JPS60227148A - Measuring method of wave motion transmission parameter - Google Patents

Measuring method of wave motion transmission parameter

Info

Publication number
JPS60227148A
JPS60227148A JP8355684A JP8355684A JPS60227148A JP S60227148 A JPS60227148 A JP S60227148A JP 8355684 A JP8355684 A JP 8355684A JP 8355684 A JP8355684 A JP 8355684A JP S60227148 A JPS60227148 A JP S60227148A
Authority
JP
Japan
Prior art keywords
wave
reflection coefficient
wave source
measuring instrument
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8355684A
Other languages
Japanese (ja)
Other versions
JPH0252210B2 (en
Inventor
Takashi Iwasaki
俊 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8355684A priority Critical patent/JPS60227148A/en
Publication of JPS60227148A publication Critical patent/JPS60227148A/en
Publication of JPH0252210B2 publication Critical patent/JPH0252210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Abstract

PURPOSE:To simplify measurement procedure, and to perform data processing and to use a nonreflection type as a wave source and a detector by allowing a reflection coefficient measuring instrument to function as a detector for a transmitted wave. CONSTITUTION:The wave source 4 of a reflection coefficient measuring instrument 7 is turned on and the wave source 11 of a reflection coefficient measuring instrument 14 is turned off. The reflected wave indicator 6 of measuring instrument 7 indicates a reflection coefficient u1 when a component side is viewed from an input surface 1 through a directional coupler 5. Further, the measuring instrument 14 functions as the detector for a transmitted wave because the wave source 11 is off, and a reflected wave indicator 13 indicates a transmission coefficient I2. Then, the wave source 4 is turned off and the wave source 11 is turned on; the reflection coefficient measuring instrument 14 indicates a reflection coefficient u2 when a component 3 to be measured is viewed from the input surface 2 and the measuring instrument 7 indicates a reflection coefficient I1. Then the component 3 is removed and only the wave source 4 or 7 is turned on, and then the measuring instruments 6 and 14 indicate a reflection coefficient to the other measuring instrument and detection outputs to light from the wave sources 11 and 4. Those data are processed to measure the transmission parameter of wave motion.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、屯磁波や弾性波などの波動を伝送する部品
の伝送特性を、2台の反射係数測定器を同時に用いるこ
とによって、正確に測定することができるようにした波
動伝送パラメータの測定方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention accurately measures the transmission characteristics of components that transmit waves such as magnetic waves and elastic waves by simultaneously using two reflection coefficient measuring instruments. The present invention relates to a method for measuring wave transmission parameters that enables the measurement of wave transmission parameters.

〔従来技術〕[Prior art]

減衰器や伝送線路用のコネクタなどのように、入出力面
(または入出力端子)を1つずつ持つ部品の伝送特性は
、第1図に示すように面(この場合は入力面)1におい
て被測定部品3に入る波p1と被測定部品3から出る波
41%面(この場合は出力面)2において被測定部品3
に入る波p2と被測定部品3かも出る波q、の間の関係
を表す4個の伝送パラメータa11+ al!+ at
tl attで下記のように表される。
The transmission characteristics of components that have one input and output surface (or input and output terminal), such as attenuators and transmission line connectors, are as shown in Figure 1 at surface (input surface in this case) 1. The wave p1 entering the part to be measured 3 and the wave coming out of the part to be measured 3 41% plane (output plane in this case) 2 of the part to be measured 3
There are four transmission parameters a11+al! representing the relationship between the wave p2 entering the component and the wave q exiting the component under test 3. +at
It is expressed as tl att as follows.

Q+ = act p+ + ass I)tQ!” 
act I)+ 十a2e I)tただし、atzau
は波の減衰器を、a11+at2は反射量を表す伝送パ
ラメータである。
Q+ = act p+ + ass I)tQ! ”
act I)+ 10a2e I)tHowever, atzau
is a wave attenuator, and a11+at2 is a transmission parameter representing the amount of reflection.

波動がマイクロ波や超音波などのようにコヒーレフト(
1町干渉)な波の場合は、一般に、p++q++pv+
Ch は振幅と位相で表され、伝送パラメータall+
 aH+ a211 a21は複素数となる。一方、波
動が白光色などのようにインコヒーレント(非可干渉)
な波の場合は、pH+ q’+ + p2”+ Qtは
波のノくヮーで・足義するのが便利であり、上記の伝送
パラメータaII r ’I+t + at+ + ”
22 f1正の実5とゾぶる0代表的で、かつ、重要な
インコヒーレント波の伝送は、光源に発光ダイオードま
たはスペクトル幅の広いレーザタイオードを用いた光伝
送があげられる。
Waves are coherently left (like microwaves and ultrasound waves)
In the case of a wave with one town interference), in general, p++q++pv+
Ch is expressed by amplitude and phase, and transmission parameter all+
aH+ a211 a21 is a complex number. On the other hand, waves are incoherent (non-coherent) like white light.
In the case of a wave, it is convenient to calculate pH+ q'+ + p2"+ Qt with the wave nokwa, and the above transmission parameter aII r 'I+t + at+ + "
22 f1 Positive Real 5 and Solving 0 A typical and important transmission of incoherent waves is optical transmission using a light emitting diode or a laser diode with a wide spectrum width as a light source.

現在、伝送パラメータを正確に測定する手法としては、
マイクロ波に対するネットワーク7ナラに対してしか適
用できない。インコヒーレント伝送の伝送パラメータを
正確に測定するための特別な手法は、いまだに開発され
【いないが、Ijj Id U’Jな方法と0℃考えら
れるのは、第2図(a)〜(f)K示すような方法であ
る〇 すなわち、第2図(a)のように被測定部品3の出力側
に波を反射しない無反射負荷9を置き、入力側に波源4
.方向性結合器51反射波指示器6からなる反射係数測
定器7を置く。このとき、反射係数測定器7が理想的な
ものであり、反射波指示器6は正確に反射係数q 、/
 p、+を指示するものとすれば、指示値Q+/p+は
伝送パラメータallに等しくなる。
Currently, methods for accurately measuring transmission parameters include:
Applicable only to network 7Nara for microwaves. A special method for accurately measuring the transmission parameters of incoherent transmission has not yet been developed, but the method shown in Figure 2 (a) to (f) is considered to be a suitable method at 0°C. In other words, as shown in Fig. 2(a), a non-reflection load 9 that does not reflect waves is placed on the output side of the component to be measured 3, and a wave source 4 is placed on the input side.
.. A reflection coefficient measuring device 7 consisting of a directional coupler 51 and a reflected wave indicator 6 is placed. At this time, the reflection coefficient measuring device 7 is ideal, and the reflected wave indicator 6 accurately measures the reflection coefficient q, /
If p, + are designated, the designated value Q+/p+ will be equal to the transmission parameter all.

次に第2図(b)のように入力側に無反射の波源4を置
き、出力側に透過波を測定するための無反射検出器10
を置く。このとき、無反射検出器100反射波指示器8
がI、を指示したとする。
Next, as shown in FIG. 2(b), a non-reflection wave source 4 is placed on the input side, and a non-reflection detector 10 for measuring the transmitted wave is placed on the output side.
put At this time, the non-reflection detector 100 and the reflected wave indicator 8
Suppose that indicates I.

この後、第2図(C)のように被測定部品3を取り除き
、無反射の波源4からの波を直接、無反射検出器10に
入れる。このとき、無反射検出器10の反射波指示器8
がI+、を指示したとする。無反射検出器10が理想的
なもので、これに入る波のパワーq、に比例した値を指
示するものとすれば、■、とIL、との比I 、 / 
I’、 が伝送パラメータa2□に等しくなる。
Thereafter, as shown in FIG. 2(C), the part to be measured 3 is removed, and the waves from the non-reflection wave source 4 are directly input to the non-reflection detector 10. At this time, the reflected wave indicator 8 of the non-reflection detector 10
Suppose that the command indicates I+. If the non-reflection detector 10 is ideal and indicates a value proportional to the power q of the wave entering it, then the ratio between ■ and IL is I, /
I', becomes equal to the transmission parameter a2□.

入力側と出力側を交換して第2図(d)によって伝送パ
ラメータat2が、また、第2図(c) 、(f)によ
って伝送パラメータa12が測定できる。
By exchanging the input and output sides, the transmission parameter at2 can be measured as shown in FIG. 2(d), and the transmission parameter a12 can be measured as shown in FIGS. 2(c) and 2(f).

以上の測定法の欠点とし【は、以下のようなことがあげ
られる。
The drawbacks of the above measurement methods are as follows.

(11無反射の波源4および無反射検出器10を実現す
ることは困難である。
(11) It is difficult to realize a reflection-free wave source 4 and a reflection-free detector 10.

(2)被測定部品3や測定器の着脱が多い。(2) The part to be measured 3 and the measuring device are often attached and detached.

(3)上記+11. (21によって誤差の原因も増加
する。
(3) Above +11. (21 also increases the sources of error.

〔発明の概要〕[Summary of the invention]

この発明は、以上のような直接的な測定法の欠点を解消
するためになされたものであり、反射係数測定器を透過
波の検出器としても機能させることによって測定手続を
簡単化し、さらにデータ処理を行って波源や検出器が無
反射でなくてもよいようにしたものである。以下、この
発明について説明する◎ 〔発明の実施例〕 第3図(a) 、(b)はこの発明の一実施例を示すも
のである。符号1〜7は第1図、第2図に示したものと
同じであり、11は波源、12は方向性結合器、13は
反射波指示器であり、これらで反射係数測定器14が構
成されている。
This invention was made in order to eliminate the drawbacks of the direct measurement method described above, and by making the reflection coefficient measuring device also function as a transmitted wave detector, it simplifies the measurement procedure and further improves the data It is processed so that the wave source and detector do not need to be non-reflective. This invention will be described below. ◎ [Embodiment of the invention] FIGS. 3(a) and 3(b) show an embodiment of the invention. Reference numerals 1 to 7 are the same as those shown in FIGS. 1 and 2, 11 is a wave source, 12 is a directional coupler, and 13 is a reflected wave indicator, and these constitute the reflection coefficient measuring device 14. has been done.

この構成において、第3図(a)のように反射係数測定
器7および14を被測定部品3の入出力側に同時に接続
する。この状態で、まず、反射係数測定器Tの波源4を
動作状態(ON状態)とし、反射係数測定器14の波源
11を非動作状態(OFF状態)とする。こうすると、
反射係数測定器70反射波指示器6は、面(入力面)1
から部品側をみた反射係数u1を指示する。また、反射
係数測定器14は波源11がOF F状態であるため、
単に透過波の検出器として機能する。この状態において
、反射波指示器13の指示値をI、とする。
In this configuration, the reflection coefficient measuring devices 7 and 14 are simultaneously connected to the input and output sides of the component to be measured 3, as shown in FIG. 3(a). In this state, first, the wave source 4 of the reflection coefficient measuring instrument T is brought into an operating state (ON state), and the wave source 11 of the reflection coefficient measuring instrument 14 is brought into a non-operating state (OFF state). This way,
The reflection coefficient measuring device 70 reflected wave indicator 6 has a surface (input surface) 1
Specify the reflection coefficient u1 as viewed from the component side. In addition, since the wave source 11 of the reflection coefficient measuring device 14 is in the OFF state,
It simply functions as a detector of transmitted waves. In this state, the indicated value of the reflected wave indicator 13 is assumed to be I.

次に、波源4をOFF状態、波源11をON状態とする
と、今度は面2が人力面、面1が出力面となり、反射係
数測定器140反射波指示器13は、而(入力面)2か
ら被測定部品3をみた反射係数U、を指示する。一方、
反射係数測定器1は波源4がOFF状態のため、検出器
として機能する。このときの反射波指示器6の指示ll
l!を1.とする。
Next, when the wave source 4 is turned OFF and the wave source 11 is turned ON, the surface 2 becomes the human power surface and the surface 1 becomes the output surface, and the reflection coefficient measuring device 140 and the reflected wave indicator 13 become the (input surface) 2. The reflection coefficient U when looking at the part to be measured 3 is indicated. on the other hand,
Since the wave source 4 is in the OFF state, the reflection coefficient measuring device 1 functions as a detector. Indication ll of the reflected wave indicator 6 at this time
l! 1. shall be.

以上の各指示値I、、I、’&記録した後、第3図(b
)のように被測定部品3を取り除き、波源4をとし′1
:機能し、反射波指示器6は面(人力面)2から反射係
数測定器14をみた反射係数v2を指示する。この状態
での反射波指示器13の指示値をII、とする。
After recording each of the above indicated values I, , I, '&,
), remove the part to be measured 3 and set the wave source 4 as '1'.
: Functions, and the reflected wave indicator 6 indicates the reflection coefficient v2 when looking at the reflection coefficient measuring device 14 from the surface (manual surface) 2. The indicated value of the reflected wave indicator 13 in this state is assumed to be II.

次に、波源4をOFF状態、波源11をON状態にする
と、反射波指示器13は而(出力面)1から反射係数測
定器7をみた反射係数v1を指示する。この状態での反
射波指示器6の指示値を工′。
Next, when the wave source 4 is turned OFF and the wave source 11 is turned ON, the reflected wave indicator 13 indicates the reflection coefficient v1 seen from the output surface 1 to the reflection coefficient measuring device 7. Calculate the indicated value of the reflected wave indicator 6 in this state.

とする。shall be.

以上の結果、得られた8個のテークui t 11+u
2+I 21 Vtr I′、+ Vll ll、の間
には、以下の関係がある。
As a result of the above, the obtained 8 takes ui t 11+u
The following relationship exists between 2+I 21 Vtr I' and +Vll ll.

すなわち、被測定部品3にとって波源4,11や検出器
として機能する反射係数測定器7,14が無反射でない
ため、ul l ul l It/ I;、 1./ 
I;は直接伝送パラメータa11+ at2r JI+
 altと等しくならず、第(1)弐〜第(4)式のよ
うな関係となるわけである。
That is, for the part to be measured 3, since the wave sources 4, 11 and the reflection coefficient measuring devices 7, 14 which function as detectors are not reflection-free, ul l ul l It/I;, 1. /
I; is the direct transmission parameter a11+ at2r JI+
It is not equal to alt, and the relationships are as shown in equations (1) to (4).

しかし、伝送パラメータaIII a12+ 8211
322は、第+11式〜第(4)籾を連立方程式とみて
解くことにより、以下のようにしてめることができる。
However, the transmission parameter aIII a12+ 8211
322 can be obtained as follows by solving the equations +11 to (4) as simultaneous equations.

・・・・・・・・・(7) ャ啼やないため、コヒーレント伝送、インコヒi−レン
ト伝送を問わす適用可能であるが、特に、′現在インコ
ヒーレント伝送を行っていながら1云送パラメータの正
確な測定法のないマルチモード光ファイバを用いた伝送
系に対して有効である。そこで、仮測定部品3として具
体的に、マルチモード光ファイバ用の光減賃器をとり上
(すてみる。減衰器の特性としては、入力面1から出力
面2へ光が伝わる場合の減り量 A” I Olog a2+ (dB衣示)が最も1要
であるので、Aを正確に測定したい場合を考える。、す
でに述べたように、仮をまった(反射しない波源や検出
器は存在しない。マルチモード光ファイバ伝送の場合、
波源は10%、検出器は4%程度の光のパワーを反射す
る。また、減衰器自体も6%程度の反射を有することが
多い。
・・・・・・・・・(7) Since there is no noise, it can be applied to both coherent transmission and incoherent transmission. This is effective for transmission systems using multimode optical fibers for which there is no accurate measurement method. Therefore, we will specifically take up an optical attenuator for multimode optical fiber as provisional measurement component 3. Since the quantity A'' I Olog a2+ (in dB) is the most important, let us consider the case where we want to accurately measure A. .For multimode optical fiber transmission,
The source reflects about 10% of the light power, and the detector reflects about 4% of the light power. Furthermore, the attenuator itself often has a reflection of about 6%.

これらの反射が脊圧するとき、第2図の1α接的方法で
減衰器Aをめたらどの程度の誤差が発生するかを第+1
)式〜tp、 (a)式を基にして理論的に評価した結
果が第4図である。ここで、誤差がマイナスの値を示し
ているのは、第2図の直接的方法では、真の値よりも減
衰量を小さく(すなわち、載設が大きくないように)測
定してしまうことを意味しており、第2図の直接的方法
の問題点を明確に示している。
When these reflections cause spinal pressure, how much error will occur if attenuator A is installed using the 1α direct method shown in Figure 2?
) formula ~tp, Figure 4 shows the results of a theoretical evaluation based on formula (a). Here, the reason why the error shows a negative value is because the direct method shown in Figure 2 measures the attenuation smaller than the true value (i.e., so that the mounting is not large). This clearly shows the problems with the direct method shown in Figure 2.

コア径50μm、クラツド径125μmのグレーテッド
形光ファイバ伝送系において、波源4゜11として0.
85μmのレーザダイオード、半透明鏡を用いた方向結
合器5.12およびシリコンPINホトタイオードによ
る反射波指示器6.13で構成した反射係数測定器7,
14を2台用いて、この発明の方法で6i11定した結
果を第5図に示す。
In a graded optical fiber transmission system with a core diameter of 50 μm and a cladding diameter of 125 μm, the wave source is 4°11 and 0.
A reflection coefficient measuring device 7 consisting of an 85 μm laser diode, a directional coupler 5.12 using a semi-transparent mirror, and a reflected wave indicator 6.13 using a silicon PIN photodiode.
FIG. 5 shows the results of determining 6i11 using the method of this invention using two 14 units.

ここで、被測定部品3は減衰量をOdBから10dBま
で連続的に可変でき、OdBにおけるそう大損失が約1
.5dBの光11笈減衰器である。この光可変減衰器は
、光ファイバ端面から一度光を空間に放射し、半透明鏡
な党略に対して斜めに値いて光を異なった方向に反射さ
ぜることで透過する光を減衰させ、+4び光ファイノ・
中に光を41.<構造のものである。
Here, the attenuation of the component under test 3 can be varied continuously from OdB to 10dB, and the large loss at OdB is approximately 1
.. It is a 5dB optical attenuator. This variable optical attenuator emits light into space from the end face of an optical fiber, and attenuates the transmitted light by reflecting the light in different directions at an angle to a semi-transparent mirror. +4 optical fiber
Light inside 41. <It is of structure.

したがって、減衰量の小さな場合は、出力側からの反射
光が入力側へ戻り易くなり、伝送パラメータaIII 
a22は大きく’(dB表示では小さく)なる。一方、
減夏量が大きくなると、出力側からの反射光は入力側へ
戻りにくくなるため伝送パラメータalll 812は
小さくなっていくが、半透明視自身が反射する光が増え
るため、減衰量がある程度大きくなると伝送パラメータ
aII+ a2□は横ばい、あるいはやや太きく(dB
表示値はやや小さく)なることが予想される。第4図の
実験結果では、このことが裏付けられている。
Therefore, when the amount of attenuation is small, the reflected light from the output side tends to return to the input side, and the transmission parameter aIII
a22 becomes large' (small in dB display). on the other hand,
As the amount of summer attenuation increases, it becomes difficult for the reflected light from the output side to return to the input side, so the transmission parameter all 812 becomes smaller, but since the amount of light reflected by the translucent vision itself increases, when the amount of attenuation increases to a certain extent. The transmission parameter aII+a2□ remains flat or slightly thick (dB
The displayed value is expected to be slightly smaller). This is supported by the experimental results shown in FIG.

第6図によれば、第2図の直接的方法で測定した結果は
、0.02dB〜0.035dB程度dB表示で小さく
なっている。このことも第4図の理論的な予測と一致し
ている。
According to FIG. 6, the results measured by the direct method of FIG. 2 are smaller in dB by about 0.02 dB to 0.035 dB. This also agrees with the theoretical prediction shown in FIG.

なお、以上の説明は、すべて人力面を1閾、出力面を1
個持つ部品に対して行ったが、2個以上の入出力面を持
つ部品に対しても、ある任意の1個の入力面と1個の出
力面を除いて他の面に無反射の負荷を置き、このように
してできる部品の伝送パラメータを入出力面を変えて順
次測定して行くことにより、その伝送パラメータを決定
することが可能である。
The above explanation is based on the assumption that the human power side is 1 threshold and the output side is 1 threshold.
Although this was done for parts with two or more input/output surfaces, it is also possible to apply a non-reflective load to any surface other than one input surface and one output surface. It is possible to determine the transmission parameters by sequentially measuring the transmission parameters of the parts made in this way while changing the input and output surfaces.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明は、波源。 As explained in detail above, this invention is based on a wave source.

方向性結合器、および反射波指示器からなる反射係数測
定器を被測定部品の入力側と出力側とにそれぞれ接続し
、一方の波源と他方の波源な交互KONL、そのときの
両反射波指示器のみから2個ずつ4個のデータを得、次
いで被測定部品を取り除いた状態で同様にして一方の波
源と他方の波源を交互にONL、そのときの両反射波指
示器のみから2個ずつ4個のデータを得、合計8個のデ
ータから被測定部品の伝送パラメータを測定するよめコ
ヒーレント波に対しても、インコヒーレイト波に対して
も正確に被測定部品の伝送パラメータをfll11定す
ることができる。したがって、以下のような利点がある
A reflection coefficient measuring device consisting of a directional coupler and a reflected wave indicator is connected to the input side and the output side of the component under test, respectively, and one wave source and the other wave source are alternately KONL, and both reflected wave indicators are measured at that time. Obtain 4 pieces of data, 2 pieces each from the instrument only, then remove the part to be measured and do the same, alternately ONL one wave source and the other wave source, then 2 pieces each from both reflected wave indicators only. Obtain 4 pieces of data and measure the transmission parameters of the part under test from a total of 8 pieces of data. Accurately determine the transmission parameters of the part under test for both coherent waves and incoherent waves. be able to. Therefore, there are the following advantages.

(1)無探射の波源や無反射検出器が不要である。(1) There is no need for a non-probe wave source or a non-reflection detector.

(2)被測定部品や測定器の着脱が少ない。(2) There is less need to attach and detach parts to be measured and measuring instruments.

(3) 上記(t+、 f21によって、誤差の小さい
正確な測定が1北となる。
(3) According to the above (t+, f21), accurate measurement with small error is 1 north.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は波動伝送パラメータの説明図、第2図(a)〜
(f)は従来の波動伝送パラメータの測定手順を示す図
、第3図(aL <b)はこの発明の一実施例を示す波
動伝送パラメータの測定子JIBを示す図、第4図は従
来方法において予想されるii!4差を示す図、第5図
はこの発明により伝送パラメータを測定した結果を示す
図、m6図は従来方法とこの発明による方法の測定結果
の差を示す図である。 図中、1.2は面、3は被測定部品、4,11は波源、
5.12は方向性結合器、6,13は反射波指示器、7
,14は反射係数測定器である。 指定代理人 電子技術総合研死所長等々力 迩第1図 第2図 第3図 (a) V211 (b)v+1; 第4図 減表萱A(dB)→ 第5図 0123.45678910 会称′A表i!(4加勺XdB)− 第6図 盆称戚表發(dB)− 手、続 補 正 書(自発) 昭和ダ2 イ1 ? 月/511 1事件の表示 昭和39年特許願第13!;!;乙号 2発明の名称 波動伝送パラメータの測定方法 東県都T代III V、 Mシか関111J 3番1号
++4I業技((・夏院長用[]、1裕ii1う4指定
代理人 別紙の通り0のU】をVl、u2をv2.(b)のul
をv1+ u2をv2に訂正する。 第3図 (a) V211 (b) 112
Figure 1 is an explanatory diagram of wave transmission parameters, Figure 2 (a) ~
(f) is a diagram showing a conventional measurement procedure for wave transmission parameters, FIG. 3 (aL < b) is a diagram showing a measuring element JIB for wave transmission parameters according to an embodiment of the present invention, and FIG. 4 is a conventional method. expected in ii! Figure 5 is a diagram showing the results of measuring transmission parameters according to the present invention, and Figure m6 is a diagram showing the difference between the measurement results of the conventional method and the method according to the present invention. In the figure, 1.2 is a surface, 3 is a part to be measured, 4, 11 is a wave source,
5.12 is a directional coupler, 6 and 13 are reflected wave indicators, 7
, 14 is a reflection coefficient measuring device. Designated representative: Todoroki, director of the Research Institute for Electronic Technology (Fig. 1, Fig. 2, Fig. 3 (a) V211 (b) v+1; Table i! (4 + X dB) - Fig. 6 Bon name relative table (dB) - Hand, continuation amendment (self-produced) Showa 2 I 1? Month/511 Display of 1 case 1964 patent application No. 13! ;! ;Otsu No. 2 Name of Invention Method for Measuring Wave Transmission Parameters Higashi Prefectural Capital T Dai III V, M Shikaseki 111J 3 No. 1 ++ 4 I Industrial Technology ((・For Director Xia [], 1 Yu ii 1 U 4 Designated Agent As shown in the attached sheet, 0's U] is Vl, u2 is v2.(b)'s ul
Correct v1+u2 to v2. Figure 3 (a) V211 (b) 112

Claims (1)

【特許請求の範囲】[Claims] 波源、方向性結合器および反射波指示器からなる反射係
数測定器を、波動を伝送する被測定部品の入力側と出力
側とにそれぞれ接続し、前記一方の反射係数測定器の波
源のみをONとして前記両反射波指示器で2個のデータ
を得、次いで他方の反射係数測定器の波源のみをONと
してtuft両反射波指示器で2個のデータを得、次に
被測定部品を取り除き前記両方向性結合器間を接続した
状態で前記一方の波源のみONとして前記両反射波指示
器で2個のデータを得、さらに前記他方の波源のみON
として前記両反射波指示器で2個のデータを得、これら
8個のデータに基づいて前記被測定部品の伝送パラメー
タを測定することを特徴とする波動伝送パラメータの測
定方法。
A reflection coefficient measuring device consisting of a wave source, a directional coupler, and a reflected wave indicator is connected to the input side and the output side of the component to be measured that transmits waves, respectively, and only the wave source of one of the reflection coefficient measuring devices is turned on. Then, turn on only the wave source of the other reflection coefficient measuring device to obtain two data using both reflected wave indicators, and then remove the part to be measured and With the bidirectional coupler connected, only one of the wave sources is turned on to obtain two data from both of the reflected wave indicators, and then only the other wave source is turned on.
A method for measuring a wave transmission parameter, characterized in that two pieces of data are obtained from both of the reflected wave indicators, and the transmission parameter of the part to be measured is measured based on these eight pieces of data.
JP8355684A 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter Granted JPS60227148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355684A JPS60227148A (en) 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355684A JPS60227148A (en) 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter

Publications (2)

Publication Number Publication Date
JPS60227148A true JPS60227148A (en) 1985-11-12
JPH0252210B2 JPH0252210B2 (en) 1990-11-09

Family

ID=13805781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355684A Granted JPS60227148A (en) 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter

Country Status (1)

Country Link
JP (1) JPS60227148A (en)

Also Published As

Publication number Publication date
JPH0252210B2 (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JPH026724A (en) Method and apparatus for testing optical transmission medium
US6459478B1 (en) Optical loss measurements
CN106768877B (en) A kind of Larger Dynamic range scaling method for optical coherence domain polarimeter
JPS58129372A (en) Magnetic field-light converter
JPH0726890B2 (en) Optical fiber effective refractive index measuring device
CN101329198B (en) Method for measuring light device echo loss
JP2666827B2 (en) Light measurement method
CN202522320U (en) ORL measurement device
JP2840682B2 (en) Method and apparatus for measuring strain or temperature of optical waveguide
US4768880A (en) System and method for accurate loop length determination in fiber-optic sensors and signal processors
CN110635841B (en) Method and device for improving echo signal of chaotic optical time domain reflectometer
JPS60227148A (en) Measuring method of wave motion transmission parameter
CN115962796A (en) Optical fiber sensor, measuring method, device and storage medium
JP2878778B2 (en) Inundation detection method and system, and connector used therefor
US5056915A (en) Fiber optic calibration standard apparatus
JP3110637U (en) Light reflecting element
JPH04337437A (en) Fresnel reflection detection system
JPH0249115A (en) Displacement measuring instrument and pressure measuring instrument utilizing such instrument
JPH0456250B2 (en)
JPH06160197A (en) Pulse tester and light loss measuring method using it
CN117674982A (en) Method and system for measuring return loss of optical communication system
CN115628885A (en) Calibration system for multimode optical fiber return loss measuring equipment
JPH01250039A (en) Measuring instrument for liquid refractive index
RU2069335C1 (en) Method of measuring distance to damaged area of fibre-optic light guide
JPS60185132A (en) Measuring method of coupling state in nonlinear mode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term