JPS6022697A - Device for flowing down glass - Google Patents
Device for flowing down glassInfo
- Publication number
- JPS6022697A JPS6022697A JP13057183A JP13057183A JPS6022697A JP S6022697 A JPS6022697 A JP S6022697A JP 13057183 A JP13057183 A JP 13057183A JP 13057183 A JP13057183 A JP 13057183A JP S6022697 A JPS6022697 A JP S6022697A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- heating coil
- nozzle
- melting furnace
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Glass Compositions (AREA)
- Window Of Vehicle (AREA)
- Details Of Aerials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は例えば原子力発電所等の高レベル廃液を硝子固
化して処理する為硝子原料とともに硝子溶融炉内に導入
して溶融し流下させる硝子流下装置に関する。 −
〔発明の技術的背景〕
例えば原子力発電所等の高レベル廃液は硝子と共に溶融
されその後貯蔵容器内に封入されて貯蔵処分される。以
下その工程について説明する。まず高レベル廃液を硝子
溶融炉内にガラス原料とともに導入し、溶融する。この
溶融された硝子は、ノズルを介して貯蔵容器内に高温で
注入され処理される。この注入方法としては抵抗加熱方
式のノズルを使用する方法と、高周波加熱方式のノズル
を使用する方法とがある。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a glass flow-down process in which high-level waste liquid from nuclear power plants, for example, is introduced into a glass melting furnace together with glass raw materials, melted, and flowed down in order to be treated by solidifying it into glass. Regarding equipment. - [Technical Background of the Invention] High-level waste liquid from nuclear power plants, for example, is melted together with glass and then sealed in a storage container and stored and disposed of. The process will be explained below. First, high-level waste liquid is introduced into a glass melting furnace together with glass raw materials and melted. This molten glass is injected through a nozzle into a storage container at high temperature for processing. This injection method includes a method using a resistance heating type nozzle and a method using a high frequency heating type nozzle.
上述した抵抗加熱方式の場合は加熱効率を考慮するとノ
ズルの肉厚を数箇以上にすることはむずかしくその為寿
命が短く、またノズルを加熱する為にノズルに電源を接
続する必要があル万−硝子が漏洩した場合には短絡する
恐れがあシ、さらに接続線が腐食するといった問題もあ
る。これに対して高周波加熱力“式の場合にはノズルの
肉厚を2〜3゛副程度まで厚くすることができ、寿命は
長く々る。しかしながらこの高周液加熱方式およ゛び前
記抵抗加熱方式の場合共に貯蔵−容器に硝子を流下させ
た後硝子の有する粘性の為いわゆる糸引き現象が生じて
しまう。前述したように硝子内には高レベル排液が含ま
れているので、この糸引きした硝子も処理しなければな
らない。通常このような糸引き現象に対しては別にノズ
ルを設けて、このノズルから空気を送〕込み冷却してシ
ェアカット方式によシ硝子を切断して処理しているがシ
ェアの消耗がしいことではなかった。In the case of the above-mentioned resistance heating method, considering heating efficiency, it is difficult to increase the thickness of the nozzle to more than a few points, which results in a short service life, and it is necessary to connect a power source to the nozzle in order to heat the nozzle. - If the glass leaks, there is a risk of a short circuit, and there is also the problem of corrosion of the connecting wires. On the other hand, in the case of high-frequency heating power type, the nozzle thickness can be increased to about 2 to 3 mm, and the life is long.However, this high-frequency liquid heating method and the above-mentioned resistance In both heating methods, a so-called stringy phenomenon occurs due to the viscosity of the glass after the glass is allowed to flow down into the storage container.As mentioned above, the glass contains a high level of waste liquid. Stringy glass must also be treated.Normally, a separate nozzle is installed to deal with this stringy phenomenon, air is sent through this nozzle to cool the glass, and then the shear cut method is used to cut the glass. Although it is being processed, it is not a big drain on the share.
本発明の目的とするところは、硝子の糸引き現象を防止
し、かつ装置としての安全性および健全性を向上させる
ことが可能な硝子流下装置を提供するととにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a glass flowing device that can prevent glass stringing and improve the safety and soundness of the device.
すなわち不発明忙よる硝子流下装置は、硝子溶融炉と、
この硝子溶融炉に接続され硝子溶融炉内の溶融硝子を流
下させる流下ノズルと、この流下ノズルの上部外周に設
けられた上側加熱コイルと、流下ノズルの下部外周に設
けられた下側加熱コイルとを具備した構成である。In other words, the uninvented glass flow device is a glass melting furnace,
A downstream nozzle that is connected to the glass melting furnace and causes the molten glass in the glass melting furnace to flow down, an upper heating coil provided on the upper outer periphery of the downstream nozzle, and a lower heating coil provided on the lower outer periphery of the downstream nozzle. The configuration is equipped with the following.
すなわち溶融硝子を流下させた後下側加熱コイルによシ
流下ノズルの下部を再加熱して糸引きしている硝子を加
熱溶融して流下させる構成である。That is, after the molten glass is made to flow down, the lower part of the flow down nozzle is reheated by the lower heating coil to heat and melt the stringy glass and flow it down.
したがって硝子の糸引きをなくすことができ、従来シェ
アカット方式等によシ機械的に切断していた操作が不要
となシ、構成の簡略下およびコストの低減を図ることが
できる。Therefore, it is possible to eliminate the stringiness of the glass, eliminate the need for the conventional mechanical cutting operation using the shear cut method, etc., and simplify the structure and reduce costs.
以下第1図ないし第3図を参照して本発明の一実施例を
説明する。第1図は本実施例による硝子流下装置の概略
構成を示す図である。図中符号1は硝子溶融炉を示す。An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a schematic configuration of a glass flowing device according to this embodiment. Reference numeral 1 in the figure indicates a glass melting furnace.
この硝子溶融炉1内に高レベル排液と共に硝子原料を導
入し約1100℃で加熱し溶融する。この硝子溶融炉1
の底壁IAには流下ノズル2が接続されている。この流
下ノズル2の上部外周には上側加熱コイル3が取付けら
れておシ一方下部外周には−下側加熱コイル4が取付け
られている。これら上側加熱コイル3および下側加熱コ
イル4はコントローラ5を介して高周波発振器6に接続
されている。また上記上側加熱コイル3および下側加熱
コイル4位置の流下ノズル2外周には熱電対7.8がそ
れぞれ設けられている。すカわち熱電対7,8および上
記コントローラ5によシ上側加熱コイル3>よび下側加
熱コイル4の温度を調節しながら加熱し硝子を流下させ
る構成である。Glass raw materials are introduced into the glass melting furnace 1 together with high-level waste liquid, and are heated and melted at about 1100°C. This glass melting furnace 1
A downstream nozzle 2 is connected to the bottom wall IA. An upper heating coil 3 is attached to the upper outer periphery of the downstream nozzle 2, while a lower heating coil 4 is attached to the lower outer periphery. These upper heating coil 3 and lower heating coil 4 are connected to a high frequency oscillator 6 via a controller 5. Further, thermocouples 7.8 are provided on the outer periphery of the downstream nozzle 2 at the positions of the upper heating coil 3 and the lower heating coil 4, respectively. In other words, the thermocouples 7 and 8 and the controller 5 are used to adjust the temperatures of the upper heating coil 3 and the lower heating coil 4 while heating the glass and causing the glass to flow down.
上記上側加熱コイル3および下側加熱コイル4は第2図
および第3図に示すように内部が2段構造となっており
、図中上側を水冷却流路9とし下側を空気冷却流路10
としている。また上記空気冷却流路10には複数の空気
吹出口11が形成されている。上記水冷却流路9および
空気冷却流路10は、それぞれ図示しない供給源に接続
されている。As shown in FIGS. 2 and 3, the upper heating coil 3 and the lower heating coil 4 have a two-stage internal structure, with a water cooling channel 9 on the upper side and an air cooling channel on the lower side. 10
It is said that Further, a plurality of air outlets 11 are formed in the air cooling channel 10 . The water cooling channel 9 and the air cooling channel 10 are each connected to a supply source (not shown).
以上の構成をもとにその作用を説明する。まず高レベル
廃液と硝子原料を硝子溶融炉1内に導入して約1100
° で加熱して溶融させる。The operation will be explained based on the above configuration. First, high-level waste liquid and glass raw materials were introduced into the glass melting furnace 1, and the
Heat to melt at °.
そして溶融後高周波発振器6で上側加熱コイル3および
下側加熱コイル4を加熱する。その際上側加熱コイル3
および下側加熱コイル4の温度をコントローラ5および
熱電対7,8で調整し硝子が流下する温度まで加熱する
。貯蔵容器に硝子が流下した後流下ノズル2の加熱を停
止すると同時に水冷却流路9内に水を流通させて上側加
熱コイル3および下側加熱コイル4の冷却を行なう。そ
して空気冷却流路10に空気を供給して空気吹出口11
から吹出させて流下ノズル2を冷却する。硝子の流下が
停止した後、下側加熱コイル4により流下ノズル2の下
部を再加熱する。その際空気冷却流路10によシ空気冷
却は続けて行なう。上記再加熱によ多流下ノズル2下部
の流下口から糸引きしている硝子は加熱され溶融し貯蔵
容器内に流下する。そして糸引きがほとんどなくなるま
で加熱を続は糸引がなくなった後加熱を停止する。その
後を気吹出口11から吹出される空気によシ流下ノズル
2は冷却され、温度が一様(流下ノズル2の上下部)に
なったところでを気冷却を停止する。After melting, the upper heating coil 3 and lower heating coil 4 are heated by the high frequency oscillator 6. At that time, the upper heating coil 3
The temperature of the lower heating coil 4 is adjusted by the controller 5 and thermocouples 7, 8, and heated to a temperature at which the glass flows down. After the glass has flowed down into the storage container, heating of the downstream nozzle 2 is stopped, and at the same time, water is made to flow in the water cooling channel 9 to cool the upper heating coil 3 and the lower heating coil 4. Then, air is supplied to the air cooling channel 10 and the air outlet 11
The downstream nozzle 2 is cooled by blowing from the downstream nozzle 2. After the glass stops flowing down, the lower part of the flowing nozzle 2 is reheated by the lower heating coil 4. At this time, air cooling is continued through the air cooling channel 10. As a result of the above-mentioned reheating, the glass stringing from the flow opening at the bottom of the multi-flow lower nozzle 2 is heated and melted, and flows down into the storage container. Continue heating until the stringiness is almost gone, and stop heating after the stringiness disappears. Thereafter, the downstream nozzle 2 is cooled by the air blown out from the air outlet 11, and air cooling is stopped when the temperature becomes uniform (at the top and bottom of the downstream nozzle 2).
以上本実施例による硝子流下装置によると、硝子の流下
が停止した後下側加熱コイル4によシ流下コイル2の下
部を再加熱することにより糸引きしている硝子を再加熱
して貯蔵容器内に流下させることができるので硝子の糸
引きをほとんどなくすことができる。また高周波加熱方
式を使用tているので電源等の接続部(接点)が流下ノ
ズル2近傍になく、シたがって短絡等の恐れもない。そ
して加熱時の周波数を選択することによシ流下ノズル2
の肉厚を2〜3礎まで厚くすることができるので流下ノ
ズル2の寿命も長い。さらに上側および下側加熱コイル
3゜4は内部に水冷却流路9および空気冷却流路10を
備えておシ、空気冷却流路10には空気吹出口11が形
成されているので、上側および下側加熱コイル3.4自
体の冷却および流下ノズル2の冷却を効果的に行なうこ
とができる。According to the glass flowing down device according to the present embodiment, after the glass has stopped flowing down, the lower heating coil 4 reheats the lower part of the flowing down coil 2, thereby reheating the stringy glass into the storage container. Since the glass can flow downwards, the stringiness of the glass can be almost eliminated. Furthermore, since a high frequency heating method is used, there are no connecting parts (contact points) for a power source or the like near the downstream nozzle 2, and therefore there is no fear of short circuits. By selecting the heating frequency, the downstream nozzle 2
Since the wall thickness of the nozzle can be increased to 2 to 3 times, the life of the downstream nozzle 2 is also long. Further, the upper and lower heating coils 3゜4 are internally provided with a water cooling passage 9 and an air cooling passage 10, and the air cooling passage 10 is formed with an air outlet 11, so that the upper and lower heating coils 3. The lower heating coil 3.4 itself and the downstream nozzle 2 can be cooled effectively.
なお前記実施例では上側および下側加熱コイル3#4を
丸形2段構成としたがこれに限ったことではなく、例え
ば角形2段構成としても同様の効果を奏することができ
る。In the above embodiment, the upper and lower heating coils 3#4 have a two-stage round configuration, but the present invention is not limited to this. For example, the same effect can be obtained by using a two-stage square configuration.
以上詳述したように本発明による硝子流下装置は、硝子
溶融炉と、この硝子溶融炉に接続され硝子溶融炉内の溶
融硝子を流下させる流下ノズルと、この、流下ノズルの
上部外周に設けられた上側加熱コイルと、流下ノズルの
下部外周に設けられた下側加熱コイルとを具備した構成
である。As described in detail above, the glass flowing down device according to the present invention includes a glass melting furnace, a flowing down nozzle connected to the glass melting furnace to flow down molten glass in the glass melting furnace, and a glass flowing down nozzle provided on the upper outer periphery of the flowing down nozzle. This configuration includes an upper heating coil and a lower heating coil provided on the lower outer periphery of the downstream nozzle.
すなわち溶融硝子を流下させた後下側加熱コイルによシ
流下ノズルの下部を再加熱して糸引きしている硝子を加
熱溶融して流下させる構成である。That is, after the molten glass is made to flow down, the lower part of the flow down nozzle is reheated by the lower heating coil to heat and melt the stringy glass and flow it down.
したがって硝子の糸引きをなくすことができ、従来シェ
アカット方弐等によ#)機械的に切断していた操作が不
要となシ、構成の簡略下およびコストの低減を図ること
ができる。Therefore, it is possible to eliminate the stringiness of the glass, eliminate the need for mechanical cutting operations that were conventionally performed by shear cutting methods, etc., and simplify the structure and reduce costs.
第1図ないし第3図は本発明の一実施例を示す図で、第
1図は硝子流下装置の概略構成図、第2図は第1図の一
部詳細図、第3図は加熱コイルの横断面図である。
1・・・硝子溶融炉、2・・・流下ノズル、3・・・上
側加熱コイル、4・・・下側加熱コイル。
出願人代理人 弁理士 鈴 江 武 彦第1図
第2図
第3
つ
)0
一548=
ノ3(4)
〉
11Figures 1 to 3 are diagrams showing one embodiment of the present invention, in which Figure 1 is a schematic diagram of the glass flow down device, Figure 2 is a partially detailed diagram of Figure 1, and Figure 3 is a heating coil. FIG. 1... Glass melting furnace, 2... Downflow nozzle, 3... Upper heating coil, 4... Lower heating coil. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3) 0-548=No3(4)〉11
Claims (2)
融炉内の溶融硝子を流下させる流、下ノズルと、この流
下ノズルの上部外周に設けられた上側加熱コイルと、流
下ノズルの下部外周に設けられた下側加熱コイルとを具
備したことを特徴とする硝子流下装置。(1) A glass melting furnace, a flow connected to the glass melting furnace that causes the molten glass in the glass melting furnace to flow down, a lower nozzle, an upper heating coil provided on the outer periphery of the upper part of the flow nozzle, and a lower part of the flow nozzle. A glass flowing device characterized by comprising a lower heating coil provided on the outer periphery.
部に液体流路と気体流路を備えていることを特徴とする
特許請求の範囲第1項記載の硝子流下装置。(2) The glass flowing device according to claim 1, wherein the upper heating coil and the lower heating coil are provided with a liquid flow path and a gas flow path inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13057183A JPS6022697A (en) | 1983-07-18 | 1983-07-18 | Device for flowing down glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13057183A JPS6022697A (en) | 1983-07-18 | 1983-07-18 | Device for flowing down glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6022697A true JPS6022697A (en) | 1985-02-05 |
Family
ID=15037420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13057183A Pending JPS6022697A (en) | 1983-07-18 | 1983-07-18 | Device for flowing down glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022697A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5430170A (en) * | 1992-11-25 | 1995-07-04 | Nippon Shokubai Co., Ltd. | Process for preparing dialkyl carbonates |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734029A (en) * | 1980-08-05 | 1982-02-24 | Power Reactor & Nuclear Fuel Dev Corp | Multistage heating and cooling type freeze valve |
-
1983
- 1983-07-18 JP JP13057183A patent/JPS6022697A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734029A (en) * | 1980-08-05 | 1982-02-24 | Power Reactor & Nuclear Fuel Dev Corp | Multistage heating and cooling type freeze valve |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5430170A (en) * | 1992-11-25 | 1995-07-04 | Nippon Shokubai Co., Ltd. | Process for preparing dialkyl carbonates |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4460398A (en) | Freeze valve having multiple heating-cooling means | |
WO2018157451A1 (en) | Control system and method for dry centrifugal granulation of liquid-state slags | |
JPS6022697A (en) | Device for flowing down glass | |
CN107815561B (en) | Titanium alloy preparation method | |
CN101633105A (en) | Process and equipment for producing copper-aluminum compound busbar | |
CN210268230U (en) | Discharging and drainage device of intermediate frequency furnace | |
CN106077547A (en) | A kind of device and method reducing the crystallizer molten steel degree of superheat | |
CN1034635C (en) | Apparatus for intensifiying cooling in casting of metal objects | |
JPH0124640Y2 (en) | ||
JPS606886B2 (en) | Molten glass supply device | |
JPH10182169A (en) | Downstream nozzle of glass-melting oven | |
CN105331829A (en) | Secondary melting method for solidified copper in drum-shaped copper melting furnace | |
KR101356909B1 (en) | Refining device of high purity molten steel and method thereof | |
CN209383398U (en) | Electron-beam smelting removes the device of volatile impurity in silicon | |
US4380517A (en) | Ice preventing apparatus and method for gas and liquid contact means of an atmospheric cooling tower | |
CN218755967U (en) | Copper liquid converter device | |
JP2004149342A (en) | Casting process for silicon | |
JPS57126143A (en) | Bonding method | |
JPS6347420Y2 (en) | ||
CN106270465A (en) | A kind of composite bed Flange joint technique | |
CN207062422U (en) | A kind of polysilicon furnace binding | |
JPH0353363B2 (en) | ||
JPS5726115A (en) | Method for preventing clogging of nozzle for charging additive to molten iron | |
JPH05163024A (en) | Melting of glass raw material | |
CN114853317A (en) | Platinum channel non-heating area thermal state maintenance method |