JPS60227011A - Thrust bearing - Google Patents

Thrust bearing

Info

Publication number
JPS60227011A
JPS60227011A JP8013184A JP8013184A JPS60227011A JP S60227011 A JPS60227011 A JP S60227011A JP 8013184 A JP8013184 A JP 8013184A JP 8013184 A JP8013184 A JP 8013184A JP S60227011 A JPS60227011 A JP S60227011A
Authority
JP
Japan
Prior art keywords
collar
thrust
thrust collar
bearing
spiral groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8013184A
Other languages
Japanese (ja)
Other versions
JPS6235527B2 (en
Inventor
Shotaro Mizobuchi
庄太郎 溝渕
Katsumi Sasaki
勝美 佐々木
Yoshiichi Kimura
芳一 木村
Kazushi Kasahara
一志 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8013184A priority Critical patent/JPS60227011A/en
Publication of JPS60227011A publication Critical patent/JPS60227011A/en
Publication of JPS6235527B2 publication Critical patent/JPS6235527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/105Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one bearing surface providing angular contact, e.g. conical or spherical bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/048Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for axial load mainly

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To enable the captioned thrust bearing to bear impact load by interposing thrust collars between a rotary collar and a fixed receiver, said thrust collar having a spiral groove causing dynamic pressure effect on the face and back of the collar by unidirectional rotation of the spiral groove. CONSTITUTION:A thrust collar 13 is interposed between a rotary collar 11 keyed on a shaft 1 and a fixed receiver 12 supported on a spherical surface 5 of a fixed shaft 4, and one surface 13a of the thrust collar 13 is formed into a smooth one while the other surface 13b into a spherical one having a large radius R of curvature. These surfaces are accomodated in a bearing chamber 14 filled with a lubricating fluid therein. The thrust collar 13 has a spiral groove 15a in the surface 13a thereof such that a fluid is guided from a periphery of the thrust collar 13 to a pocket 16a located on the center of the bearing along the groove 15 owing to the rotation of the shaft 1 and the rotary collar 11 in the arrow direction and thereby it produces dynamic pressure effect between the rotary collar 11 and the thrust collar 13.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水中ポンプや水中モータ、その他一般の推力
軸受に使用される、らせん形溝を備えた動圧型スラスト
軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrodynamic thrust bearing with a helical groove used in submersible pumps, submersible motors, and other general thrust bearings.

(従来の技術) 従来のスパイラル溝付スラスト軸受は、回転軸を支持す
る固定支持面に、一方向のみのスパイラル溝を切シ、相
対回転するこれら二4面間に流体を介在させ、スパイラ
ル溝に軸の回転に伴う動圧を発生させて軸推力を支持さ
せていた。(例えば特公昭41−12121号公報参照
) ところが、このようなスパイラル溝付スラスト軸受は、
軸受表面にのみスパイラル溝を設けていたため、第4図
に示すようなテイルテイングパツド方式の軸受と比較し
て、衝撃的な荷重や荷重の変動に対して弱いことがいわ
れていた。なお、第4図では、回転軸1と一体に回転す
る上部支持体2にディスク3を固定し、該ディスク3に
対向して、固定軸4に対して球面5で支持され回転しな
いようにピン6に係合された下部支持体7の上部に、パ
ッド8を回動しないように取シ付けて構成されている。
(Prior art) A conventional spiral grooved thrust bearing involves cutting a spiral groove in only one direction on a fixed support surface that supports a rotating shaft, and interposing a fluid between these 24 relatively rotating surfaces to form a spiral groove. The shaft thrust was supported by generating dynamic pressure as the shaft rotated. (For example, see Japanese Patent Publication No. 41-12121.) However, such a spiral grooved thrust bearing,
Because spiral grooves were provided only on the bearing surface, it was said to be more vulnerable to impact loads and load fluctuations than the tailing pad type bearing shown in Figure 4. In FIG. 4, a disk 3 is fixed to an upper support 2 that rotates together with the rotating shaft 1, and a pin is mounted opposite the disk 3 so that it is supported by a spherical surface 5 with respect to the fixed shaft 4 and does not rotate. A pad 8 is attached to the upper part of a lower support 7 engaged with a pad 6 so as not to rotate.

また、前記従来のスパイラル溝付スラスト軸受では、高
速回転になると、スパイラル溝を通ってポンプ・イン(
流入)される流体が乱流又はキャビテーションを生じ、
高速回転しても本来の値まで動圧が高められない場合が
あるなどの欠点があった。
In addition, in the conventional spiral grooved thrust bearing, when the rotation becomes high speed, the pump-in (
The inflowing fluid causes turbulence or cavitation,
There were drawbacks such as the dynamic pressure sometimes not being raised to the original value even when rotating at high speed.

(発明が解決しようとする問題点) 本発明は、上記従来技術の欠点を除去することができ、
スパイラル溝付動圧型スラスト軸受に加えられる衝撃荷
重や荷重の変動にもよく耐え、また高速回転してもスパ
イラル溝を通ってポンプ・インされる流体に乱流やキャ
ビテーションを生じさせないようにすることにある。
(Problems to be Solved by the Invention) The present invention can eliminate the drawbacks of the above-mentioned prior art,
To withstand shock loads and load fluctuations applied to a spiral grooved hydrodynamic thrust bearing, and to prevent turbulence or cavitation in the fluid pumped in through the spiral groove even when rotating at high speeds. It is in.

(問題点を解決するための手段) 本発明は、表面及び裏面に、一方向の回転によって動圧
効果を生じさせるスパイラル溝をそれぞれ設けたスラス
トカラー、又は片面のスパイラル溝形状において外周に
ランド部を設は且つ最高圧力を示す中央のポケット部に
表裏両面を連通ずる貫通孔をあけたスラストカラーを、
回転軸に取付けられた回転カラーと固定費との間に介在
させ、該回転軸の回転によってスラストカラーも同時に
該回転軸の回転数以下で回転させることを特徴としてい
る。
(Means for Solving the Problems) The present invention provides a thrust collar in which spiral grooves are provided on the front and back surfaces to generate a dynamic pressure effect by rotation in one direction, or a land portion on the outer periphery in a spiral groove shape on one side. and a thrust collar with a through hole that connects both the front and back sides in the central pocket that shows the highest pressure.
It is characterized in that it is interposed between a rotating collar attached to a rotating shaft and a fixed collar, and as the rotating shaft rotates, the thrust collar is simultaneously rotated at a rotation speed less than the rotational speed of the rotating shaft.

(作用) 上記のような構成によシ、回転軸によって回転カラーを
回転させると、該回転カラーに接するスラストカラーの
スパイラル溝に動圧効果が生じ、中央のポケット部に流
体の高圧部が形成されると共に、回転カラーとスラスト
カラー間の流体摩擦力等によって該スラストカラー自身
も同方向に回転しようとする。この回転に伴い、該スラ
ストカラーの裏面に形成されたスパイラル溝によって固
定費との間にも同様に動圧効果が生じ、該スラストカラ
ーの表裏両面に形成された動圧によって、軸推力は有効
に支持される。
(Function) With the above configuration, when the rotating collar is rotated by the rotating shaft, a dynamic pressure effect is generated in the spiral groove of the thrust collar that is in contact with the rotating collar, and a high pressure part of the fluid is formed in the central pocket. At the same time, the thrust collar itself also tries to rotate in the same direction due to the fluid friction force between the rotating collar and the thrust collar. Along with this rotation, the spiral groove formed on the back surface of the thrust collar similarly generates a dynamic pressure effect between the fixed cost and the dynamic pressure formed on both the front and back surfaces of the thrust collar, which makes the axial thrust effective. Supported by

そしてこの際、上記スラストカラー自身の回転は、スラ
ストカラーが1枚や場合、回転カラーの約半分の回転数
で回転するようになる。
At this time, when there is only one thrust collar, the thrust collar itself rotates at about half the number of rotations of the rotating collar.

また、裏面が球面座の場合は、接触面積が大きくなるた
め平滑の表面のみで回転する。これによって表面のポケ
ット部に動圧が発生する。この流体圧力は貫通孔を通じ
て、裏面のポケット部にも圧力がもたらされ、球面側が
浮上し、摩擦抵抗が小さくなシ、裏面でも相対運動を生
じ、このスラストカラーが回転するようになる。
Furthermore, if the back surface is a spherical seat, the contact area is large, so rotation occurs only on the smooth surface. This generates dynamic pressure in the pockets on the surface. This fluid pressure is also applied to the pocket on the back surface through the through hole, causing the spherical side to float, causing relative movement on the back surface with low frictional resistance, causing the thrust collar to rotate.

このようにして、スラストカラーの表裏両面に流体膜が
形成されるので、クッション効果が生じ、またスラスト
カラーの回転数(即ち軸受回転数〕が部分されるので、
スパイラル溝を通ってポンプ・インされる流入速度がそ
れだけ低減される。
In this way, a fluid film is formed on both the front and back surfaces of the thrust collar, creating a cushioning effect, and the rotation speed of the thrust collar (i.e., the bearing rotation speed) is reduced.
The rate of inflow pumped in through the spiral groove is reduced accordingly.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の一実施例を示す裏面が球面状としたスラス
トカラーを1枚用いた場合の縦断面図、第2図は第1図
A−A矢視図でスラストカラーの平面図であシ、第3図
に裏面のスパイラル溝の形状を示した。図において、軸
1にキー止めされた回転力2−11と、固定軸4の球面
5に支持された固定費12との間に、1枚のスラストカ
ラー13が介在され、該スラストカラー130一方の面
(表面)13aは平滑に、また他方の面(裏面)16b
は、大きな曲率半径Rで加工した球面状に形成され、こ
れらは、内部に潤滑液を充満した軸受室14に収納され
ている。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a longitudinal cross-sectional view of a single thrust collar with a spherical back surface showing an embodiment of the present invention, and FIG. 2 is a plan view of the thrust collar taken along the line A-A in FIG. Figure 3 shows the shape of the spiral groove on the back side. In the figure, one thrust collar 13 is interposed between the rotational force 2-11 keyed to the shaft 1 and the fixed part 12 supported on the spherical surface 5 of the fixed shaft 4, and the thrust collar 130 The surface (front surface) 13a is smooth, and the other surface (back surface) 16b
are formed into a spherical shape machined with a large radius of curvature R, and are housed in a bearing chamber 14 filled with lubricating fluid.

上記スラストカラー13は、第2図に示すように、その
表面13aにスパイラル溝15a(図で黒い部分)が、
軸1と回転カラー11の矢印方向の回転によって流体が
スラストカラー13の周辺部より溝15に沿って中心の
ポケット部16a(図で黒い部分で凹部を形成している
。)へ誘導され、回転カラー11とスラストカラー13
との間で動圧効果を生じるような向きに形成されている
As shown in FIG. 2, the thrust collar 13 has a spiral groove 15a (black part in the figure) on its surface 13a.
By the rotation of the shaft 1 and the rotating collar 11 in the direction of the arrow, fluid is guided from the periphery of the thrust collar 13 along the groove 15 to the central pocket 16a (the black part in the figure forms a recess), and the rotation occurs. Collar 11 and Thrust Collar 13
It is oriented in such a way that a dynamic pressure effect is produced between the two.

一方、該スラストカラー16の裏面13bのスパイラル
溝15bは、第3図に示されており、スラストカラー1
3自身が回転カラー11との流体摩擦等により、回転軸
10回転と同方向に回転するのに伴い、周辺部より溝1
5 b < Gってポケット部16bへ流体を流入する
向きに形成されている。この実施例の場合、上方からみ
てスラストカラー13が回転軸1と同じ反時計方向(下
方からみれは時針方向)に回転しようとするので、裏面
13bのスパイラル溝15bの向きは、裏面からみた場
合、第2図に示された表面15aのスパイラル溝15a
と同じ向きに形成されている。なお、図中、1Bは外周
に残されたランド部を示す。また、スラストカラーの表
裏両面の中心部に形成されたポケット部L6a、 16
bを貫通する10μm〜2111の孔17が、最高圧力
を示す中心部に穿設されているので、スラストカラーの
両面の圧力はバランスされている。
On the other hand, the spiral groove 15b on the back surface 13b of the thrust collar 16 is shown in FIG.
As 3 itself rotates in the same direction as the rotating shaft 10 rotations due to fluid friction with the rotating collar 11, the groove 1 rotates from the peripheral part.
5b<G, the pocket portion 16b is formed in the direction in which the fluid flows into the pocket portion 16b. In the case of this embodiment, since the thrust collar 13 tries to rotate in the same counterclockwise direction as the rotating shaft 1 when viewed from above (the direction of the hour hand when viewed from below), the direction of the spiral groove 15b on the back surface 13b is determined when viewed from the back surface. , a spiral groove 15a on the surface 15a shown in FIG.
are formed in the same direction. In addition, in the figure, 1B indicates a land portion left on the outer periphery. In addition, pocket portions L6a and 16 are formed at the center of both the front and back sides of the thrust collar.
Since the hole 17 of 10 μm to 2111 mm passing through b is drilled in the center where the highest pressure is exhibited, the pressure on both sides of the thrust collar is balanced.

そして該スラストカラーは、回転初期には、表面の平滑
面において運動が生じ→動圧流体→ポケット部の貫通孔
17を通って裏面のポケット部16bに圧力をもたらす
(ランド部18がシールとなって圧力を漏らさない。)
1球面の裏側が浮上し→スラストカラー13が回転する
ようになる。
At the beginning of rotation, the thrust collar generates movement on the smooth surface → dynamic pressure fluid → brings pressure to the pocket portion 16b on the back side through the through hole 17 in the pocket portion (the land portion 18 acts as a seal). (Do not leak pressure.)
The back side of the first spherical surface rises and the thrust collar 13 begins to rotate.

この実施例では、スラストカラー13には、耐摩耗性、
耐食性、耐熱性に優れたSiC(炭化珪素)が使用され
、また、回転カラー11及び固定費12には、8%カー
ボ/を含有した高鉛青銅が使用される。なお、上記スラ
ストカラーを構成するセラミックス材は、耐食性に優れ
ている反面、加工性が悪いため、その表面に3〜10μ
m(ミクロンメータ)の極めて浅いスパイラル状の溝加
工を施すことは容易ではないが、本発明では、所定形状
のスパイラル状の樹脂マスクで遮蔽した上、微粉のアル
ミナ質研削材を上記樹脂マスク上に噴射するショツトブ
ラスト加工法により、極めて短時間にスパイラル溝を形
成する。なお、スパイラル状溝の形成方法については、
先願に係る特願昭58−1215157号明細書に記載
されている。
In this embodiment, the thrust collar 13 has wear resistance,
SiC (silicon carbide) with excellent corrosion resistance and heat resistance is used, and high lead bronze containing 8% carbide is used for the rotating collar 11 and fixed cost 12. Although the ceramic material that constitutes the thrust collar has excellent corrosion resistance, it has poor workability, so it
Although it is not easy to process extremely shallow spiral grooves of m (micron meters), in the present invention, after shielding with a spiral resin mask of a predetermined shape, fine alumina abrasive material is applied onto the resin mask. Spiral grooves can be formed in an extremely short time using the shot blasting method. Regarding the method of forming spiral grooves,
It is described in the specification of Japanese Patent Application No. 58-1215157 related to the earlier application.

この実施例によれば、回転軸1に荷重負荷をかけた状態
で矢印方向に回転させると、スラストカラー13自身も
回転軸の回転数以下で回転し、その表裏両面のスパイラ
ル溝15a、15bの周辺部より潤滑油をポケット部1
6a、16bへ向って強制移動させるのに伴い、動圧を
発生し、対向両面間に所要の厚さの液膜が形成さ九、推
力荷重を支える。
According to this embodiment, when the rotating shaft 1 is rotated in the direction of the arrow with a load applied to it, the thrust collar 13 itself also rotates at the rotation speed of the rotating shaft or less, and the spiral grooves 15a and 15b on both the front and back surfaces of the thrust collar 13 rotate. Apply lubricating oil from the periphery to pocket part 1
6a and 16b, dynamic pressure is generated, and a liquid film of a required thickness is formed between the opposing surfaces to support the thrust load.

上記のように、両面に同じ向きのスパイラル溝を設けた
スラストカラーを用いることで軸受回転数を2分するこ
とが可能になったので、このスラストカシ−を複数枚重
ねることによシ、種々の適切な回転数(なお、潤滑液に
よって流体圧力値は変化する〕を選ぶことができる。従
って、高速回転に伴い、スパイラル溝を通ってポンプ・
インされる流体が乱流やキャビテーションを生じるのを
防ぐことができる。また衝撃に対しても、スラストカラ
ーの両面に形成された液膜によるクッション効果が有効
に作用して衝撃変動荷重によく耐え、しかも前記のよう
に高速回転で安定な軸受性が得られる。
As mentioned above, by using a thrust collar with spiral grooves in the same direction on both sides, it has become possible to divide the bearing rotation speed into two, so by stacking multiple thrust collars, various You can select an appropriate rotation speed (the fluid pressure value changes depending on the lubricant). Therefore, as the pump rotates at high speed, it passes through the spiral groove.
It is possible to prevent the incoming fluid from causing turbulence or cavitation. In addition, the cushioning effect of the liquid film formed on both surfaces of the thrust collar effectively acts against impact, so that it can withstand the impact fluctuation load well, and as mentioned above, stable bearing performance can be obtained at high speed rotation.

第5図は、スラスト軸受試験装置の概要図であって、供
試軸受21A、21Bの一方の軸受21Aは、可変速モ
ニタ(10〜5000 rpm ) 24よシプーリ2
5を経て駆動される回転軸23の端に取シ付けられ、他
方の軸受21Bは、油圧シリンダ(〜10000 kg
f) 28、ローFセル30を経て推力軸27の端部に
取付けられる。図中、22は軸受、26はトルクメータ
、29は油圧ボ/ブを示す。
FIG. 5 is a schematic diagram of a thrust bearing testing device, in which one of the test bearings 21A and 21B is connected to a variable speed monitor (10 to 5000 rpm) 24 and a cipley 2.
The other bearing 21B is attached to the end of the rotating shaft 23 driven through a hydraulic cylinder (~10000 kg
f) 28, attached to the end of the thrust shaft 27 via the low F cell 30; In the figure, 22 is a bearing, 26 is a torque meter, and 29 is a hydraulic valve.

本発明のスラスト軸受を、上記第5図のスラスト軸受試
験装置で、部材21Aと21Bを回転カラーと固定費と
し、その間にスラストカラーを介在させてテストした結
果を例示する。
The results of testing the thrust bearing of the present invention using the thrust bearing testing apparatus shown in FIG. 5 above, with the members 21A and 21B used as rotating collars and fixed parts, and with the thrust collar interposed between them, will be exemplified.

106C水道水中で、回転カラー21Aが600Orp
mのとき、スラストカラーは約半分の回転数で回転して
いることが確認された。このときのスラスト荷重は10
000 rgfである。このことは、ポケット中心部の
貫通孔17によって表面、裏面ともに圧力がバランスし
たため、同程度の回転数となったものである。また、固
定費21B側のカラー形状が球面状になっておシ、自在
受の役目を十分果すことが判明した。
Rotating collar 21A is 600Orp in 106C tap water
It was confirmed that the thrust collar was rotating at about half the rotation speed when the rotation speed was m. The thrust load at this time is 10
000 rgf. This is because the pressure on both the front and back surfaces was balanced by the through hole 17 in the center of the pocket, resulting in approximately the same number of rotations. Furthermore, it has been found that the collar shape on the fixed charge 21B side is spherical and can sufficiently serve as a universal support.

なお、上記実施例において、スラストカラーの形状が表
面を平滑K、裏面を球面状にそれぞれ形成したものにつ
いて説明したが、このような形状のものに限らないこと
は勿論でIJ)、表裏両面とも平滑にした場合は、貫通
孔を必要としないで、どちらの面でも相対運転を生じ、
スジストカラーは表裏両面に液膜を形成して回転する。
In the above embodiments, the shape of the thrust collar is described as having a smooth front surface and a spherical back surface, but it is of course not limited to these shapes. If it is made smooth, there is no need for through holes and there is relative operation on either side,
The striped collar rotates while forming a liquid film on both the front and back sides.

また、第1図において回転カラー及び固定費が潤滑液を
充満した軸受室に収納したものを図示したが、これも−
使用例に過ぎないことは勿論である。
In addition, in Fig. 1, the rotating collar and fixed cost are shown housed in a bearing chamber filled with lubricating fluid, but this is also -
Of course, this is just a usage example.

(発明の効果) 以上説明したように、本発明によれば、スラスト力2−
の表裏両面に液膜が形成されるので、スパイラル溝付動
圧軸受が従来のテイルテイングパンド方式の軸受よシ弱
いとされた衝撃的な荷重にも十分耐えることができ、ス
パイラル軸受本来の特性である流体摩擦を利用して損失
動力を軽減し、テイルテイングパッド軸受に比べてスラ
スト荷重5000kgfのとき約115以下とし、また
負荷能力を向上して、テイルテイングパッド軸受に比べ
て5倍以上としく潤滑液50チブロビレングリコール、
φ86のi受径で従来軸受が2000 rgfのものが
、本発明軸受け10000 rgf)、高温環境にもよ
く耐え、テイルテイングパッド軸受では1000C以下
であったものが、本発明では200’C以上にも耐える
などの特徴を維持すると共に、本発明ではスラストカラ
ーによって軸受回転数が2分されるので、高速回転仕様
を満足し、貰た多少の寸法公差や組立の不備(ミス・ア
ライメント)があっても、底部を自在受に形成すること
によって安定な軸受性能を有することができる。
(Effects of the Invention) As explained above, according to the present invention, the thrust force 2-
Because a liquid film is formed on both the front and back sides of the spiral grooved hydrodynamic bearing, it is able to withstand shock loads that are considered to be weaker than conventional tailed pand type bearings, and the spiral bearing's original characteristics By using fluid friction, power loss is reduced to approximately 115 or less at a thrust load of 5000 kgf compared to a tailing pad bearing, and the load capacity is improved to more than 5 times that of a tailing pad bearing. Shikaku lubricant 50 thibrobylene glycol,
Conventional bearings with an i-bearing diameter of φ86 (2000 rgf) have a bearing diameter of 10000 rgf (inventive bearings), and can withstand high-temperature environments well.While tailing pad bearings have a temperature of 1000C or less, the present invention can withstand temperatures of 200'C or more. In addition, in this invention, the thrust collar divides the rotational speed of the bearing into two, so it satisfies the high-speed rotational specifications and eliminates any dimensional tolerances or assembly defects (misalignment). However, by forming the bottom part into a swivel bearing, stable bearing performance can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すスラスト軸受の縦断面
図、第2図は第1図A−A矢視図、第3図は裏面を球面
状としたときのスパイラル溝形状を示す図、第4図は従
来のテイルテイングパツド型軸受の縦断面図、第5図は
スラスト軸受試験装置の概要図である。 1−m−回転軸、11−−一回転カラー。 12−一一固定受+ 15a * 15b−−−スパイ
ラル溝。 ISa、 16b−−−ポケット部、17−−−貫通孔
。 1日−m−ランド部。
Fig. 1 is a longitudinal cross-sectional view of a thrust bearing showing an embodiment of the present invention, Fig. 2 is a view taken along the line A-A in Fig. 1, and Fig. 3 shows a spiral groove shape when the back surface is spherical. 4 are longitudinal sectional views of a conventional tailing pad type bearing, and FIG. 5 is a schematic diagram of a thrust bearing testing device. 1-m-rotation axis, 11--one rotation collar. 12-11 Fixed receiver + 15a * 15b---Spiral groove. ISa, 16b---pocket portion, 17---through hole. 1st-m-land club.

Claims (1)

【特許請求の範囲】 1 表面及び裏面に、一方向の回転によって動圧効果を
生じさせるスパイラル溝をそれぞれ設けたス2ストカ2
−を、回転軸に取付けられた回転カラーと固定費との間
に介在させ、該回転軸の回転によってスラストカラーも
同時に該回転軸の回転数以下で回転させることを特徴と
するスラスト軸受。 2 前記スラストカラーを、一方の面を平滑とし他方の
面を球面状とし、球面側のスパイラル溝は外周にランド
部を残し、表面と裏面を連通する貫通孔を最高圧力を示
すボクット部に設けた特許請求の範囲第1項記載のスラ
スト軸受。
[Claims] 1. A stator 2 having spiral grooves provided on the front and back surfaces thereof to produce a dynamic pressure effect by rotation in one direction.
- is interposed between a rotating collar attached to a rotating shaft and a fixed base, and as the rotating shaft rotates, the thrust collar is simultaneously rotated at a rotation speed equal to or lower than the rotating speed of the rotating shaft. 2 The thrust collar has one surface smooth and the other surface spherical, and the spiral groove on the spherical side leaves a land portion on the outer periphery, and a through hole communicating the front surface and the back surface is provided in the box part showing the highest pressure. A thrust bearing according to claim 1.
JP8013184A 1984-04-23 1984-04-23 Thrust bearing Granted JPS60227011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8013184A JPS60227011A (en) 1984-04-23 1984-04-23 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8013184A JPS60227011A (en) 1984-04-23 1984-04-23 Thrust bearing

Publications (2)

Publication Number Publication Date
JPS60227011A true JPS60227011A (en) 1985-11-12
JPS6235527B2 JPS6235527B2 (en) 1987-08-03

Family

ID=13709673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8013184A Granted JPS60227011A (en) 1984-04-23 1984-04-23 Thrust bearing

Country Status (1)

Country Link
JP (1) JPS60227011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171523A (en) * 1986-01-24 1987-07-28 Ebara Res Co Ltd Thrust bearing
JPS62194021A (en) * 1986-02-17 1987-08-26 Ebara Res Co Ltd Spiral group bearing
US6725657B1 (en) 1999-11-10 2004-04-27 Ebara Corporation Power transmission device
US9790950B2 (en) 2012-06-29 2017-10-17 Ihi Corporation Turbocharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522447A (en) * 1975-06-24 1977-01-10 Yoshimi Matsuoka Wide field lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522447A (en) * 1975-06-24 1977-01-10 Yoshimi Matsuoka Wide field lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171523A (en) * 1986-01-24 1987-07-28 Ebara Res Co Ltd Thrust bearing
JPS62194021A (en) * 1986-02-17 1987-08-26 Ebara Res Co Ltd Spiral group bearing
US6725657B1 (en) 1999-11-10 2004-04-27 Ebara Corporation Power transmission device
US9790950B2 (en) 2012-06-29 2017-10-17 Ihi Corporation Turbocharger
US20170342998A1 (en) * 2012-06-29 2017-11-30 Ihi Corporation Turbocharger
US10598184B2 (en) 2012-06-29 2020-03-24 Ihi Corporation Turbocharger

Also Published As

Publication number Publication date
JPS6235527B2 (en) 1987-08-03

Similar Documents

Publication Publication Date Title
EP0327638B1 (en) Hydrodynamic bearing and a method for introducing lubricant into the bearing
US5980114A (en) Thrust bearing
WO2019139107A1 (en) Sliding component
US5427456A (en) Fluid bearing with asymmetrical groove pattern
KR960000987B1 (en) Thrust bearing
Garg et al. On the design and development of hybrid journal bearings: a review
WO2015175341A1 (en) Five-axial groove cylindrical journal bearing with pressure dams for bi-directional rotation
JPH0240881B2 (en)
KR102664813B1 (en) sliding parts
Heshmat et al. Performance of starved journal bearings with oil ring lubrication
US4810105A (en) Bearing sleeves
US3841720A (en) Thrust bearing assembly
JPS60227011A (en) Thrust bearing
JPS5877918A (en) Plain bearing
CN207178686U (en) Zero leakage pumping formula mechanical seal
JPH09177682A (en) Rotating piston machine equipped with control unit for fluid pressure support, and the control unit
RU2187727C2 (en) Pulse end seal
JPH03163212A (en) Dynamic pressure type fluid bearing device
JPS62288719A (en) Dynamic pressure thrust bearing
JPS6333027B2 (en)
JPH0467045B2 (en)
JP3301670B2 (en) Thrust bearing
CN210318187U (en) Hydrostatic bearing for primary loop main pump of lead-bismuth reactor
RU2080503C1 (en) Shaft stuffing arrangement
Ettles et al. The application of double conical journal bearings in high speed centrifugal pumps—parts 1 and 2