JPS60226610A - Denitration burner - Google Patents

Denitration burner

Info

Publication number
JPS60226610A
JPS60226610A JP8164484A JP8164484A JPS60226610A JP S60226610 A JPS60226610 A JP S60226610A JP 8164484 A JP8164484 A JP 8164484A JP 8164484 A JP8164484 A JP 8164484A JP S60226610 A JPS60226610 A JP S60226610A
Authority
JP
Japan
Prior art keywords
burner
combustion
denitrification
throat
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8164484A
Other languages
Japanese (ja)
Other versions
JPH0480285B2 (en
Inventor
Manabu Orimoto
折本 学
Makoto Sakai
誠 坂井
Kenji Kiyama
研滋 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8164484A priority Critical patent/JPS60226610A/en
Publication of JPS60226610A publication Critical patent/JPS60226610A/en
Publication of JPH0480285B2 publication Critical patent/JPH0480285B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate migration of a burner to denitration combustion and to reduce production of nitrogen oxide in exhaust gas, by a method wherein the working area of an injection nozzle for fuel is adjustable according to a load condition, and a throat is of a Venturi structure. CONSTITUTION:An inner ring 25A and an outer ring 25B of a denitration burner are respectively open to either of 2 branch pipe systems branched from a gas fuel main pipe 12. During low load operation during the starting in which production of nitrigen oxide is decreased, if an mount of gas fuel supplied is reduced to half by closing either burner inlet valves 13A or 13B respectively mounted in the fuel branch pipes, and in which case, ordinary combustion having an air ratio of about 0.8-1.0, which is excellent in combustion efficiency, is practicable. Meanwhile, in case denitration combustion is needed with the increase in a load, an amount of the fuel supplied is doubled through opening control of the two burner inlet valves, and this enables to perform denitration combustion, having an air ratio of about 0.3-0.6, which is well suitable for formation of a reduction atmosphere. Besides, in which case, a throat 23 is designed to be of a Venturi structure, in which air flow resistance is decreased, and this enables prevention of generation of vortex at a following wake and improvement of the penetration force of a flame 24.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は脱硝バーナに係り、特に炉内脱硝燃焼法に適用
した場合に排ガス中の窒素酸化物(以下、NOxと称す
る)を低減する好適な脱硝バーナの構造に関するもので
ある。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a denitrification burner, which is particularly suitable for reducing nitrogen oxides (hereinafter referred to as NOx) in exhaust gas when applied to an in-furnace denitrification combustion method. This relates to the structure of a denitrification burner.

NOxは光化学オキシダントや酸性雨の原因物質の1つ
とされているため、近年、その発生を効果的に抑制する
燃焼法の開発が要望されている。
Since NOx is considered to be one of the causative agents of photochemical oxidants and acid rain, there has been a demand in recent years for the development of a combustion method that effectively suppresses the generation of NOx.

このような目的に沿った燃焼法として、(1)排ガス再
循環法、(2)二段燃焼法および(3)炉内脱硝燃焼法
等が知られているが、これらの内、NOx低減効果等に
優れた炉内脱硝燃焼法が特に注目されている。従来、こ
の方法に適用される装置は、第4図に示す通り、火炉1
の前、後壁におてい下方から上方へ向けて順次設けられ
た下段(主)バーナ2、中段(主)バーナ3および上段
(脱硝)バーナ4と、上段バーナ4の上方に設けられた
アフタエアロ5とから主に構成される。なお、図中、6
は風箱で、これは仕切板7により各段バーナ毎およびア
フタエアロに対応して仕切られており、また、10およ
び11はガス燃料母管12の上流に設けられた、それぞ
れガス流量調節弁およびガス遮断弁で、上記母管12の
後流は各段バーナに対応して分岐され、その分岐管には
それぞれバーナ入口弁13が設けられている。
As combustion methods for this purpose, (1) exhaust gas recirculation method, (2) two-stage combustion method, and (3) in-furnace denitrification combustion method are known, but among these, NOx reduction effect is The in-furnace denitrification combustion method is attracting particular attention because of its excellent properties. Conventionally, the apparatus applied to this method has a furnace 1 as shown in FIG.
A lower stage (main) burner 2, a middle stage (main) burner 3, and an upper stage (denitrification) burner 4 are provided in order from the bottom to the top on the front and rear walls of the It mainly consists of 5. In addition, in the figure, 6
1 is a wind box, which is partitioned by a partition plate 7 to correspond to each stage burner and after aero, and 10 and 11 are gas flow control valves and gas flow control valves provided upstream of the gas fuel main pipe 12, respectively. A gas cutoff valve branches the downstream stream of the main pipe 12 corresponding to each burner stage, and each of the branch pipes is provided with a burner inlet valve 13.

このような構成において、バーナ部では空燃比が1以上
に設定され、ガス燃料の燃焼が行われる(例えば下段バ
ーナ2:O,S〜1.0、中段パーナ3:0.6〜1.
0、上段バーナ4:o、3〜0.6)。
In such a configuration, the air-fuel ratio is set to 1 or more in the burner section, and combustion of gas fuel is performed (for example, lower stage burner 2: O, S ~ 1.0, middle stage burner 3: 0.6 ~ 1.0.
0, upper burner 4: o, 3-0.6).

この場合、相対的に空気の多い下段バーナ2および中段
バーナ3の燃焼火災域8で発生したNOxは、燃料が過
剰にある上段バーナ4の燃焼火災域9で発生ずる・CN
、・NH2および・NH等の還元ラジカルと接触してN
2に還元され、これにより低NOx化が達成されること
となる。
In this case, NOx generated in the combustion fire area 8 of the lower stage burner 2 and middle stage burner 3, where there is a relatively large amount of air, is generated in the combustion fire area 9 of the upper stage burner 4, where there is excess fuel.
, ・NH2 and ・NH in contact with reducing radicals such as
2, thereby achieving a reduction in NOx.

ところで、上記の各段バーナば一般に第3図に示す通り
であり、中央部から外周へ向は順次、火災安定化のため
のスワラ14、二次空気19の速度調整ベーン15、バ
ーナ入口弁13を備えたガス燃料分岐管に開口するガス
燃料用噴出ノズル16、三次空気20の絞り弁17およ
び火炉内へ向は末広がり状とされたスロート18を備え
た構成となっている。
By the way, each stage of the burner described above is generally as shown in FIG. It has a configuration including a gas fuel injection nozzle 16 that opens into a gas fuel branch pipe equipped with a gas fuel branch pipe, a throttle valve 17 for tertiary air 20, and a throat 18 that widens toward the inside of the furnace.

このような構成の各段バーナにより前記の空気比設定が
行われるが、その際、ガス燃料の供給はバーナ入口弁1
3の操作により互いにほぼ一定とされるので、空気供給
量が」二段バーナになる程小さくなるように調整される
。この調整は、速度調整ベーン15および絞り弁17を
絞り、スロート部の空気通過断面積を小さくすることに
より行われる。
The air ratio setting described above is performed by each stage burner having such a configuration, and at that time, the gas fuel is supplied through the burner inlet valve 1.
By the operation 3, the air supply amount is adjusted to be almost constant, so that the air supply amount is adjusted to be smaller as the burner becomes a two-stage burner. This adjustment is performed by throttling the speed adjusting vane 15 and throttle valve 17 to reduce the air passage cross-sectional area of the throat portion.

このように、従来の炉内脱硝燃焼法では、脱硝バーナで
ある上段バーナは主バーナである下段および中段バーナ
と同様な構造であり、脱硝バーナとしての機能は空気供
給量の相対的な低下により与えられていた。
In this way, in the conventional in-furnace denitrification combustion method, the upper burner, which is the denitrification burner, has the same structure as the lower and middle burners, which are the main burners, and its function as a denitrification burner is affected by the relative reduction in the amount of air supplied. It was given.

しかし、このようなバーナを脱硝バーナとして用いる場
合には、以下の欠点が避けられない。第1の欠点は、速
度調整ベーン15の下流において渦流が発生したり、該
ベーンの絞り比増大にともない空気流量が低下する等の
ために十分な火災の貫通力が得られず、そのため主バー
ナで発生した燃焼ガスとの混合が不充分となり、脱硝効
果に限界があることである。第2の欠点は、近時のNO
x規制に関し対応が困難なことである。すなわち、従来
のNOx規制は総量やボイラの定格出力時を基準に行わ
れていたが、近時はタービン定格出力の10%のごとき
極く低負荷の段階からNo xfi度を低下させる要請
が強くなっている。このような要請に対して従来の脱硝
バーナで対応を計る場合には、速度調整ベーンを脱硝反
応に好適な空燃比が得られるまで絞る必要があるため時
間がかかり、このため、短時間に対応できないという問
題がある。
However, when such a burner is used as a denitrification burner, the following drawbacks cannot be avoided. The first drawback is that sufficient fire penetration force cannot be obtained due to the occurrence of eddies downstream of the speed regulating vane 15 and the decrease in air flow rate as the throttling ratio of the vane increases. The problem is that mixing with the combustion gas generated in the process is insufficient, and there is a limit to the denitrification effect. The second drawback is that the recent NO.
It is difficult to deal with the x regulations. In other words, conventional NOx regulations were based on the total amount or the boiler's rated output, but recently there has been a strong demand to reduce the NOxfi degree from an extremely low load stage, such as 10% of the turbine rated output. It has become. When responding to such requests with conventional denitrification burners, it takes time as it is necessary to throttle the speed adjustment vane until an air-fuel ratio suitable for the denitrification reaction is obtained. The problem is that it can't be done.

本発明の目的は、前記従来技術の欠点をなくし、脱硝燃
焼への移行が容易であり、かつ排ガス等のNOxを低減
できる炉内脱硝燃焼用の脱硝バーナを提供することにあ
る。
An object of the present invention is to provide a denitrification burner for in-furnace denitrification combustion that eliminates the drawbacks of the prior art, allows easy transition to denitrification combustion, and reduces NOx in exhaust gas.

上記の目的を達成するため、本発明は、燃料用噴出ノズ
ルと該ノズルの後流にスロートとを備えたバーナにおい
て、上記ガス燃料用噴出ノズルの稼働面積を負荷状況に
応じて増減できるように構成し、かつ上記スロートをヘ
ンチュリ構造とするとともに、その空気通過断面積を主
バーナのそれの0.3〜0.6倍としたことを特徴とす
る。
In order to achieve the above object, the present invention provides a burner equipped with a fuel jet nozzle and a throat downstream of the nozzle, in which the operating area of the gas fuel jet nozzle can be increased or decreased according to load conditions. The present invention is characterized in that the throat has a Hentschuri structure, and its air passage cross-sectional area is 0.3 to 0.6 times that of the main burner.

本発明において燃料(典型的にはガス燃料)の噴出ノズ
ルの稼働面積を負荷状況に応じて増減させる手段は、公
知の手段でよいが、好ましくはガス燃料分岐管を2系統
とし、これらにそれぞれバーナ入口弁を設けるとともに
、バーナ部を上記系統のいずれかに開口する二重リング
状体を介して互いに同数本設け、いずれかまたは両方の
バーナ系統を切替使用可能としたものが好適である。こ
の場合は切替により倍増から半減まで燃料量を調整する
ことができるが、本発明はこの範囲に限定されるもので
はない。
In the present invention, the means for increasing or decreasing the operating area of the fuel (typically gas fuel) jetting nozzle depending on the load situation may be any known means, but preferably there are two systems of gas fuel branch pipes, and each Preferably, burner inlet valves are provided, and the same number of burner sections are provided via a double ring-shaped body that opens into either of the above-mentioned systems, so that one or both of the burner systems can be used selectively. In this case, the fuel amount can be adjusted from doubling to half by switching, but the present invention is not limited to this range.

このような本発明の構成とすれば、スロートの空気通過
断面積を主バーナのそれの0.3〜0.6倍に抑えるこ
とと相まって、起動時等の低負荷時には、ガス燃料用噴
出ノズルの稼働面積を半減(燃料供給量も半減するので
空気比は0.8〜1゜0と大きくなる)させることによ
り通常燃焼が可能となり、一方、負荷の上昇にともない
脱硝燃焼が必要となれば、ガス燃料用噴出ノズルの稼働
面積を単に倍増させることによって、燃料供給量を倍増
させ、またこれにともなって空気比を0.3〜0.6へ
低下させることができ、脱硝燃焼への移行を短時間に行
うことができる。しかも、スロート部を空気抵抗の小さ
いベンチュリ構造としたことにより、後流での渦発生抑
制と火炎貫通力の向上が得られ、脱硝反応を一段と促進
することができる。
With this configuration of the present invention, in combination with suppressing the air passage cross-sectional area of the throat to 0.3 to 0.6 times that of the main burner, the gas fuel injection nozzle Normal combustion is possible by reducing the operating area by half (the amount of fuel supplied is also halved, so the air ratio increases to 0.8 to 1°0). On the other hand, if denitrification combustion becomes necessary as the load increases, By simply doubling the operating area of the gas fuel injection nozzle, the amount of fuel supplied can be doubled, and the air ratio can be reduced to 0.3 to 0.6, leading to a transition to denitrification combustion. can be done in a short time. Furthermore, by making the throat part a venturi structure with low air resistance, it is possible to suppress the generation of vortices in the wake and improve the flame penetration power, thereby further promoting the denitrification reaction.

以下、図面に示す実施例により本発明をさらに詳しく説
明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第1図は、本発明の実施例に係る脱硝バーナの側断面を
示すもので、第3図に示す符号とその説明が同様に参照
される部分と、内側リング25Aおよび外側リング25
Bからなる二重リング状体と、内側リング25Aから延
びた4本の内側バーナ16Aおよび外側リング25Bか
ら延びた同じく4本の外側バーナ16Bと、ベンチュリ
構造のスロート23とから主に構成される。なお、図中
21は二次空気量調整用のスリーブ、22は三次空気量
調整用のスリーブを示す。
FIG. 1 shows a side cross section of a denitrification burner according to an embodiment of the present invention, showing portions to which reference numerals and explanations similar to those shown in FIG.
It is mainly composed of a double ring-shaped body consisting of B, four inner burners 16A extending from an inner ring 25A, four outer burners 16B extending from an outer ring 25B, and a throat 23 having a venturi structure. . In the figure, 21 indicates a sleeve for adjusting the amount of secondary air, and 22 indicates a sleeve for adjusting the amount of tertiary air.

また、上記の内側リング25Aと外側リング25Bは、
第2図に示す通り、それぞれガス燃料母管12から2系
統に分岐した分岐管のいずれかに開口しており、該分岐
管にはそれぞれバーナ入口弁13Aおよび13B(第2
図参照)が設けられている。上記ベンチュリ構造スロー
ト23の空気通過断面積Sは、主バーナのそれの0.3
〜0.6倍に設定されている。
Moreover, the above-mentioned inner ring 25A and outer ring 25B are
As shown in FIG. 2, each opens into one of the branch pipes branched into two systems from the gas fuel main pipe 12, and the burner inlet valves 13A and 13B (second
(see figure) is provided. The air passage cross-sectional area S of the venturi structure throat 23 is 0.3 of that of the main burner.
It is set to ~0.6 times.

このような構成の脱硝バーナにおいて、NOxの発生が
少ない起動時等の低負荷時には、燃料(ガス)分岐管に
設けられたバーナ入口弁13Aおよび13Bの内のいず
れかを閉としてガス燃料の供給量を半減すれば、空気比
0.8〜1.0程度で燃焼効率のすぐれた通常燃焼を行
うことができる。
In a denitrification burner with such a configuration, during low load such as during startup when little NOx is generated, either one of the burner inlet valves 13A and 13B provided in the fuel (gas) branch pipe is closed to supply gas fuel. If the amount is halved, normal combustion with excellent combustion efficiency can be performed at an air ratio of about 0.8 to 1.0.

一方、負荷上昇にともない脱硝燃焼を望む場合には、上
記により閉とされたバーナ入口弁を開操作して燃料の供
給量を倍増すれば、空気比0.3〜0゜6程度で還元雰
囲気形成に好適な脱硝燃焼を行うことができる。しかも
この場合には、スロート23を空気抵抗の小さいベンチ
ュリ構造としたため、後流での渦発生抑制と火災24の
貫通方向上を達成できる。
On the other hand, if denitrification combustion is desired as the load increases, by opening the burner inlet valve that was closed as described above and doubling the amount of fuel supplied, a reducing atmosphere can be created with an air ratio of about 0.3 to 0°6. Denitrification combustion suitable for formation can be performed. Moreover, in this case, since the throat 23 has a venturi structure with low air resistance, it is possible to suppress the generation of vortices in the wake and to increase the penetration direction of the fire 24.

このような脱硝バーナを前記第3図の上段バーナ4に代
えて適用すれば、低負荷時の燃焼効率を改善できる上、
負荷上昇にともない脱硝燃焼への移行を望無場合には、
閉止中のバーナ入口弁を単に開操作するのみによってこ
れを達成できるので、移行時間の短縮が可能となる。こ
のことはかかる要請の強いDSSボイラの運転において
特に有効である。
If such a denitrification burner is applied in place of the upper burner 4 in FIG. 3, combustion efficiency at low loads can be improved, and
If you do not wish to shift to denitrification combustion due to an increase in load,
This can be achieved by simply opening a closed burner inlet valve, thereby reducing transition times. This is particularly effective in the operation of DSS boilers, which have such strong requirements.

さらに、脱硝燃焼に際し、良好な還元雰囲気の形成とと
もにスロート後流での渦発生抑制および火災貫通力の向
上が得られるので、上流の主バーナ(下段バーナ2およ
び中段バーナ3)で発生したNOxとの混合性が改善さ
れ、これにより脱硝反応が一段と促進される。
Furthermore, during denitrification combustion, it is possible to form a good reducing atmosphere, suppress the generation of vortices in the wake of the throat, and improve fire penetration, so that NOx generated in the upstream main burners (lower stage burner 2 and middle stage burner 3) can be reduced. This improves the miscibility of the denitrification reaction, which further promotes the denitrification reaction.

以上は本発明の典型的な実施例について説明したもので
あるが、本発明はこれに限定されることはなく、他に種
々の変形例を考慮することができる。例えば、前記した
脱硝バーナ火災の貫通力は、スロートをベンチュリ構造
としたことに加え、二次空気量調整用スリーブ21およ
び三次空気量調整用スリーブ22を操作してスロート部
通過空気量を増加すればさらに増大させることができる
Although typical embodiments of the present invention have been described above, the present invention is not limited thereto, and various other modifications can be considered. For example, the penetrating force of the denitrification burner fire described above can be achieved by increasing the amount of air passing through the throat by manipulating the secondary air amount adjustment sleeve 21 and the tertiary air amount adjustment sleeve 22 in addition to using a venturi structure for the throat. It can be further increased.

(発明の効果) 以上、本発明によれば、炉内脱硝燃焼法に適用される脱
硝バーナに関し、燃料用噴出ノズルの稼働面積を負荷状
況に応じて増減可能に構成し、かつスロートをベンチュ
リ構造とするとともに、その空気通過断面積を主バーナ
のそれの0.3〜0.6倍としたことにより、起動時等
の低負荷時にはノズル稼働面積の半減化により通常燃焼
を、また、負荷上昇にもとない脱硝燃焼を望む場合には
ノズル稼働面積の倍増化によりこれを行うことができる
。しかも、上記通常燃焼から脱硝燃焼への移行は、短時
間に可能となり、また、脱硝燃焼へ移行後は、スロート
を空気抵抗の小さいベンチュリ構造としたことによる効
果で還元火災の貫通力が向上し、上流の主バーナで発生
したNOxとの混合性が改善される。これにより脱硝反
応が一段と促進され、NOxの低減が可能となる。
(Effects of the Invention) As described above, according to the present invention, regarding the denitrification burner applied to the in-furnace denitrification combustion method, the operating area of the fuel jet nozzle can be increased or decreased depending on the load situation, and the throat has a venturi structure. In addition, by making the air passage cross-sectional area 0.3 to 0.6 times that of the main burner, the nozzle operating area is halved during low load times such as during start-up, allowing normal combustion to be carried out, and even when the load increases. If unique denitrification combustion is desired, this can be achieved by doubling the nozzle operating area. Moreover, the transition from the above-mentioned normal combustion to denitrification combustion is possible in a short time, and after the transition to denitrification combustion, the penetration power of the reduction fire is improved due to the effect of the throat having a venturi structure with low air resistance. , the miscibility with NOx generated in the upstream main burner is improved. This further promotes the denitrification reaction, making it possible to reduce NOx.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に係る脱硝バーナの側断面図
、第2図は、第1図に示す脱硝バーナのバーナ部をガス
燃料の供給系統とともに示す部分正面出、第3図は、従
来の炉内脱硝燃焼装置の系統図、第4図は、第3図に示
す装置に適用される脱硝バーナの側断面図である。 1・・・火炉、2・・・下段(主)バーナ、3・・・中
段(主)バーナ、4・・・上段(脱硝)バーナ、9・・
・上段バーナ燃焼火炎域、12・・・ガス燃料母管、1
3.13A、13B・・・バーナ入口弁、15・・・二
次空気速度調整ベーン、16・・・ガス燃料用噴出ノズ
ル、16A・・・内側バーナ、16B・・・外側バーナ
、17・・・絞り弁、18・・・スロート、19・・・
二次空気、20・・・三次空気、21・・・二次空気量
調整スリーブ、22・・・三次空気量調整スリーブ、2
3・・・ベンチュリ構造スロート、24・・・火炎、2
5A・・・内側リング、25B・・・外側リング。 代理人 弁理士 川 北 武 長 1
FIG. 1 is a side sectional view of a denitrification burner according to an embodiment of the present invention, FIG. 2 is a partial front view showing the burner part of the denitrification burner shown in FIG. 1 together with a gas fuel supply system, and FIG. FIG. 4 is a side sectional view of a denitrification burner applied to the apparatus shown in FIG. 3. FIG. 1...Furnace, 2...Lower stage (main) burner, 3...Middle stage (main) burner, 4...Upper stage (denitrification) burner, 9...
・Upper stage burner combustion flame area, 12... Gas fuel main pipe, 1
3.13A, 13B... Burner inlet valve, 15... Secondary air speed adjustment vane, 16... Gas fuel injection nozzle, 16A... Inner burner, 16B... Outer burner, 17... - Throttle valve, 18... Throat, 19...
Secondary air, 20... Tertiary air, 21... Secondary air amount adjustment sleeve, 22... Tertiary air amount adjustment sleeve, 2
3... Venturi structure throat, 24... Flame, 2
5A...inner ring, 25B...outer ring. Agent Patent Attorney Takeshi Kawakita 1

Claims (1)

【特許請求の範囲】[Claims] (1)燃料用噴出ノズルと該ノズルの後流にスロートと
を備えた場合において、上記燃料用噴出ノズルの稼働面
積を負荷状況に応じて増減可能に構成し、かつ上記スロ
ートをベンチュリ構造とするとともに、その空気通過断
面積を主バーナのそれの0.3〜0.6倍としたことを
特徴とする脱硝バーナ。
(1) In the case where a fuel injection nozzle and a throat are provided downstream of the nozzle, the operating area of the fuel injection nozzle can be increased or decreased depending on the load situation, and the throat has a venturi structure. Also, a denitrification burner characterized in that its air passage cross-sectional area is 0.3 to 0.6 times that of the main burner.
JP8164484A 1984-04-23 1984-04-23 Denitration burner Granted JPS60226610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8164484A JPS60226610A (en) 1984-04-23 1984-04-23 Denitration burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8164484A JPS60226610A (en) 1984-04-23 1984-04-23 Denitration burner

Publications (2)

Publication Number Publication Date
JPS60226610A true JPS60226610A (en) 1985-11-11
JPH0480285B2 JPH0480285B2 (en) 1992-12-18

Family

ID=13752044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8164484A Granted JPS60226610A (en) 1984-04-23 1984-04-23 Denitration burner

Country Status (1)

Country Link
JP (1) JPS60226610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833172A1 (en) * 1987-09-28 1989-04-06 Vaillant Joh Gmbh & Co Method and apparatus for burning a gas/primary-air mixture
JPH02298703A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Pulverized coal burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833172A1 (en) * 1987-09-28 1989-04-06 Vaillant Joh Gmbh & Co Method and apparatus for burning a gas/primary-air mixture
JPH02298703A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Pulverized coal burner

Also Published As

Publication number Publication date
JPH0480285B2 (en) 1992-12-18

Similar Documents

Publication Publication Date Title
US20020187449A1 (en) Burner with exhaust gas recirculation
JPS61142335A (en) Method of starting gas turbine plant and device therefor
AU2003261754A1 (en) Combustion apparatus and window box
JPS60226610A (en) Denitration burner
US5272867A (en) Method and plant for reducing the nitrogen oxide emissions of a gas turbine
JPH03286906A (en) Boiler
JP3107214B2 (en) Combustion air supply device
JPS60218535A (en) Combustor for gas turbine
JPH10281012A (en) Axial flow static mixer of spark plug engine
JPS5936090B2 (en) Internal combustion engine intake system
JPH025247Y2 (en)
JPS58145820A (en) Method for controlling air flow rate when boiler is operated under low load
JP2783638B2 (en) Gas turbine combustion equipment
JPS604726A (en) Combustion apparatus for hot water supply
JPH06193821A (en) Low-nox boiler
JPH04131619A (en) Gas turbine combustion device
JPH0337093B2 (en)
JPH0331899B2 (en)
JPH09103650A (en) Method for reducing nitrogen oxide in exhaust gas from diesel engine
CN115282749A (en) Boiler ammonia injection system and method suitable for deep peak regulation
JPS59191807A (en) Denitrating combustion device
JP2984449B2 (en) Gas turbine exhaust reburn burner
JP3121151B2 (en) Combustion burner and combustion method
JPH07233914A (en) Low-nox burner
JPS63215838A (en) Steam injection equipment for gas turbine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term