JPH0252210B2 - - Google Patents

Info

Publication number
JPH0252210B2
JPH0252210B2 JP8355684A JP8355684A JPH0252210B2 JP H0252210 B2 JPH0252210 B2 JP H0252210B2 JP 8355684 A JP8355684 A JP 8355684A JP 8355684 A JP8355684 A JP 8355684A JP H0252210 B2 JPH0252210 B2 JP H0252210B2
Authority
JP
Japan
Prior art keywords
wave
measured
reflection coefficient
reflected wave
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8355684A
Other languages
Japanese (ja)
Other versions
JPS60227148A (en
Inventor
Takashi Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8355684A priority Critical patent/JPS60227148A/en
Publication of JPS60227148A publication Critical patent/JPS60227148A/en
Publication of JPH0252210B2 publication Critical patent/JPH0252210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電磁波や弾性波などの波動を伝送
する部品の伝送特性を、2台の反射係数測定器を
同時に用いることによつて、正確に測定すること
ができるようにした波動伝送パラメータの測定方
法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention accurately measures the transmission characteristics of components that transmit waves such as electromagnetic waves and elastic waves by simultaneously using two reflection coefficient measuring instruments. The present invention relates to a method for measuring wave transmission parameters.

〔従来技術〕[Prior art]

減衰器や伝送線路用のコネクタなどのように、
入出力面(または入出力端子)を1つずつ持つ部
品の伝送特性は、第1図に示すように面(この場
合は入力面)1において被測定部品3に入る波p1
と被測定部品3から出る波q1、面(この場合は出
力面)2において被測定部品3に入る波p2と被測
定部品3から出る波q2の間の関係を表す4個の伝
送パラメータa11,a12,a21,a22で下記のように
表される。
such as attenuators and transmission line connectors,
The transmission characteristics of a component that has one input and output surface (or one input and output terminal) are as shown in Figure 1, when a wave p 1 enters the component under test 3 at surface (input surface in this case) 1 .
4 transmissions representing the relationship between the wave q 1 that comes out of the part to be measured 3, the wave p 2 that enters the part to be measured 3 at the surface (output surface in this case) 2, and the wave q 2 that comes out of the part to be measured 3. It is expressed as follows using parameters a 11 , a 12 , a 21 , and a 22 .

q1=a11p1+a12p2 q2=a21p1+a22p2 ただし、a21,a12は波の減衰量を、a11,a22
反射量を表す伝送パラメータである。
q 1 = a 11 p 1 + a 12 p 2 q 2 = a 21 p 1 + a 22 p 2 However, a 21 and a 12 are transmission parameters that represent the amount of wave attenuation, and a 11 and a 22 represent the amount of reflection. .

波動がマイクロ波や超音波などのようにコヒー
レント(可干渉)な波の場合は、一般に、p1
q1,p2,q2は振幅と位相で表され、伝送パラメー
タa11,a12,a21,a22は複素数となる。一方、波
動が白光色などのようにインコヒーレント(非可
干渉)な波の場合は、p1,q1,p2,q2は波のパワ
ーで定義するのが便利であり、上記の伝送パラメ
ータa11,a12,a21,a22は正の実数となる。
When the waves are coherent waves such as microwaves and ultrasonic waves, generally p 1 ,
q 1 , p 2 , and q 2 are represented by amplitude and phase, and transmission parameters a 11 , a 12 , a 21 , and a 22 are complex numbers. On the other hand, if the waves are incoherent, such as white light, it is convenient to define p 1 , q 1 , p 2 , and q 2 in terms of the wave power, and the above transmission The parameters a 11 , a 12 , a 21 , and a 22 are positive real numbers.

代表的で、かつ、重要なインコヒーレント波の
伝送は、光源に発光ダイオードまたはスペクトル
幅の広いレーザダイオードを用いた光伝送があげ
られる。
A typical and important method of transmitting incoherent waves is optical transmission using a light emitting diode or a laser diode with a wide spectrum width as a light source.

現在、伝送パラメータを正確に測定する手法と
しては、マイクロ波に対するネツトワークアナラ
イザ法などがあるが、これらの手法はいずれも波
の位相を変化させる必要があるため、コヒーレン
トな伝送に対してしか適用できない。インコヒー
レント伝送の伝送パラメータを正確に測定するた
めの特別な手法は、いまだに開発されていない
が、直接的な方法として考えられるのは、第2図
a〜fに示すような方法である。
Currently, there are methods for accurately measuring transmission parameters, such as the network analyzer method for microwaves, but these methods require changing the phase of the waves, so they are only applicable to coherent transmission. Can not. Although a special method for accurately measuring transmission parameters of incoherent transmission has not yet been developed, a direct method that can be considered is the method shown in FIGS. 2a to 2f.

すなわち、第2図aのように被測定部品3の出
力側に波を反射しない無反射負荷9を置き、入力
側に波源4、方向性結合器5、反射波指示器6か
らなる反射係数測定器7を置く。このとき、反射
係数測定器7が理想的なものであり、反射波指示
器6は正確に反射係数q1/p1を指示するものとす
れば、指示値q1/p1は伝送パラメータa11に等し
くなる。
That is, as shown in Fig. 2a, a non-reflection load 9 that does not reflect waves is placed on the output side of the component to be measured 3, and a reflection coefficient measurement consisting of a wave source 4, a directional coupler 5, and a reflected wave indicator 6 is performed on the input side. Place vessel 7. At this time, if the reflection coefficient measuring device 7 is ideal and the reflected wave indicator 6 accurately indicates the reflection coefficient q 1 /p 1 , then the indicated value q 1 /p 1 is the transmission parameter a will be equal to 11 .

次に第2図bのように入力側に無反射の波源4
を置き、出力側に透過波を測定するための無反射
検出器10を置く。このとき、無反射検出器10
の反射波指示器8がI1を指示したとする。
Next, as shown in Figure 2b, there is a wave source 4 with no reflection on the input side.
, and a non-reflection detector 10 for measuring transmitted waves is placed on the output side. At this time, the non-reflection detector 10
Suppose that the reflected wave indicator 8 indicates I1 .

この後、第2図cのように被測定部品3を取り
除き、無反射の波源4からの波を直接、無反射検
出器10に入れる。このとき、無反射検出器10
の反射波指示器8がI′1を指示したとする。無反
射検出器10が理想的なもので、これに入る波の
パワーq2に比例した値を指示するものとすれば、
I1とI′1との比I1/I′1が伝送パラメータa21に等しく
なる。
Thereafter, the part to be measured 3 is removed as shown in FIG. At this time, the non-reflection detector 10
Assume that the reflected wave indicator 8 indicates I′ 1 . If the non-reflection detector 10 is ideal and indicates a value proportional to the power q 2 of the wave entering it, then
The ratio I 1 /I' 1 of I 1 and I' 1 becomes equal to the transmission parameter a 21 .

入力側と出力側を交換して第2図dによつて伝
送パラメータa22が、また、第2図e,fによつ
て伝送パラメータa12が測定できる。
By exchanging the input side and the output side, the transmission parameter a 22 can be measured according to FIG. 2d, and the transmission parameter a 12 can be measured according to FIGS. 2e and f.

以上の測定法の欠点としては、以下のようなこ
とがあげられる。
The drawbacks of the above measurement methods include the following.

(1) 無反射の波源4および無反射検出器10を実
現することは困難である。
(1) It is difficult to realize a reflection-free wave source 4 and a reflection-free detector 10.

(2) 被測定部品3や測定器の着脱が多い。(2) Parts to be measured 3 and measuring instruments are often attached and detached.

(3) 上記(1)、(2)によつて誤差の原因も増加する。(3) The causes of errors increase due to (1) and (2) above.

〔発明の概要〕[Summary of the invention]

この発明は、以上のような直接的な測定法の欠
点を解消するためになされたものであり、反射係
数測定器を透過波の検出器としても機能させるこ
とによつて測定手続を簡単化し、さらにデータ処
理を行つて波源や検出器が無反射でなくてもよい
ようにしたものである。以下、この発明について
説明する。
This invention was made in order to eliminate the drawbacks of the direct measurement method as described above, and simplifies the measurement procedure by making the reflection coefficient measuring device also function as a transmitted wave detector. Furthermore, data processing is performed so that the wave source and detector do not need to be non-reflective. This invention will be explained below.

〔発明の実施例〕[Embodiments of the invention]

第3図a,bはこの発明の一実施例を示すもの
である。符号1〜7は第1図、第2図に示したも
のと同じであり、11は波源、12は方向性結合
器、13は反射波指示器であり、これらで反射係
数測定器14が構成されている。
FIGS. 3a and 3b show an embodiment of the present invention. Reference numerals 1 to 7 are the same as those shown in FIGS. 1 and 2, 11 is a wave source, 12 is a directional coupler, and 13 is a reflected wave indicator, and these constitute the reflection coefficient measuring device 14. has been done.

この構成において、第3図aのように反射係数
測定器7および14を被測定部品3の入出力側に
同時に接続する。この状態で、まず、反射係数測
定器7の波源4を動作状態(ON状態)とし、反
射係数測定器14の波源11を非動作状態
(OFF状態)とする。こうすると、反射係数測定
器7の反射波指示器6は、面(入力面)1から部
品側をみた反射係数u1を指示する。また、反射係
数測定器14は波源11がOFF状態であるため、
単に透過波の検出器として機能する。この状態に
おいて、反射波指示器13の指示値をI2とする。
In this configuration, the reflection coefficient measuring devices 7 and 14 are simultaneously connected to the input and output sides of the component to be measured 3, as shown in FIG. 3a. In this state, first, the wave source 4 of the reflection coefficient measuring instrument 7 is brought into an operating state (ON state), and the wave source 11 of the reflection coefficient measuring instrument 14 is brought into a non-operating state (OFF state). In this way, the reflected wave indicator 6 of the reflection coefficient measuring device 7 indicates the reflection coefficient u 1 when looking at the component side from the surface (input surface) 1. In addition, since the wave source 11 of the reflection coefficient measuring device 14 is in the OFF state,
It simply functions as a detector of transmitted waves. In this state, the indicated value of the reflected wave indicator 13 is set to I2 .

次に、波源4をOFF状態、波源11をON状態
とすると、今度は面2が入力面、面1が出力面と
なり、反射係数測定器14の反射波指示器13
は、面(入力面)2から被測定部品3をみた反射
係数u2を指示する。一方、反射係数測定器7は波
源4がOFF状態のため、検出器として機能する。
このとき反射波指示器6の指示値をI1とする。
Next, when the wave source 4 is turned OFF and the wave source 11 is turned ON, surface 2 becomes the input surface, surface 1 becomes the output surface, and the reflected wave indicator 13 of the reflection coefficient measuring device 14
indicates the reflection coefficient u 2 when looking at the part to be measured 3 from the surface (input surface) 2. On the other hand, since the wave source 4 is in the OFF state, the reflection coefficient measuring device 7 functions as a detector.
At this time, the indicated value of the reflected wave indicator 6 is set to I1 .

以上の各指示値I1,I2を記録した後、第3図b
のように被測定部品3を取り除き、波源4をON
状態、波源11をOFF状態とすると、7が反射
係数測定器、14が透過波の検出器として機能
し、反射波指示器6は面(入力面)2から反射係
数測定器14をみた反射係数v2を指示する。この
状態での反射波指示器13の指示値をI′2とする。
After recording each of the above indicated values I 1 and I 2 ,
Remove the part to be measured 3 and turn on the wave source 4 as shown in
When the wave source 11 is in the OFF state, 7 functions as a reflection coefficient measuring device, 14 functions as a transmitted wave detector, and the reflected wave indicator 6 functions as a reflection coefficient measuring device 14 viewed from the surface (input surface) 2. Indicate v 2 . The indicated value of the reflected wave indicator 13 in this state is assumed to be I' 2 .

次に、波源4をOFF状態、波源11をON状態
にすると、反射波指示器13は面(出力面)1か
ら反射係数測定器7をみた反射係数v1を指示す
る。この状態での反射波指示器6の指示値をI′1
とする。
Next, when the wave source 4 is turned OFF and the wave source 11 is turned ON, the reflected wave indicator 13 indicates the reflection coefficient v 1 when looking at the reflection coefficient measuring device 7 from the surface (output surface) 1. The indicated value of the reflected wave indicator 6 in this state is I′ 1
shall be.

以上の結果、得られた8個のデータu1,I1
u2,I2,v2,I′1,v1,I′2の間には、以下の関係が
ある。
As a result of the above, the eight data obtained are u 1 , I 1 ,
The following relationship exists between u 2 , I 2 , v 2 , I′ 1 , v 1 , and I′ 2 .

u1=a11+a12a21v2/1−a22v2 …(1) u2=a22+a12a21v1/1−a11v1 …(2) I2/I′2=a21/(1−a11v1)(1−a22v2)−a12a21v
1v2 …(3) I1/I′1a12/(1−a22v2)(1−a11v1)−a12a21v1v
2 …(4) すなわち、被測定部品3にとつて波源4,11
や検出器として機能する反射係数測定器7,14
が無反射でないため、u1,u2,I2/I′2,I1/I′1
直接伝送パラメータa11,a22,a21,a12と等しく
ならず、第(1)式〜第(4)式のような関係となるわけ
である。
u 1 =a 11 +a 12 a 21 v 2 /1−a 22 v 2 …(1) u 2 =a 22 +a 12 a 21 v 1 /1−a 11 v 1 …(2) I 2 /I′ 2 = a21 /(1- a11v1 ) ( 1 - a22v2 ) -a12a21v
1 v 2 …(3) I 1 /I' 1 a 12 / (1-a 22 v 2 ) (1-a 11 v 1 )-a 12 a 21 v 1 v
2 ...(4) That is, for the part to be measured 3, the wave sources 4, 11
Reflection coefficient measuring devices 7 and 14 that function as detectors and detectors
is not reflection-free, u 1 , u 2 , I 2 /I' 2 , I 1 /I' 1 are not equal to the direct transmission parameters a 11 , a 22 , a 21 , a 12 , and Equation (1) The relationship is as shown in equation (4).

しかし、伝送パラメータa11,a12,a21,a22は、
第(1)式〜第(4)式を連立方程式とみて解くことによ
り、以下のようにして求めることができる。
However, the transmission parameters a 11 , a 12 , a 21 , a 22 are
By treating equations (1) to (4) as simultaneous equations and solving them, it can be determined as follows.

a21=I2/I′2(1−u1v1)(1−u2v2)/1−(I
1/I′1)(I2/I′2)v1v2(1−u1v1)(1−u2v2
…(5) a12=I1/I′1(1−u1v1)(1−u2v2)/1−(I
1/I′1)(I2/I′2)v1v2(1−u1v1)(1−u2v2
…(6) a11=u1−(I1/I′1)(I2/I′2)v2(1−u1v1
2(1−u2v2)/1−(I1/I′1)(I2/I′2)v1v2
(1−u1v1)(1−u2v2)…(7) a22=u2−(I1/I′1)(I2/I′2)v1(1−u1v1
)(1−u2v22/1−(I1/I′1)(I2/I′2)v1v2
(1−u1v1)(1−u2v2)…(8) この発明による測定方法は、波の位相を変化さ
せる必要がないため、コヒーレント伝送、インコ
ヒーレント伝送を問わず適用可能であるが、特
に、現在インコヒーレント伝送を行つていながら
伝送パラメータの正確な測定法のないマルチモー
ド光フアイバを用いた伝送系に対して有効であ
る。そこで、被測定部品3として具体的に、マル
チモード光フアイバ用の光減衰器をとり上げてみ
る。減衰器の特性としては、入力面1から出力面
2へ光が伝わる場合の減衰量 A=−10log a21(dB表示) が最も重要であるので、Aを正確に測定したい場
合を考える。すでに述べたように、波をまつたく
反射しない波源や検出器は存在しない。マルチモ
ード光フアイバ伝送の場合、波源は10%、検出器
は4%程度の光のパワーを反射する。また、減衰
器自体も6%程度の反射を有することが多い。こ
れらの反射が存在するとき、第2図の直接的方法
で減衰量Aを求めたらどの程度の誤差が発生する
かを第(1)式〜第(8)式を基にして理論的に評価した
結果が第4図である。ここで、誤差がマイナスの
値を示しているのは、第2図の直接的方法では、
真の値よりも減衰量を小さく(すなわち、減衰が
大きくないように)測定してしまうことを意味し
ており、第2図の直接的方法の問題点を明確に示
している。
a 21 =I 2 /I' 2 (1-u 1 v 1 ) (1-u 2 v 2 )/1-(I
1 /I' 1 ) (I 2 /I' 2 ) v 1 v 2 (1-u 1 v 1 ) (1-u 2 v 2 )
…(5) a 12 =I 1 /I′ 1 (1−u 1 v 1 )(1−u 2 v 2 )/1−(I
1 /I' 1 ) (I 2 /I' 2 ) v 1 v 2 (1-u 1 v 1 ) (1-u 2 v 2 )
…(6) a 11 =u 1 −(I 1 /I′ 1 )(I 2 /I′ 2 )v 2 (1−u 1 v 1
) 2 (1−u 2 v 2 )/1−(I 1 /I′ 1 )(I 2 /I′ 2 )v 1 v 2
(1-u 1 v 1 ) (1-u 2 v 2 )...(7) a 22 = u 2 - (I 1 /I' 1 ) (I 2 /I' 2 ) v 1 (1-u 1 v 1
)(1−u 2 v 2 ) 2 /1−(I 1 /I′ 1 )(I 2 /I′ 2 )v 1 v 2
(1-u 1 v 1 ) (1-u 2 v 2 )...(8) The measurement method according to the present invention does not require changing the phase of the wave, so it can be applied to both coherent transmission and incoherent transmission. However, it is particularly effective for transmission systems using multimode optical fibers that currently perform incoherent transmission but for which there is no accurate measurement method for transmission parameters. Therefore, as the component to be measured 3, an optical attenuator for a multimode optical fiber will be specifically taken up. The most important characteristic of an attenuator is the amount of attenuation A=-10log a 21 (in dB) when light travels from the input surface 1 to the output surface 2, so let us consider the case where we want to accurately measure A. As already mentioned, there is no source or detector that does not reflect waves at all. In the case of multimode optical fiber transmission, the source reflects approximately 10% of the optical power and the detector reflects approximately 4% of the optical power. Furthermore, the attenuator itself often has a reflection of about 6%. When these reflections exist, the amount of error that will occur if the attenuation amount A is determined using the direct method shown in Figure 2 is theoretically evaluated based on equations (1) to (8). The results are shown in Figure 4. Here, the error shows a negative value because in the direct method shown in Figure 2,
This means that the amount of attenuation is measured to be smaller than the true value (that is, the attenuation is not large), which clearly shows the problem with the direct method shown in FIG.

コア径50μm、クラツド径125μmのグレーテツ
ド形光フアイバ伝送系において、波源4,11と
して0.85μmのレーザダイオード、半透明鏡を用
いた方向結合器5,12およびシリコンPINホト
ダオイードによる反射波指示器6,13で構成し
た反射係数測定器7,14を2台用いて、この発
明の方法で測定した結果を第5図に示す。
In a graded optical fiber transmission system with a core diameter of 50 μm and a cladding diameter of 125 μm, 0.85 μm laser diodes are used as wave sources 4 and 11, directional couplers 5 and 12 using semi-transparent mirrors, and a reflected wave indicator 6 using a silicon PIN photodiode. FIG. 5 shows the results of measurement using the method of the present invention using two reflection coefficient measuring devices 7 and 14 each having a configuration of 13.

ここで、被測定部品3は減衰量を0dBから
10dBまで連続的に可変でき、0dBにおけるそう
入損失が約1.5dBの光可変減衰器である。この光
可変減衰器は、光フアイバ端面から一度光を空間
に放射し、半透明鏡を光路に対して斜めに置いて
光を異なつた方向に反射させることで透過する光
を減衰させ、再び光フアイバ中に光を導く構造の
ものである。
Here, the part under test 3 changes the attenuation from 0 dB.
This is an optical variable attenuator that can be continuously varied up to 10dB and has an input loss of approximately 1.5dB at 0dB. This variable optical attenuator emits light from the end of an optical fiber into space, then attenuates the transmitted light by placing a semi-transparent mirror diagonally to the optical path and reflecting the light in different directions. It has a structure that guides light into the fiber.

したがつて、減衰量の小さな場合は、出力側か
らの反射光が入力側へ戻り易くなり、伝送パラメ
ータa11,a22は大きく(dB表示では小さく)な
る。一方、減衰量が大きくなると、出力側からの
反射光は入力側へ戻りにくくなるため伝送パラメ
ータa11,a22は小さくなつていくが、半透明鏡自
身が反射する光が増えるため、減衰量がある程度
大きくなると伝送パラメータa11,a22は横ばい、
あるいはやや大きく(dB表示値はやや小さく)
なることが予想される。第4図の実験結果では、
このことが裏付けられている。
Therefore, when the amount of attenuation is small, the reflected light from the output side tends to return to the input side, and the transmission parameters a 11 and a 22 become large (small in dB). On the other hand, as the amount of attenuation increases, it becomes difficult for the reflected light from the output side to return to the input side, so the transmission parameters a 11 and a 22 become smaller, but as the amount of light reflected by the semitransparent mirror increases, the amount of attenuation increases. When becomes large to a certain extent, the transmission parameters a 11 and a 22 remain unchanged,
Or slightly larger (dB display value is slightly smaller)
It is expected that In the experimental results shown in Figure 4,
This is confirmed.

また、第2図の直接的方法で求めた減衰量と、
この発明で測定した減衰量との差△Aを第6図に
示す。第6図によれば、第2図の直接方法で測定
した結果は、0.02dB〜0.035dB程度dB表示で小さ
くなつている。このことも第4図の理論的な予測
と一致している。
In addition, the attenuation amount obtained by the direct method shown in Fig. 2,
The difference ΔA from the amount of attenuation measured in this invention is shown in FIG. According to FIG. 6, the results measured by the direct method of FIG. 2 are smaller in dB by about 0.02 dB to 0.035 dB. This also agrees with the theoretical prediction shown in FIG.

なお、以上の説明は、すべて入力面を1個、出
力面を1個持つ部品に対して行つたが、2個以上
の入出力面を持つ部品に対しても、ある任意の1
個の入力面と1個の出力面を除いて他の面に無反
射の負荷を置き、このようにしてできる部品の伝
送パラメータを入出力面を変えて順次測定して行
くことにより、その伝送パラメータを決定するこ
とが可能である。
Note that all the above explanations have been made for parts that have one input surface and one output surface, but parts that have two or more input and output surfaces can also be
By placing a non-reflective load on all surfaces except one input surface and one output surface, and sequentially measuring the transmission parameters of the parts created in this way by changing the input and output surfaces, the transmission It is possible to determine the parameters.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明は、波
源、方向性結合器、および反射波指示器からなる
反射係数測定器を被測定部品の入力側と出力側と
にそれぞれ接続し、一方の波源と他方の波源を交
互にONし、そのときの両反射波指示器のみから
2個ずつ4個のデータを得、次いで被測定部品を
取り除いた状態で同様にして一方の波源と他方の
波源を交互にONし、そのときの両反射波指示器
のみから2個ずつ4個のデータを得、合計8個の
データから被測定部品の伝送パラメータを測定す
るようにしたもので、波の位相を変化させる必要
がないためコヒーレント波に対しても、インコヒ
ーレント波に対しても正確に被測定部品の伝送パ
ラメータを測定することができる。したがつて、
以下のような利点がある。
As explained in detail above, the present invention connects a reflection coefficient measuring device consisting of a wave source, a directional coupler, and a reflected wave indicator to the input side and the output side of the component to be measured, and Turn on the other wave source alternately, obtain 4 data of 2 pieces from both reflected wave indicators only, then remove the part to be measured and turn on one wave source and the other wave source alternately. is turned on, 4 pieces of data are obtained 2 pieces each from both reflected wave indicators at that time, and the transmission parameters of the part under test are measured from a total of 8 pieces of data, changing the phase of the wave. Since there is no need to do this, transmission parameters of the component under test can be accurately measured for both coherent waves and incoherent waves. Therefore,
It has the following advantages.

(1) 無反射の波源や無反射検出器が不要である。(1) No reflection-free wave source or reflection-free detector is required.

(2) 被測定部品や測定器の着脱が少ない。(2) Fewer parts to be measured and measuring instruments need to be attached and detached.

(3) 上記(1)、(2)によつて、誤差の小さい正確な測
定が可能となる。
(3) Due to (1) and (2) above, accurate measurement with small errors is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は波動伝送パラメータの説明図、第2図
a〜fは従来の波動伝送パラメータの測定手順を
示す図、第3図a,bはこの発明の一実施例を示
す波動伝送パラメータの測定手順を示す図、第4
図は従来方法において予想される誤差を示す図、
第5図はこの発明により伝送パラメータを測定し
た結果を示す図、第6図は従来方法とこの発明に
よる方法の測定結果の差を示す図である。 図中、1,2は面、3は被測定部品、4,11
は波源、5,12は方向性結合器、6,13は反
射波指示器、7,14は反射係数測定器である。
Figure 1 is an explanatory diagram of wave transmission parameters, Figures 2 a to f are diagrams showing conventional measurement procedures for wave transmission parameters, and Figures 3 a and b are measurements of wave transmission parameters showing an embodiment of the present invention. Diagram showing the procedure, No. 4
The figure shows the expected error in the conventional method.
FIG. 5 is a diagram showing the results of measuring transmission parameters according to the present invention, and FIG. 6 is a diagram showing the difference in measurement results between the conventional method and the method according to the present invention. In the figure, 1 and 2 are surfaces, 3 is the part to be measured, and 4, 11
is a wave source, 5 and 12 are directional couplers, 6 and 13 are reflected wave indicators, and 7 and 14 are reflection coefficient measuring devices.

Claims (1)

【特許請求の範囲】[Claims] 1 波源、方向性結合器および反射波指示器から
なる反射係数測定器を、波動を伝送する被測定部
品の入力側と出力側とにそれぞれ接続し、前記一
方の反射係数測定器の波源のみをONとして前記
両反射波指示器で2個のデータを得、次いで他方
の反射係数測定器の波源のみをONとして前記両
反射波指示器で2個のデータを得、次に被測定部
品を取り除き前記両方向性結合器間を接続した状
態で前記一方の波源のみONとして前記両反射波
指示器で2個のデータを得、さらに前記他方の波
源のみONとして前記両反射波指示器で2個のデ
ータを得、これら8個のデータに基づいて前記被
測定部品の伝送パラメータを測定することを特徴
とする波動伝送パラメータの測定方法。
1. A reflection coefficient measuring device consisting of a wave source, a directional coupler, and a reflected wave indicator is connected to the input side and the output side of the part to be measured that transmits waves, and only the wave source of one of the reflection coefficient measuring devices is Turn ON to obtain two data from both reflected wave indicators, then turn only the wave source of the other reflection coefficient measuring device ON to obtain two data from both reflected wave indicators, and then remove the part to be measured. With the two-way couplers connected, only one of the wave sources is turned on to obtain two data from both reflected wave indicators, and furthermore, only the other wave source is turned on and two data are obtained from both reflected wave indicators. A method for measuring a wave transmission parameter, comprising obtaining data and measuring a transmission parameter of the component to be measured based on the eight pieces of data.
JP8355684A 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter Granted JPS60227148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355684A JPS60227148A (en) 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355684A JPS60227148A (en) 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter

Publications (2)

Publication Number Publication Date
JPS60227148A JPS60227148A (en) 1985-11-12
JPH0252210B2 true JPH0252210B2 (en) 1990-11-09

Family

ID=13805781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355684A Granted JPS60227148A (en) 1984-04-25 1984-04-25 Measuring method of wave motion transmission parameter

Country Status (1)

Country Link
JP (1) JPS60227148A (en)

Also Published As

Publication number Publication date
JPS60227148A (en) 1985-11-12

Similar Documents

Publication Publication Date Title
JPH026724A (en) Method and apparatus for testing optical transmission medium
US5078489A (en) Method and apparatus for measuring optical attenuation of an optical medium
US6459478B1 (en) Optical loss measurements
JP7322960B2 (en) Optical fiber testing method and optical fiber testing apparatus
JP2002323408A (en) Device and method for testing optical fiber
EP0196168B1 (en) Fiber optic doppler anemometer
US4257707A (en) Device for measuring the attenuation of optical waves on optical transmission paths
US6449033B2 (en) Apparatus and method for measuring polarization dependent loss
JPH0726890B2 (en) Optical fiber effective refractive index measuring device
JP2666827B2 (en) Light measurement method
CN101329198B (en) Method for measuring light device echo loss
US5008545A (en) High resolution optical fault locator
CN211426800U (en) Optical fiber coherent detection device and coherent speed measurement system
JPH0252210B2 (en)
US5056915A (en) Fiber optic calibration standard apparatus
JP2001083040A (en) Optical fiber cable testing method
JP2878778B2 (en) Inundation detection method and system, and connector used therefor
EP0619657B1 (en) Optical circuit for measuring the reflection sensitivity of an optical transmission system
JP3110637U (en) Light reflecting element
US6762828B1 (en) Electromagnetic pulse train generation for testing optical fibers
JPS6251412B2 (en)
JPH06160197A (en) Pulse tester and light loss measuring method using it
JPH08334436A (en) Wavelength dispersion measuring method for optical fiber
JPS5837496B2 (en) Optical fiber length measurement method
RU2150094C1 (en) Procedure determining attenuation in assembled elementary cable section of fiber-optical communication line and device for its realization

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term