a homomixer or a disperser to mold the foamy aqueous solution subjected to shearing force.
Set the rotation speed and stirring time appropriately.

参看;このよう1′−剪断力を作用させることによりそ
の後に伺らの操作をしなくても時間経過とともにフィブ
ロインの配向、結晶化が進行し、粘度のを溶液中へのフ
ィブロインの析出或いは溶液が凝固する前に成型するこ
とが肝要であり、酵素のフィブロイン水溶液との混合の
時1tRはフィブロイン水溶液に剪断力を作用させる前
、あるいは後、泡状化する途中、あるいは泡状化した後
等、特に限定はされないが、最も好ましくは泡状化した
後、成形する前に添加混合する。泡状化した後、酵素を
添加混合すれば、剪断力の作用による酵素の失活を防止
することができ、酵素活性収率の非常に高いかつ高分子
基質との親和性に優れた酵素包括多孔体が得らnると、
いう利点がある。又、酵素の添加方法としては粉末、水
溶液、水分散後、有機溶媒、分散液等で添加できるが、
フィブロイン水溶液への溶解混合が容易な点から水溶液
で添加することが好ましい。この場合、酵素により適当
な9− 緩衝溶液、温度、安定剤等を選定することができる。
Note: By applying a 1'-shear force in this way, the orientation and crystallization of fibroin progresses over time without any subsequent operation, and the viscosity increases, causing precipitation of fibroin in the solution or It is important to mold the enzyme before it solidifies, and when mixing the enzyme with the fibroin aqueous solution, 1tR is before or after applying shear force to the fibroin aqueous solution, during the foaming process, or after the foaming process. Although not particularly limited, it is most preferably added and mixed after foaming and before molding. If the enzyme is added and mixed after foaming, it is possible to prevent the enzyme from deactivating due to the action of shearing force, and it is an enzyme-encompassing enzyme that has a very high yield of enzyme activity and has excellent affinity with polymeric substrates. When a porous body is obtained,
There is an advantage. In addition, the enzyme can be added as a powder, an aqueous solution, after dispersion in water, an organic solvent, a dispersion, etc.
It is preferable to add the fibroin in the form of an aqueous solution because it can be easily dissolved and mixed in the fibroin aqueous solution. In this case, a suitable 9-buffer solution, temperature, stabilizer, etc. can be selected depending on the enzyme.

フィブロイン水浴液を泡状化する方法としては気体の吹
き込み、高速攪拌、又は発泡剤の添加等の方法を単独で
あるいは組合わせて行なう。この際通常1〜20重量%
のフィブロイン水溶液に必要にまり増粘剤や界面宿性剤
の存在下に行なうことができる。増粘剤としてはカルボ
キシメチル老ルロースナトリウム塩等の水溶性セルロー
ス誘導体、アルギン酸ナトリウム等の多糖類、ポリビニ
ルアルコール、ポリエチレングリコール、ポリアクリル
酸塩等の合成水溶性高分子が挙げられる。
As a method for foaming the fibroin water bath liquid, methods such as gas blowing, high-speed stirring, or addition of a foaming agent may be used alone or in combination. In this case, usually 1 to 20% by weight
It can be carried out in the presence of a thickening agent or an interfacial agent as necessary in an aqueous fibroin solution. Examples of thickeners include water-soluble cellulose derivatives such as carboxymethyl old lulose sodium salt, polysaccharides such as sodium alginate, and synthetic water-soluble polymers such as polyvinyl alcohol, polyethylene glycol, and polyacrylates.

界面活性剤としでは高級脂肪アルカリ石けん、アルキル
スルホン酸m、 高級アルコールの硫酸エステル塩等の
陰イオン系界、面活性剤、高級アルキル第4級アンモニ
ウム塩等の陽イオン系界面活性剤、ポリエチレングリコ
アル高級脂肪酸エステル、ソルビタンの高級脂肪酸エス
テル等の非イオン系界面活性剤等が挙げられる。
Examples of surfactants include higher fatty alkaline soaps, alkyl sulfonic acids, anionic surfactants such as sulfuric ester salts of higher alcohols, surfactants, cationic surfactants such as higher alkyl quaternary ammonium salts, and polyethylene glycosurfactants. Examples include nonionic surfactants such as Al higher fatty acid ester and higher fatty acid ester of sorbitan.

気体の吹き込みは通常空気、窒素ガス1、炭酸ガーl〇
− ス等をフィブロイン水溶液が泡状化する程度すなわち1
〜50L/分の速度で内径08〜5mの細管より吹き込
む。高速攪拌も同様に100〜2000同転/分で行な
えば良い。発泡剤としては比較的低温度で分解ガスを発
生するもの、あるいは常温でpH調整により、気体を発
生するものを使用する。
Gas is normally blown into air, nitrogen gas, carbon dioxide gas, etc. to the extent that the fibroin aqueous solution becomes foamy, that is, 1
Blow at a rate of ~50 L/min through a capillary tube with an internal diameter of 08-5 m. High-speed stirring may be similarly performed at 100 to 2000 revolutions per minute. As the blowing agent, one that generates decomposition gas at a relatively low temperature, or one that generates gas at room temperature by adjusting the pH is used.

例えば、アゾビスイソブチロニトリル、ジニトロペンタ
メチレンテトラミン−尿素、各n炭酸ia等が挙げられ
る。
Examples include azobisisobutyronitrile, dinitropentamethylenetetramine-urea, each n-carbon ia, and the like.

高速攪拌あるいは高速攪拌と他の方法との併用ではフィ
ブロイン水浴液への剪断力を作用させることと泡状化が
同時にできる利点がある。この様にして調製した泡状水
溶液を使用して成形するに際しては公知の成形方法が適
宜な方法をRHし、酵素の使用目的に応じて各種の形態
に成形すればよいが、その1例を挙げると、例えば泡状
化したフィブロインと酵素の混合液はそのままあるいは
他の過当な容器に流し込んだ後、放置することにより時
間の経過と共に全体が固化し多孔体が得られる。この際
低温あるいは凍結状態で放置すると気泡の消失を防ぐこ
とが出来る。泡状化したフィブロインと酵素の混合液は
フィブロインが固化する際に独立気泡壁の′lil壊が
起こるため得られた成形体は連続気孔率の高い細孔質組
織を備えたものとなる。
High-speed stirring or the combined use of high-speed stirring and other methods has the advantage that shearing force can be applied to the fibroin water bath solution and foaming can be effected at the same time. When molding using the foamy aqueous solution prepared in this way, a known molding method may be used to RH the appropriate method and mold it into various forms depending on the intended use of the enzyme. For example, if a foamed mixture of fibroin and enzyme is poured as it is or poured into another appropriate container and left to stand, the entire mixture will solidify over time and a porous body will be obtained. At this time, if it is left at a low temperature or in a frozen state, it is possible to prevent the bubbles from disappearing. In the foamed mixture of fibroin and enzyme, when the fibroin solidifies, the walls of the closed cells are collapsed, so that the obtained molded product has a pore structure with high open porosity.

固化した成形体は更に水洗あるいは乾燥(常圧、減圧、
凍結)することもできる。
The solidified molded product is further washed with water or dried (normal pressure, reduced pressure,
Freezing) is also possible.

本発明方法で得られた固定化酵素は優れた酵素活性を有
し、かつ耐久性と実用的な強度を有しており、又素材が
親水性の高い天然タンパク質であるため食品、薬品、化
粧品分野でのバイオリアクター、診断薬等に非常に有用
である。
The immobilized enzyme obtained by the method of the present invention has excellent enzyme activity, durability and practical strength, and since the material is a highly hydrophilic natural protein, it can be used in foods, drugs, and cosmetics. It is very useful for bioreactors, diagnostic agents, etc. in the field.

以下、実施例にて本発明方法を詳述する。The method of the present invention will be explained in detail in Examples below.

実施例1 機生1kL)をマルセル石けん0.5電板%水溶液50
を中に浸漬し80°Cで3時曲攪拌混合し、実質的にセ
リシン及び油分を完全に除き、充分に水洗後70°Cで
乾燥した。次いで65亀量%の塩化カルシウム水溶液4
kqとエチルアルコール1.’6t9の入った二、−グ
ー中に前記精練ずみのブーレット0、Skyを投入し、
80〜85℃で1時間攪拌溶解した。得られた粘稠な溶
#液に80°Cの温水3.2kQを加え希釈した。該溶
解液のフィブロイン濃度は85重量%であった。更に溶
解液の一部を再生セルロース系中空繊維を用いた透析装
置によりフィブロイン透析it得た。該透析液のフィブ
ロイブロインの15正量%の水浴液を得た。
Example 1 1kL of fresh water was added to Marcel soap 0.5% aqueous solution 50%
was immersed in the mixture and stirred and mixed at 80°C for 3 hours to substantially completely remove sericin and oil, thoroughly washed with water, and then dried at 70°C. Next, 65% calcium chloride aqueous solution 4
kq and ethyl alcohol 1. 2. Put the refined Boulet 0 and Sky into the goo containing '6t9,
The mixture was stirred and dissolved at 80 to 85°C for 1 hour. The resulting viscous solution was diluted by adding 3.2 kQ of 80°C warm water. The fibroin concentration of the solution was 85% by weight. Further, a portion of the solution was subjected to fibroin dialysis using a dialysis device using regenerated cellulose-based hollow fibers. A water bath solution containing 15% by weight of fibroin from the dialysate was obtained.

夫々50vの15重量%のフィブロイン水溶液を100
1Rtのビーカーに入れ、150′Ngのカルボキシメ
チルセルロースナトリウム塩を治解した。次いで4つの
方法でフィブロインとβ−グルコシダーゼ(2unit
/〜)を用いて多孔体を作製した。
50v of 15% by weight fibroin aqueous solution
150'Ng of carboxymethylcellulose sodium salt was dissolved in a 1Rt beaker. Next, fibroin and β-glucosidase (2 units
/~) was used to produce a porous body.

l) フィブロイン水溶液にフィブロインに対して5重
量%のβ−グルコシダーゼ水溶欣5mを添加混合した後
、内径0.5 mmのガラス管より50m/分で窒素ガ
スを吹き込み泡状化した。4°Cで48時間経過した後
もフィブロインは固化せず、気泡が半減し、ビーカー下
部は溶液となっ13− てしまった。
l) After adding and mixing 5 m of aqueous β-glucosidase containing 5% by weight of fibroin to the fibroin aqueous solution, nitrogen gas was blown at 50 m/min through a glass tube with an inner diameter of 0.5 mm to form a foam. Even after 48 hours at 4°C, the fibroin did not solidify, the air bubbles were reduced by half, and the bottom of the beaker became a solution.

2)フィブロイン水溶液にブイプロインに対して5軍量
%のβ−グルコシダーセ水溶液5−を添加混合した後、
直径8crnのプロペラ形攪拌羽根で2,0001転/
分1時間の剪断力を作用させた。
2) After adding and mixing a β-glucosidase aqueous solution 5- of 5% by mass based on buproin to the fibroin aqueous solution,
2,0001 revolutions per propeller type stirring blade with a diameter of 8 crn
A shearing force of 1 hour was applied.

次いで内径0.5−のガラス管より50−7分で窒素ガ
スを吹き込み体積100―程度に泡状化した。4°Cで
泡状化したフィブロインと酵素の溶液を静置したところ
約20分後に固化した。
Next, nitrogen gas was blown into the mixture for 50-7 minutes through a glass tube with an inner diameter of 0.5 mm to form a foam to a volume of about 100 mm. When the fibroin and enzyme solution foamed at 4°C was allowed to stand, it solidified after about 20 minutes.

3)フィブロイン水溶液を内径0.5 wagのガラス
管より30−7分で窒素ガスを吹き込みながら直径8c
1Mのプロペラ形攪拌羽根でa、o o o回転/分で
攪拌し、剪断力を作用させるとともに10分間体体槓0
0mg程度に泡状化した。次いで窒素ガスの吹き込みを
中止し、攪拌を100回転/分にしてフィブロインに対
して5軍量%のβ−グルコシダーゼ水溶液5−を添加し
、30秒後に4°Cの冷蔵庫に静置し1こところ約1時
間後に全体が固化した。
3) Transfer the fibroin aqueous solution to a glass tube with an inner diameter of 8 cm while blowing nitrogen gas for 30-7 minutes.
Stir with a 1M propeller type stirring blade at a, o o o revolutions/min, apply shear force, and leave the body at 0 for 10 minutes.
It foamed to about 0 mg. Next, the blowing of nitrogen gas was stopped, the stirring was changed to 100 revolutions/min, and an aqueous solution of β-glucosidase (5%) based on fibroin was added, and after 30 seconds, the mixture was left standing in a refrigerator at 4°C. After about 1 hour, the entire mixture solidified.

4)β−グルコシダーゼの量をフィブロインに対14− して2重量%とする以外は8)と同様の操作を行なって
多孔体を得た。
4) A porous body was obtained in the same manner as in 8) except that the amount of β-glucosidase was 2% by weight based on fibroin.

2)〜4)の3種の酵素包括多孔体を取り出し、水洗し
た後、一部は凍結乾燥することにより多孔体物性をめ、
残りは酵素活性の測定に用いた。酵素の活性測定は、緩
衝液によりpH7,0に調整された0、02モル濃度の
サジシン1〇−中に酵素包括多孔体50IIvを投入し
、攪拌下37°Cで6分間反応させ生成したサリケシン
を比色定量することによりめた。又、活性耐久性を評価
するため、洗浄−活性測定の操作を10回繰り返し、1
0回目の活性保持率をめた。
The three types of enzyme-enclosed porous materials from 2) to 4) were taken out, washed with water, and some were freeze-dried to determine the physical properties of the porous materials.
The remainder was used for measuring enzyme activity. Enzyme activity measurement was performed by adding the enzyme-enclosed porous material 50IIv into 0.02 molar concentration of Sadicin 10-, which was adjusted to pH 7.0 with a buffer solution, and reacting it at 37°C for 6 minutes with stirring. was determined by colorimetric determination. In addition, in order to evaluate the activity durability, the washing-activity measurement operation was repeated 10 times.
The 0th activity retention rate was achieved.

第1表に示す如く、本発明の酵素包括多孔体はいずれも
筒い酵素活性と耐久性を有している。
As shown in Table 1, all of the enzyme-enclosed porous materials of the present invention have excellent enzyme activity and durability.

内径1mのカラム中に1−8の酵素包括多孔体を詰め、
0.02モルのサリシン溶液を0.6−7mの流速で連
続7日間通過せしめ、サンプリングによって反応率を追
跡したところ、反応率92〜98%の範囲であり、時開
経過とともに反応率が低下することは全くなかった。
Packing 1-8 enzyme-enclosed porous materials into a column with an inner diameter of 1 m,
When a 0.02 mol salicin solution was passed through the sample at a flow rate of 0.6-7 m for 7 consecutive days and the reaction rate was followed by sampling, the reaction rate was in the range of 92-98%, and the reaction rate decreased as time progressed. There was nothing to do.

実施例2 実施例1で得た5、5m量%のフィブロイン水浴液5(
lをホモミキサー(待妹機化工業社製諏μ54G)で4
,000回転、120秒曲勇断力を作用させるとともに
泡状化し、次にフィブロインに対して5車量%のデキス
トラナーゼ水溶欣を加えて、ガラス棒でゆ−くり撹拌混
合した。次にドライアイス−メタノール中に容器を浸漬
し、凍結させた。
Example 2 5.5 m% fibroin water bath solution 5 obtained in Example 1 (
1 with a homomixer (Sumi μ54G manufactured by Machimyo Kika Kogyo Co., Ltd.)
The mixture was subjected to bending force at 1,000 rpm for 120 seconds to form a foam, and then 5% aqueous dextranase was added to the fibroin, and the mixture was slowly stirred and mixed with a glass rod. Next, the container was immersed in dry ice-methanol and frozen.

−20°Cで一晩放置後、凍結乾燥して酵素包括フィブ
ロイン多孔体を得た。気孔率927%、結晶化度28%
であった。この多孔体を充分に洗浄し、活性測定したと
ころ粘性収率19%、実施例1と同様の耐久性テストで
93%であり、包括法としては高分子基質に対する活性
保持が非常に高いものであった。酵素活性は下記の方法
で行なった。
After being left at -20°C overnight, it was freeze-dried to obtain an enzyme-enclosed fibroin porous material. Porosity 927%, crystallinity 28%
Met. When this porous material was thoroughly washed and activity was measured, the viscosity yield was 19%, and the durability test similar to that in Example 1 showed 93%, indicating that, as a comprehensive method, the retention of activity against polymeric substrates is extremely high. there were. Enzyme activity was measured using the following method.

2mlの基質溶液(平均分子用50万のデキストラン2
.5%pi(5,4)に酵素包括多孔体519を入れ、
40°Cで200分間反応た後、1% 3,5−ジニト
ロサルナル酸アルカリ水溶液8−を添加して、反応を停
止させる。次いで5分間沸とう水浴中に入れた後、20
分曲氷冷し、540nmの吸光度により測定した。
2 ml of substrate solution (500,000 dextran 2 for average molecule
.. Put enzyme-enclosed porous material 519 in 5% pi (5,4),
After reacting at 40°C for 200 minutes, 1% 3,5-dinitrosalnaric acid alkaline aqueous solution 8- is added to stop the reaction. Then after 5 minutes in a boiling water bath, 20
The mixture was cooled on ice and measured by absorbance at 540 nm.

実施例8 実施例1で舟だ15重量%のフィブロイン水溶液を実施
例2で用いたホモミキサーで15秒間。
Example 8 The 15% by weight aqueous fibroin solution prepared in Example 1 was mixed with the homomixer used in Example 2 for 15 seconds.

4000回転/回転側断力を作用させた。次に直径3m
のプロペラ形攪拌羽根で200回転/分で攪拌しながら
内径1mのガラス管より炭酸ガスを100mA/分で吹
き込み泡状化した後、炭酸ガスの吹き込みを中止し、第
2表に示す各種の酵素水溶液を添加混合し、4℃の冷蔵
庫中に静置した。
4000 rotations/rotation side shearing force was applied. Next, the diameter is 3m
While stirring at 200 revolutions/min with a propeller-type stirring blade, carbon dioxide gas was blown into the foam at 100 mA/min through a glass tube with an inner diameter of 1 m, then the blowing of carbon dioxide gas was stopped, and various enzymes shown in Table 2 were mixed. The aqueous solution was added and mixed, and the mixture was left standing in a refrigerator at 4°C.

いずれも30〜60分間で固化した。All solidified within 30 to 60 minutes.

各種の酵素包括多孔体の活性を測定したところ、いずれ
も高い活性を有し、耐久性も優れたもので17− あった。
When the activity of various enzyme-enclosed porous materials was measured, all of them had high activity and excellent durability.

活性測定法 l)ウレアーゼ 3M社%の尿素水溶成を用いて生成したアンモアをネス
ラー法にて定量した。
Activity Measuring Method 1) Ampore produced using urease 3M % urea aqueous solution was quantified by the Nessler method.

2)グルコアミラーゼ 1重量%のテンブン水溶液(pH6,0) を基質とし
て、40°Cで酸素反応を行ない、生成したグルコース
量を定置した。
2) An oxygen reaction was carried out at 40°C using an aqueous solution of glucoamylase (pH 6.0) containing 1% by weight of glucoamylase as a substrate, and the amount of glucose produced was fixed.

8)β−がラクトシダーゼ p−ニトロフェニル−β−り一カラクトビラ18− 第2表 実施例4 実施例1と同様にして得たフィブロイン水浴液を100
0重量%に濃縮し、この502をダイヤフラムポンプで
501nt/amの速度で0.2 swφの細孔100
穴のノズルを通過、10分間循環させ剪断力を作用させ
た。200■のカルボキシメチルセルロースナトリウム
塩を溶解した。
8) β- is lactosidase p-nitrophenyl-β-ri-caractobira 18- Table 2 Example 4 The fibroin water bath solution obtained in the same manner as in Example 1 was
Concentrated to 0% by weight, this 502 was pumped through 100 pores of 0.2 swφ at a speed of 501 nt/am using a diaphragm pump.
It passed through a nozzle in the hole and was circulated for 10 minutes to apply shearing force. 200 μm of carboxymethylcellulose sodium salt was dissolved.

次に窒素ガスを吹き込んで泡状化させ、ウレアーゼとβ
−ガラクトシダーゼをそれぞれフィブロインに対して2
重量%を水棒液で添加混合し、4°Cで静置したところ
約1時間で固化した。
Next, nitrogen gas is blown in to form a foam, and urease and β
- galactosidase for each fibroin
% by weight was added and mixed using a water rod, and when the mixture was left to stand at 4°C, it solidified in about 1 hour.

得られた酵素包括多孔体を水洗後、実施例8と同様にし
てウレアーゼとβ−ガラクトシダーゼの活性を別々に測
定したところそれぞれ活性収率40%と42%、耐久性
88%、91%であった。
After washing the obtained enzyme-enclosed porous material with water, the activities of urease and β-galactosidase were measured separately in the same manner as in Example 8, and the activity yields were 40% and 42%, and the durability was 88% and 91%, respectively. Ta.

このように本発明方法によれば容易に複合酵素系の多孔
体を得ることができた。
As described above, according to the method of the present invention, a complex enzyme-based porous body could be easily obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)剪断力を作用し結晶域を配向せしめたフィブロイ
ンと、酵素とを溶解した泡状水溶液を、水溶液中へのフ
ィブロインの析出或いは水溶液の凝固が起こる前に、成
形工程に付し細孔組織を備えた成形体となすことを特徴
とする一足化酵素の製造法。
(1) A foamy aqueous solution in which fibroin, whose crystalline regions have been oriented by applying shearing force, and an enzyme are dissolved is subjected to a molding process to form pores before precipitation of fibroin in the aqueous solution or coagulation of the aqueous solution occurs. A method for producing a monopodase, which is characterized by forming a molded body with a structure.
(2) フィブロインが結晶化度20%以上のものであ
る特許請求の範囲第(1)項に記載の固定化酵素の製造
法。
(2) The method for producing an immobilized enzyme according to claim (1), wherein the fibroin has a crystallinity of 20% or more.
(3)泡状水溶液が゛フィブロインに対して高々50重
量%の酵素を含有した。ものである特許請求の範囲第(
1)項又は第(2項に記載の固定化酵素の製造法。
(3) The foamy aqueous solution contained at most 50% by weight of enzyme relative to fibroin. The scope of claim No. (
The method for producing an immobilized enzyme according to item 1) or item (2).
(4)泡状水溶液がフィブロインの泡状水溶液に酵素水
溶液を添加し混合して調製したものである特許請求の範
囲第(1)項乃至第(3)項の伺れかに記載の固定化酵
素の製造法。
(4) Immobilization according to any one of claims (1) to (3), wherein the foamy aqueous solution is prepared by adding and mixing an enzyme aqueous solution to a foamy aqueous solution of fibroin. Enzyme production method.
(5)泡状水溶液がフィブロインと酵素とを溶解した水
溶液を強く攪拌し、フィブロインの結晶を配回せしめる
と同時に気泡を吹き込み泡状化して調製したものである
特許請求の範囲第(1)項乃至第(4)項の何れかに記
載の固定化酵素の製造法。
(5) Claim (1) wherein the foamy aqueous solution is prepared by strongly stirring an aqueous solution in which fibroin and an enzyme are dissolved, distributing fibroin crystals, and simultaneously blowing air bubbles into the foamy solution. A method for producing an immobilized enzyme according to any one of items (4) to (4).
(6)泡状水溶液がフィブロイン水溶液を強く攪拌し、
フィブロインの結晶を配向せしめると同時に気泡を吹き
込み泡状化したフィブロイン水溶液に酵素水溶液を添加
混合して調製したものである特許請求の範囲第(1)填
乃至第(4)項の伺れかに記載の内定化酵素の製造法。
(6) The foamy aqueous solution strongly stirs the fibroin aqueous solution,
The product is prepared by adding and mixing an enzyme aqueous solution to a fibroin aqueous solution which is made foamy by orienting fibroin crystals and at the same time blowing air bubbles into the foam. Method for producing the internalized enzyme described.
(7)成形体が気孔率50%以上の細孔組織を備えたも
のである特許請求の範囲第(1)項乃至第(6)項の伺
れかに記載の固定化酵素の製造法。
(7) The method for producing an immobilized enzyme according to any one of claims (1) to (6), wherein the molded body has a pore structure with a porosity of 50% or more.
JP8568884A 1984-04-26 1984-04-26 Production of immobilized enzyme Pending JPS60227679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8568884A JPS60227679A (en) 1984-04-26 1984-04-26 Production of immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8568884A JPS60227679A (en) 1984-04-26 1984-04-26 Production of immobilized enzyme

Publications (1)

Publication Number Publication Date
JPS60227679A true JPS60227679A (en) 1985-11-12

Family

ID=13865785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8568884A Pending JPS60227679A (en) 1984-04-26 1984-04-26 Production of immobilized enzyme

Country Status (1)

Country Link
JP (1) JPS60227679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276488A (en) * 1987-05-07 1988-11-14 Mitsubishi Heavy Ind Ltd Method for immobilizing microbial cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276488A (en) * 1987-05-07 1988-11-14 Mitsubishi Heavy Ind Ltd Method for immobilizing microbial cell

Similar Documents

Publication Publication Date Title
Guiseley Chemical and physical properties of algal polysaccharides used for cell immobilization
US3838007A (en) Water-insoluble enzyme composition
JPH01118544A (en) Porous product of silk fibroin
CA1050454A (en) Shaped product containing glucose isomerase and method of producing said product
Altikatoglu et al. Additive effect of dextrans on the stability of horseradish peroxidase
JPS61104787A (en) Production of porous material containing immobilized enzyme by pva gel
Gemeiner et al. Biochemical engineering of biocatalysts immobilized on cellulosic materials
JPS60227679A (en) Production of immobilized enzyme
PL194759B1 (en) Process for preparing a polyvinyl alcohol gel and mechanically highly stable gel produced by this process
JP2622170B2 (en) Spherical polyvinyl alcohol-based hydrogel and method for producing the same
JPS596885A (en) Production of insoluble living body catalyst
CA1054087A (en) Process for conditioning bacterial cells containing glucose isomerase activity
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
JPS5946594B2 (en) Immobilized biologically active substance and its production method
JPS60227680A (en) Production of immobilized enzyme
JPS588836B2 (en) Immobilized enzyme and its manufacturing method
KR950014967B1 (en) Preparation method of moranoline derivatives
Nakane et al. Formation of composite gel fiber from cellulose acetate and zirconium tetra-n-butoxide and entrap-immobilization of β-galactosidase on the fiber
JPH0355103B2 (en)
JPH0517835B2 (en)
JPH03195489A (en) Production of spherical formed product of immobilized biocatalyst
JPS645251B2 (en)
JPH0468912B2 (en)
JPH0456592B2 (en)
JPS61187791A (en) Immobilized enzyme and its preparation