JPS6022653A - Measuring device for concentration of chlorine ion - Google Patents

Measuring device for concentration of chlorine ion

Info

Publication number
JPS6022653A
JPS6022653A JP12953083A JP12953083A JPS6022653A JP S6022653 A JPS6022653 A JP S6022653A JP 12953083 A JP12953083 A JP 12953083A JP 12953083 A JP12953083 A JP 12953083A JP S6022653 A JPS6022653 A JP S6022653A
Authority
JP
Japan
Prior art keywords
water
sample
chlorine
chlorine ion
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12953083A
Other languages
Japanese (ja)
Other versions
JPH0336182B2 (en
Inventor
Isao Mishiro
三代 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12953083A priority Critical patent/JPS6022653A/en
Publication of JPS6022653A publication Critical patent/JPS6022653A/en
Publication of JPH0336182B2 publication Critical patent/JPH0336182B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure continuously the chlorine ion content in a sample by providing a measuring vessel which has a sample feed part under the water surface, has a take-out port for the separated sample at the lower part and an overflow pipe connected to the take-out port and risen upward to maintain the constant water level and is filled with water. CONSTITUTION:A slight amt. of flon vapor is taken out through a control valve 19 for taking out sample and is fed through a sample feed tube 12 into the water in a measuring vessel 1. A stirrer 9 is provided in the device 1 to mix and stir thoroughly the sample and water so that the chlorine is dissolved in water. The separated liquefied flon overflows from the mid-way of an overflow pipe 8 and is discharged through a sample overflow pipe 13 and a liquid level meter 4 of flow rate to the outside. The concn. of the chlorine ion in the vessel 1 is detected by the electrode 2 of a conductivity meter dipped in the water. The signal of the conductivity meter and the signal of the flowmeter are respectively transmitted to a chlorine ion concn. meter 6 and the chlorine concn. in the flon is calculated by the equation ( I ).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はフロンを作動媒体とするランキンサイクルプラ
ントのフロン分解による塩素発生量の測定装置に係り、
特に自動連続測定に好適な塩素イオン濃度測定器に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device for measuring the amount of chlorine generated by decomposition of fluorocarbons in a Rankine cycle plant using fluorocarbons as a working medium.
In particular, the present invention relates to a chloride ion concentration measuring device suitable for automatic continuous measurement.

〔発明の背景〕[Background of the invention]

従来の塩素イオン濃度の測定は滴定法により行なわれて
いた。しかし、この方法は連続測定ができないという欠
点がある。更にこの従来方法は、塩素の発生が変動する
場合に用いるのには不向きである。
Conventionally, chloride ion concentration was measured by titration. However, this method has the disadvantage that continuous measurements cannot be performed. Furthermore, this conventional method is unsuitable for use in cases where chlorine generation fluctuates.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、フロンを作動媒体とするランキンサイ
クルプラントにおけるフロン蒸気又は液中の塩素の濃度
を連続的に測定し得る塩素イオン濃度測定器を提供する
ことにある。
An object of the present invention is to provide a chlorine ion concentration measuring device that can continuously measure the concentration of chlorine in fluorocarbon vapor or liquid in a Rankine cycle plant using fluorocarbons as a working medium.

〔発明の概要〕[Summary of the invention]

本発明は、塩素は水に容易に吸収溶解し塩素イオン化す
るので、水中の濃度は電導率計により測定し得ること、
及びフロン液は水に溶けることなく、比重差により水の
底部に分離滞溜するという特性を利用して、塩素を含む
フロン蒸気又は液を水中に注入することにより塩素イオ
ンの量を測定しようとするものである。
The present invention provides that since chlorine is easily absorbed and dissolved in water and ionized, the concentration in water can be measured with a conductivity meter;
We attempted to measure the amount of chlorine ions by injecting chlorine-containing fluorocarbon vapor or liquid into water, taking advantage of the property that fluorocarbon liquid does not dissolve in water but separates and accumulates at the bottom of the water due to the difference in specific gravity. It is something to do.

すなわち本発明は、フロンを作動媒体とするランキンサ
イクルプラントにおけるフロン分解による塩素発生量の
測定装置において、水面下に試料注入口を持ち、下部に
分離した試料の取出口と、取出口に接続して水面が一定
となるように上方に立上げたオーバーフロー管を持つ水
を満たした測定容器を設け、その水に電導率計電極を浸
し、これにより試料中の塩素イオン分を連続的に測定す
る構成としたことを特徴とするものである。
That is, the present invention provides an apparatus for measuring the amount of chlorine generated by fluorocarbon decomposition in a Rankine cycle plant that uses fluorocarbons as a working medium, which has a sample injection port below the water surface and is connected to a separated sample outlet and an outlet at the bottom. A measurement container filled with water with an overflow tube raised upwards is installed so that the water level remains constant, and the conductivity meter electrode is immersed in the water, thereby continuously measuring the chloride ion content in the sample. It is characterized by the following structure.

70ン蒸気又は故中の塩素濃度は、測定した塩素イオン
量を、その間に通過したフロン蒸気量又は液量で除すれ
ばめられる。従って、例えば、フロンの流量を測定し、
その電気信号により塩素イオン量の電気信号を除する演
算器によシフロン中の塩素濃度の測定ができる。
The concentration of chlorine in the fluorocarbon steam or waste can be determined by dividing the measured amount of chlorine ions by the amount of fluorocarbon vapor or liquid that passed during that time. Therefore, for example, by measuring the flow rate of CFCs,
The chlorine concentration in the syphron can be measured by a calculator that divides the electrical signal representing the amount of chlorine ions using the electrical signal.

フロンを連続的に水中に流すためには、フロンを水と分
離し排出しなければならないが、これはフロンが水に溶
けず、水より比重が大きいということから、容易に行な
うことが可能である。すなわち、上記したように水を入
れた−り定容器の底部に取出し口を設けておけば、水と
フロン液の境面が取出し口の上にある間はフロン液は容
易に排出される。
In order for Freon to flow continuously into water, it must be separated from water and discharged, but this is easy because Freon does not dissolve in water and has a higher specific gravity than water. be. That is, if the outlet is provided at the bottom of the water container as described above, the fluorocarbon liquid can be easily discharged while the interface between the water and the fluorocarbon liquid is above the outlet.

ただし、排出口はフロン液面及び水面を一定に保つため
には、上記の如く立上げたオーバーフロー管を接続して
おかなければならjい。この立上は管の途中の、容器側
水面高さに対し、(水比重÷フロン比重)の高さの所に
オーバーフロー穴を取付けておけば、液面は常に一定に
保たれ、注入されたフロンを連続的に抜き出すことがで
きる。
However, in order to keep the Freon liquid level and water level constant, the discharge port must be connected to the overflow pipe set up as described above. For this rise, if an overflow hole is installed in the middle of the pipe at a height equal to (water specific gravity ÷ Freon specific gravity) relative to the water surface height on the container side, the liquid level will always be kept constant and the injected water will be Freon can be extracted continuously.

〔発明の実施例〕[Embodiments of the invention]

添付図面に本発明の一実施例を示す。フロン蒸気管16
にシンキンサイクルの蒸気が流れており、この蒸気中の
塩素濃度を測定している例である。
An embodiment of the invention is shown in the accompanying drawings. Freon steam pipe 16
In this example, steam from the sinking cycle is flowing through the tank, and the chlorine concentration in this steam is being measured.

この塩素イオンfmFfi測定装置には、水1aを満た
した測定容器1を設ける。測定容器lは、水面1bより
下に試料注入口12aを持ち、下部に分離した試料の取
出し口8aと、該取出し口8aに接続して水面が一定と
なるように上方に立上げたオーバーフロー管8とを持つ
。このような測定容器1内の水1aK電樽軍計也極2を
浸し、これにより試料中の塩素イオン分を連続的に測定
する。
This chlorine ion fmFfi measuring device is provided with a measuring container 1 filled with water 1a. The measurement container l has a sample inlet 12a below the water surface 1b, a separated sample takeout port 8a at the bottom, and an overflow pipe connected to the takeout port 8a and raised upward so that the water level remains constant. It has 8. The chlorine ion content in the sample is continuously measured by immersing the water 1aK electric barrel Gunkeiyagoku 2 in such a measuring container 1.

本実施例においては、フロン蒸気の微量を試料取り出し
調節弁19を介して取り出し、試料注入チューブ12を
通して測定容器1の水の中に注入する。測定容器1内に
はスターン9を設け、試料と水とが良く混合攪拌して、
塩素が水に溶けるようにスターン9の攪拌子11を回転
させるようにする。フロンは水より密度が犬きく、1.
5倍程度でらるので、水1aに注入されたフロンは直ち
に下方に沈むので、その間に充分に水1 a (!: 
漱触させ、フロン中の塩素を水1aに溶出させるため、
このように攪拌するものである。測定容器lの底部には
、下に溜ったフロン液面より下位に、フロン取出口8a
と、それに接続された立上げオーバーフロー管8が位置
するので、フロン液は該オーバーフロー管8の途中より
オーバーフロー管テ、試料オーバーフロー管13を通り
、流量液面計4に流入し、更に流量オリアイス管14、
流量絞りオリフィス7及びドレン管15を通って外部に
排出される。流量液面計4は流量を液面で検出するもの
で、流量Qは液高さhの平方根に比例するこを電気的に
検出する液面検出器10に基づき流量を発信する流量発
信器5とから構成されている。
In this embodiment, a trace amount of fluorocarbon vapor is taken out through the sample takeout control valve 19 and injected into the water in the measurement container 1 through the sample injection tube 12. A stern 9 is installed in the measurement container 1 to mix and stir the sample and water well.
The stirrer 11 of the stern 9 is rotated so that the chlorine is dissolved in the water. Freon is denser than water, 1.
Since the amount of water is about 5 times higher, the Freon injected into the water 1a immediately sinks downward, and during that time, the water 1a (!:
To dissolve the chlorine in the Freon into the water 1a,
This is how it is stirred. At the bottom of the measurement container l, there is a freon outlet 8a below the level of the freon liquid collected below.
and the start-up overflow pipe 8 connected to it are located, so the fluorocarbon liquid flows from the middle of the overflow pipe 8 through the overflow pipe and the sample overflow pipe 13, flows into the flow rate level gauge 4, and then flows into the flow rate level gauge 4. 14,
It is discharged to the outside through the flow restrictor orifice 7 and the drain pipe 15. A flow rate level meter 4 detects the flow rate at the liquid level, and a flow rate transmitter 5 transmits the flow rate based on a liquid level detector 10 that electrically detects that the flow rate Q is proportional to the square root of the liquid height h. It is composed of.

測定容器1内の水の堪素イオン濃匿(ま、水中に浸され
た電導計電極2より検出する。これは′I6.導度発信
器3により電気信号として出力される。
Concentration of ions in the water in the measuring container 1 (detected by the conductivity meter electrode 2 immersed in the water) is output as an electrical signal by the conductivity transmitter 3.

電導度の信号は電導計ケーブル17により、又、流量計
の信号は流量計ケーブル18によりそれぞれ塩素イオン
濃匪計6に伝えられ、次のような割算によりフロン中の
塩素殖度が〆算される。
The conductivity signal is transmitted to the chlorine ion concentration meter 6 by the conductivity meter cable 17, and the flow meter signal is transmitted to the chlorine ion concentration meter 6 by the flow meter cable 18, and the chlorine concentration in the fluorocarbon is determined by the following division. be done.

ΔU−水中の塩素該度Δpx測定容器中の水量g Δp=a×ΔS+b(a及びbは定数)ΔS=水の亀導
度(μS /cm ) 20421時間内に流れたフロン量 ΔT二時間 求めたCは、指示計で表すようにする。なお、副容器1
内の水は測定精度の点より、純、水が好ましい。また、
ある濃度以上になると電極2の精度及び寿命の点が間、
値となる。塩素0度が高くなると、棺匠が落ち、血1砥
2も劣化しやすくなるからである。よって定期的に水を
交換するのが好ましい。
ΔU - Concentration of chlorine in water Δpx Amount of water in the measurement container g Δp = a x ΔS + b (a and b are constants) ΔS = Conductivity of water (μS / cm ) Amount of fluorocarbons flowing in 20421 hours ΔT 2 hours calculation C should be represented by an indicator. In addition, sub-container 1
Pure water is preferable from the viewpoint of measurement accuracy. Also,
When the concentration exceeds a certain level, the accuracy and life of the electrode 2 will deteriorate.
value. This is because when the chlorine temperature becomes high, the coffin maker will fall and blood 1 and 2 will deteriorate more easily. Therefore, it is preferable to change the water regularly.

上記のような測定装置をランキンサイクルプラントに設
置することにより、連続的にフロン分解による塩素の発
生量が認識される。従って、フロン分解を回避できるプ
ラントの運転が可能となる。
By installing the measuring device as described above in a Rankine cycle plant, the amount of chlorine generated by fluorocarbon decomposition can be continuously recognized. Therefore, it is possible to operate a plant that avoids decomposition of fluorocarbons.

フロン分解による塩素の発生は、フロンの損失をもたら
すばかりでなく、不可避的に侵入する水と結合して塩酸
を生じ、よって本容器に救しい腐食を生じさせ、熱父換
器のリーク等、重大な問題を起こすのであるが、上記塩
素イオンの連続的・自動的な検知によって、このような
重大事故を未然に防ぐことができる。
The generation of chlorine due to the decomposition of fluorocarbons not only results in the loss of fluorocarbons, but also combines with the water that inevitably enters to produce hydrochloric acid, which causes unavoidable corrosion in the container, causing leaks in heat exchangers, etc. Although this causes serious problems, such serious accidents can be prevented by continuous and automatic detection of chlorine ions.

なお、当然のことではあるが、本発明は図示の実施例に
のみ限定されるものではない。
It should be noted that, as a matter of course, the present invention is not limited to the illustrated embodiment.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明九よれば、被検体の塩素イオン濃度
を連続的に測定でき、かつ塩素の発生が変動する被検体
についても精度良く連続的測定が可能すので1フロンを
作動媒体とするランキンサイクルプラントにおけるフロ
ン蒸気又はフロン液中の塩素の濃度を測るのに好適であ
るという効果を有し、かっこのようにフロンを用いるプ
ラントに採用することによって、フロンの消耗や、フロ
ン分解による各種トラブルを未然に防ぐことができる。
As described above, according to the present invention, 1 fluorocarbon is used as the working medium because it is possible to continuously measure the chlorine ion concentration of the specimen, and even for specimens whose chlorine generation varies with high accuracy. It has the effect of being suitable for measuring the concentration of chlorine in fluorocarbon vapor or fluorocarbon liquid in Rankine cycle plants, and by adopting it in plants that use fluorocarbons as shown in parentheses, it can be used to reduce the consumption of fluorocarbons and various types of chlorine caused by decomposition of fluorocarbons. You can prevent problems from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示−j構成図である。 1・・・測定容器、la・・・水、lb・・−水面、2
・・・電導計電極、3・・・電導度光信器、4・・・流
量液面計、5・・・流量発信器、6・・・塩素イオンa
度計、7・・・流量絞りオリフィス、8・・・文士げオ
ーバーフロー管、8a・・・試料の取出口、9・・・ス
ターン、1o・・・液面検出器、11・・・攪拌子、1
2・・・試料注入チューブ、12a・・・試料注入口、
13・・・試料オーバーフロー管、14・・・流iむリ
フイス管、15・・・ドレン管、16・・・フロン蒸気
管、17・・・重々j計ケーブル、18・・・流量計ケ
ーブル、19・・・試料取出し調節弁、20・・・フロ
ート。 代理人 弁理士 秋本正実
The drawings are block diagrams showing one embodiment of the present invention. 1...Measurement container, la...Water, lb...-Water surface, 2
... Conductivity meter electrode, 3... Conductivity optical transmitter, 4... Flow rate level gauge, 5... Flow rate transmitter, 6... Chlorine ion a
temperature meter, 7...Flow rate restrictor orifice, 8...Bunshige overflow tube, 8a...Sample outlet, 9...Stern, 1o...Liquid level detector, 11...Stirrer ,1
2... Sample injection tube, 12a... Sample injection port,
13... Sample overflow pipe, 14... Flowing rewiring pipe, 15... Drain pipe, 16... Freon steam pipe, 17... Heavy j meter cable, 18... Flow meter cable, 19...Sample take-out control valve, 20...Float. Agent Patent Attorney Masami Akimoto

Claims (1)

【特許請求の範囲】 1、フロンを作動媒体とするランキンサイクルプラント
におけるフロン分解による塩素発生量の測定装置におい
て、水面下に試料注入口を持ち、下部に分離した試料の
取出口と、取出口に接続して水面が一定となるように上
方に立上げたオーバーフロー管を持つ水を満たした測定
容器を設け、その水に′電導率計電極を浸し、これによ
り試料中の塩素イオン分を連続的に測定する構成とした
ことを特徴とする塩素イオン濃度測定装置。 2、特許請求の範囲第1項において、オーバーフロー管
よシ流出した試料の流量を測定する流量発信器と前記電
導率計の信号とによシ、電導率の時間増分を流量で除し
、これにより試料の単位流量当りの電導率より試料中の
塩素イオン濃度を連続的に測定するようにしたことを特
徴とする塩素イオン濃度測定器。
[Scope of Claims] 1. A device for measuring the amount of chlorine generated by decomposition of fluorocarbons in a Rankine cycle plant using fluorocarbons as a working medium, which has a sample injection port below the water surface, and a separate sample takeout port and a takeout port at the bottom. A measurement container filled with water is connected to the water and has an overflow pipe raised upwards so that the water level remains constant.The conductivity meter electrode is immersed in the water, and the chlorine ion content in the sample is continuously measured. A chlorine ion concentration measuring device characterized in that it is configured to measure chlorine ion concentration. 2. In claim 1, a flow rate transmitter for measuring the flow rate of the sample flowing out of the overflow tube and a signal from the conductivity meter are used, and the time increment of the conductivity is divided by the flow rate. A chlorine ion concentration measuring device characterized in that the chlorine ion concentration in a sample is continuously measured from the electrical conductivity per unit flow rate of the sample.
JP12953083A 1983-07-18 1983-07-18 Measuring device for concentration of chlorine ion Granted JPS6022653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12953083A JPS6022653A (en) 1983-07-18 1983-07-18 Measuring device for concentration of chlorine ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12953083A JPS6022653A (en) 1983-07-18 1983-07-18 Measuring device for concentration of chlorine ion

Publications (2)

Publication Number Publication Date
JPS6022653A true JPS6022653A (en) 1985-02-05
JPH0336182B2 JPH0336182B2 (en) 1991-05-30

Family

ID=15011792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12953083A Granted JPS6022653A (en) 1983-07-18 1983-07-18 Measuring device for concentration of chlorine ion

Country Status (1)

Country Link
JP (1) JPS6022653A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119112A (en) * 1981-01-14 1982-07-24 Hitachi Ltd Air ejector for condenser in rankine cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119112A (en) * 1981-01-14 1982-07-24 Hitachi Ltd Air ejector for condenser in rankine cycle

Also Published As

Publication number Publication date
JPH0336182B2 (en) 1991-05-30

Similar Documents

Publication Publication Date Title
Othmer Composition of vapors from boiling binary solutions1
CN1882715B (en) Method of inhibiting corrosion in hot water systems
CN106371297A (en) Component concentration measuring apparatus and method, developing solution managing apparatus and developing solution managing method
KR100768340B1 (en) Residual chlorine analyzer of sampling form
JPS6022653A (en) Measuring device for concentration of chlorine ion
RU2417310C2 (en) Optimised procedure for supply of reagents into installation
US3705477A (en) Condensate analyzer
JP3817860B2 (en) Ultrapure water production apparatus and ultrapure water production method
Webber et al. The determination of sodium in high purity water with sodium-responsive glass electrodes
CN114323120B (en) Sludge discharge amount measuring method, control method, treatment system, equipment and medium
CN111624241B (en) Direct insertion type chloride ion detection device
CN113567507A (en) System and method for online monitoring of concentration of sulfite ions in desulfurization slurry
KR20010042271A (en) Methods and apparatus for monitoring water process equipment
US3798002A (en) Computer control system for refining and hydrogenation of unsaturated hydrocarbons
JPH11118750A (en) Apparatus for setting of reference electrode
US3461043A (en) Method and apparatus for continuous monitoring of fluoride effluent
JPH0841670A (en) Chlorine content controller of chlorine generator
CN114702145B (en) Industrial circulating water quality monitoring device and control method
JP4204712B2 (en) Cation detection device, cation detection method, water treatment device, and ultrapure water production device
CN117890462B (en) Mining sump liquid mud double-position monitoring system and monitoring method
US3809621A (en) Computer control system for refining and hydrogenation of unsaturated hydrocarbons
SU987465A1 (en) Condensate salt meter
CN213172616U (en) Solution concentration control device for oxygen cathode electrolytic cell complete system
JP2794772B2 (en) Prediction method of corrosion of water-based metal
CN219259688U (en) Full-automatic water purification treatment device