JPS60227136A - Measuring method of frequency response function - Google Patents

Measuring method of frequency response function

Info

Publication number
JPS60227136A
JPS60227136A JP8196084A JP8196084A JPS60227136A JP S60227136 A JPS60227136 A JP S60227136A JP 8196084 A JP8196084 A JP 8196084A JP 8196084 A JP8196084 A JP 8196084A JP S60227136 A JPS60227136 A JP S60227136A
Authority
JP
Japan
Prior art keywords
exciter
transient
driving coil
vibration
irregular wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8196084A
Other languages
Japanese (ja)
Inventor
Akitaka Ikeuchi
池内 皎隆
Masaaki Shirai
正明 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8196084A priority Critical patent/JPS60227136A/en
Publication of JPS60227136A publication Critical patent/JPS60227136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency

Abstract

PURPOSE:To prevent the occurrence of a truncation error and take an accurate measurement by turning on and off the driving coil of a dynamic exciter and generating a transient irregular wave, and short-circuiting the driving coil once the driving coil is turned off. CONSTITUTION:A structure 1 to be tested is excited by the exciter 2 fitted through a load meter 4 and the vibration response of the structure 1 is measured by a vibration meter 5. A signal processor 6 calculates a frequency response function from the ratio of the vibration response and exciting force. A movable part 12 is mounted on the field system 10 of the exciter 2 across a spring 11 and the driving coil 13 is provided to the movable part 12. A switch S7 such as a switching element is interposed between a signal generator 3 and the exciter 2 and a stationary irregular wave is outputted from the generator 3 to turn on and off S7, sending the transient irregular wave to the exciter 2. Namely, the contact is placed at a position P1 and returned to a position P2 after the transient irregular wave is generated for a specific time to break the contact while short- circuiting the coil 13. Thus, the occurrence of a truncation error is prevented and an accurate measurement is taken.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は構造物の周波数応答関数の開側方法に関し、
精度良く周波数応答関数を計測することを目的とする。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an open side method of a frequency response function of a structure.
The purpose is to measure frequency response functions with high accuracy.

〈従来技術〉 構造物の周波数応答関数は、供試構造物K[!+を与え
て、その応答を振動計で測定してめる。
<Prior art> The frequency response function of the structure is the same as that of the test structure K[! + and measure the response with a vibration meter.

第1図はこの加振実験の構成を示すもので、供試構造物
(1)に荷重計(41f:、介して取付けた加振機(2
)を信号発生器(3)から発生させた信号により振動さ
せ構造物(1)全加振する。そして構造物(1)に作用
する加振力を荷重計(4)で測定し、構造物(1)の振
動応答を振動計(5)で測定する。これら測定値は信号
処理装置(6)に入力され、ここで振動応答と加振力の
比を周波数の関数としてめる。これによシ周波数応答関
数が得らnる。
Figure 1 shows the configuration of this vibration experiment, in which a load cell (41f:
) is vibrated by a signal generated from a signal generator (3), and the structure (1) is entirely vibrated. Then, the excitation force acting on the structure (1) is measured with a load meter (4), and the vibration response of the structure (1) is measured with a vibration meter (5). These measured values are input to a signal processing device (6), where the ratio of vibration response to excitation force is determined as a function of frequency. This yields a frequency response function.

ここで信号発生器(3)からの加振信号は不規則波が多
く用いられている。不規則波の周波数成分は広い範囲に
分布しているため、構造物(1)を必要な範囲内の全て
の周波数で同時に加振することが可能であるためである
・しかし、この不規則波を、第2図に示すように周波数
E答関数演算のためにある有限長さTの区間をデジタル
化すると、このデータの最初の値S!と最後の値Snは
一般に異なる値となり、そのためこのデータを有限7−
りエ変換すると打切シ誤差あるいは漏れ誤差と呼ばれる
誤差が生じる欠点がある。
Here, irregular waves are often used as the excitation signal from the signal generator (3). This is because the frequency components of irregular waves are distributed over a wide range, so it is possible to simultaneously excite the structure (1) at all frequencies within the required range. However, this irregular wave As shown in Fig. 2, when an interval of finite length T is digitized for frequency E answer function calculation, the first value of this data S! and the last value Sn will generally be different values, so this data can be reduced to a finite 7-
The disadvantage of the RIE conversion is that it produces an error called a truncation error or a leakage error.

これを防ぐために、第3図に示すようにTよシ短い時間
Tだけ不規則波が発生するような過渡不規則波を使用し
、この時間T′ヲ含むようにデジタル化を行う方法が知
ら2している。
In order to prevent this, there is a known method of using a transient irregular wave in which the irregular wave is generated for a time T shorter than T, as shown in Figure 3, and digitizing it to include this time T'. 2.

しかしこのような加振信号を用いた場合、実際に構造物
を加振した詩法のような新たな問題が生ずる。即ち第4
図に示すように、加振信号aを用いて加振機を振動させ
ると実際の加振力すは構造物の特性等のために信号aと
は異った波形になるが、信号aが0になった後は加振力
すもほぼOになる。ところが、加振力が0になった後も
構造物には振動か残っておシ、振動応答Cには減衰自由
振動が観察される。
However, when such an excitation signal is used, new problems arise, such as poetry in which a structure is actually vibrated. That is, the fourth
As shown in the figure, when the vibration exciter is vibrated using the excitation signal a, the actual excitation force has a waveform different from that of the signal a due to the characteristics of the structure. After reaching 0, the excitation force becomes almost 0. However, even after the excitation force becomes 0, some vibration remains in the structure, and damped free vibration is observed in the vibration response C.

そのためこの波形をデジタル化するとデータの最初は0
であるが、データの最後は0以外の値となシ、打ち切シ
誤差が発生することになる。
Therefore, when this waveform is digitized, the beginning of the data is 0.
However, if the end of the data is a value other than 0, a truncation error will occur.

このように過渡不規則波を用いる場合でも打ち切シ誤差
を゛完全になくすことはできず、精度の高い周波数応答
関数全計測する際の障害となっていた。
Even when transient irregular waves are used in this way, the truncation error cannot be completely eliminated, and this has been an obstacle to measuring the entire frequency response function with high accuracy.

〈発明の概要〉 本発明は上記した従来技術の欠点を改善するためになさ
れたもので、加振機として動電型加振機を用い、この駆
動コイルを断続させて過渡不規則波を発生させ、駆動コ
イルを断とした時同時に該駆動コイルを短絡させること
全基本的な特徴とするものである。
<Summary of the Invention> The present invention has been made to improve the drawbacks of the prior art described above, and uses an electrodynamic vibrator as the vibrator, and generates transient irregular waves by intermittent driving coils. The basic feature is that when the drive coil is cut off, the drive coil is simultaneously short-circuited.

一般の加振実験て最も多く使用される動電型加振機の基
本的構成を第5図に示す。QOは界磁であシ、ここにバ
ネOJJを介して可動部(ハ)が装着されている。この
可動部(2)に設けられた駆動コイルα1に電流を流す
と、界磁αqからの力が作用し、可動部(12が動く構
成となっている。
Figure 5 shows the basic configuration of the electrodynamic shaker that is most often used in general vibration experiments. QO is a magnetic field, and a movable part (c) is attached thereto via a spring OJJ. When a current is passed through the drive coil α1 provided in the movable part (2), a force from the field αq acts, and the movable part (12) moves.

本発明ではこの駆動コイルα3を断続させて過渡不規則
波を発生させる。即ち第6図に示すように、信号発生器
(3)と加振機(2)との間にスイッチング素子等のス
イッチ(7)を介装し、信号発生器(3)からは定常の
不規則波を出力しておき、該スイッチ(7)を断続して
加振機(2)に過渡不規則波を発生させる。即ち接点を
plの位置にしておき一定時間T過渡不規則波を発生さ
せたら、接点をP2の位置に戻して断とし、同時に駆動
コイル(2)を短絡させる。
In the present invention, this drive coil α3 is turned on and off to generate a transient irregular wave. That is, as shown in Fig. 6, a switch (7) such as a switching element is interposed between the signal generator (3) and the vibrator (2), and a steady disturbance is transmitted from the signal generator (3). A regular wave is outputted, and the switch (7) is turned on and off to cause the exciter (2) to generate a transient irregular wave. That is, after the contact is set at the pl position and a T transient irregular wave is generated for a certain period of time, the contact is returned to the P2 position to be disconnected, and at the same time, the drive coil (2) is short-circuited.

このようにすると時間Tの間は、加振信号a、加振力b
、振動応答Cともに従来の場合と同じであるが、1時間
経過後は異なる挙動をとることになる。
In this way, during the time T, the excitation signal a, the excitation force b
, vibration response C are the same as in the conventional case, but after one hour, they behave differently.

即ち時間ゲ経過後、駆動コイル01は短絡し独立のコイ
ルとなる。一方構造物は加振力を受けなくな力自由振動
を始め、これに伴って駆動コイル(4)も振動するが、
この時界磁(lfjの作る磁場から振動を妨げるような
力を受けることにな9、構造物の自由振動は速やかに減
衰する。その結果時間Tの長さだけのデータをデジタル
化した時もデータの最初と最後は0となり、打切シ誤差
は発生しない。これを第7図に示す。
That is, after a period of time has elapsed, the drive coil 01 is short-circuited and becomes an independent coil. On the other hand, the structure no longer receives the excitation force and begins force-free vibration, and the drive coil (4) also vibrates accordingly.
At this time, the free vibration of the structure is rapidly attenuated because it receives a force that prevents vibration from the magnetic field created by the field (lfj).As a result, even when data for only the length of time T is digitized. The beginning and end of the data are 0, and no truncation error occurs.This is shown in FIG.

〈発明の効果〉 以上説明したように本発明法によれば従来の過渡不規則
波加振の欠点を改善し、打切シ誤差70発生を防ぐこと
ができるから、正確な周波数応答関数を計測できる効果
がある。
<Effects of the Invention> As explained above, according to the method of the present invention, the drawbacks of conventional transient irregular wave excitation can be improved and the occurrence of truncation error 70 can be prevented, so accurate frequency response functions can be measured. effective.

【図面の簡単な説明】[Brief explanation of drawings]

詑1図は加振実験法の貯明図、第2図乃至第7図は本発
明方法を説明するためのグラフである。 (1)・・・構造物、(2)・・・加振機、(4)・・
・荷重針、(5)・・・振動計、(6)・・・信号処理
装置、(7)・・スイッチ、01・・・駆動コイル。 特許出願人 日本鋼管株式会社 発 明 者 池 内 咬 隆 同 白 井 正 明 代理人弁理士 吉 原 省 三 1M 1 図 tgZ図 1113図 1!4c 第5図 第6図 第7図 01Ω
Figure 1 is a storage diagram of the vibration experiment method, and Figures 2 to 7 are graphs for explaining the method of the present invention. (1)...Structure, (2)...Vibrator, (4)...
- Load needle, (5)... Vibration meter, (6)... Signal processing device, (7)... Switch, 01... Drive coil. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Ryudo Ikeuchi Masaaki Shirai Patent attorney: Shozo Yoshihara 1M 1 Figure tgZ Figure 1113 Figure 1!4c Figure 5 Figure 6 Figure 7 Figure 7 01Ω

Claims (1)

【特許請求の範囲】[Claims] 被測定物を動電型加振機によシ加振し、該被測定物の応
答振動を測定して周波数応答関数を計測する方法におい
て、動電型加振機の駆動コイルを断続させて過渡不規波
を発生させ、駆動コイルを断とした時同時に該駆動コイ
ルを短絡させる仁と全特徴とする周波数応答関数の計測
方法。
In a method of exciting a measured object with an electrodynamic vibrator and measuring the response vibration of the measured object to measure a frequency response function, the drive coil of the electrodynamic vibrator is intermittent. A method for measuring a frequency response function characterized by generating a transient irregular wave and simultaneously short-circuiting the driving coil when the driving coil is disconnected.
JP8196084A 1984-04-25 1984-04-25 Measuring method of frequency response function Pending JPS60227136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8196084A JPS60227136A (en) 1984-04-25 1984-04-25 Measuring method of frequency response function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8196084A JPS60227136A (en) 1984-04-25 1984-04-25 Measuring method of frequency response function

Publications (1)

Publication Number Publication Date
JPS60227136A true JPS60227136A (en) 1985-11-12

Family

ID=13761067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8196084A Pending JPS60227136A (en) 1984-04-25 1984-04-25 Measuring method of frequency response function

Country Status (1)

Country Link
JP (1) JPS60227136A (en)

Similar Documents

Publication Publication Date Title
US2280226A (en) Flaw detecting device and measuring instrument
JP2793044B2 (en) Method and apparatus for detecting and / or monitoring a predetermined filling level in a container
JPH0711459B2 (en) Method and apparatus for monitoring tension in an elongated flexible member
White et al. Practical application of the rapid frequency sweep technique for structural frequency response measurement
US2447863A (en) Vibration indicating apparatus
JPH10213428A (en) Length measuring device using magnetostriction line
US2474693A (en) Magnetic field responsive device
JPS60227136A (en) Measuring method of frequency response function
JPH0194258A (en) Diagnostic apparatus
JPS59187132A (en) Vibroisolation controlling device
SU1227982A1 (en) Arrangement for testing physical and mechanical properties of materials
JPH07306030A (en) Displacement detector
JPS6086427A (en) Vibration type load measuring device
Bunbury The design of apparatus for the measurement of Mössbauer spectra
SU785740A1 (en) Apparatus for monitoring quality of resilient elements by free oscillation method
JP2001153639A (en) Length measuring device using magnetostriction line
RU2042942C1 (en) Electroacoustic hardness gauge
SU564548A1 (en) String balancing displacement pick-up
JPS606770Y2 (en) speed detection device
SU1132220A1 (en) Ultrasonic immersion-type flaw detector
SU1013735A1 (en) Displacement to electric signal convertion device
SU600434A1 (en) Gaseous medium thermal-physical parameter monitoring device
SU1244559A1 (en) Electroacoustical hardness gauge
SU894554A2 (en) Monitoring wave-guide ultrasound receiver
SU822385A1 (en) Device for testing electroacoustic transducers