JPS6022610A - Line sensor camera for measuring size - Google Patents

Line sensor camera for measuring size

Info

Publication number
JPS6022610A
JPS6022610A JP13255884A JP13255884A JPS6022610A JP S6022610 A JPS6022610 A JP S6022610A JP 13255884 A JP13255884 A JP 13255884A JP 13255884 A JP13255884 A JP 13255884A JP S6022610 A JPS6022610 A JP S6022610A
Authority
JP
Japan
Prior art keywords
prism
line sensor
optical axis
point
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13255884A
Other languages
Japanese (ja)
Inventor
Kihachiro Nishikawa
西川 喜八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13255884A priority Critical patent/JPS6022610A/en
Publication of JPS6022610A publication Critical patent/JPS6022610A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters

Abstract

PURPOSE:To expand the measuring range of a line sensor camera for measuring size and to make the precision measurement of a large object easy by using a prism pair movable in the optical axis direction and changing the imaging conditions of the measuring object on the line sensor. CONSTITUTION:If a measuring object is 1, the parallel rays irradiated through the peripheral part (diameter =D1) thereof are bent at right angles by the Q1 on the side of a prism 9 placed in the position 12 (with respect to the ray of the right half in the figure) and thereafter the rays are bent respectively at right angles by the 1st prism 5 and the 2nd prism 7, by which the rays are made again parallel with the optical axis. Such rays are converted by a lens 2 to form the image at one point P on a line sensor 3. If the prism 9 is similarly placed in the position (c), the parallel rays passing the object 1' (diameter =D2) pass the point Q2 on the prism and form the image likewise at the point P'. The size of the large object can be consequently measured by moving upward the prism 9. On the other hand, the measurement of an object having the lower limit in size is accomplished simply by moving the position of the prism 9 to the position (a) so as to pass the one point Q3 on the optical axis.

Description

【発明の詳細な説明】 本発明は寸法測定用]のラインセンサカメラに関し、そ
の測定範囲を拡大することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a line sensor camera for dimension measurement, and aims to expand its measurement range.

従来のラインセンサカメラではラインセンサの寸法が限
られているため、その測定範囲が狭い問題点があった。
Conventional line sensor cameras have a problem in that the measurement range is narrow because the size of the line sensor is limited.

そのため第1図に示すように測定範囲を固定長部分と可
変部分に分割することによって測定範囲を広げる方法が
考えられている。同図において1は測定物体(直径−D
)、2は平行光線全収束してラインセンサ素子3に結像
させるためのレンズ、4,5は測定物体10周辺全通過
する平行光純金直角に曲げる可動構造の第1のプリズム
対、6,7は前記第1のプリズ嗣4 、5 f直角に曲
げて軸に平行な光線に変えるため固定4’fI)造の第
2のプリズム対である。
Therefore, a method has been considered to widen the measurement range by dividing the measurement range into a fixed length portion and a variable length portion as shown in FIG. In the same figure, 1 is the measuring object (diameter - D
), 2 is a lens for fully converging parallel light beams and forming an image on the line sensor element 3; 4 and 5 are a first pair of prisms having a movable structure for bending the parallel light beams completely passing around the measuring object 10 at right angles; 6; Reference numeral 7 designates a second pair of prisms 4'fI) which is fixed in order to bend the first prisms 4 and 5f at right angles to change the beam into a beam parallel to the axis.

このように構成されたラインセンサカメラにおいて、測
定部分を固定部分Wと可変1′%分帖、?L2に分けれ
は物体1の寸法はこれらの絖11+とじて表わされるか
ら、第1のプリズムスj4,5の間隔を広げてJ+”2
の値を増せば、大きな物体の寸法寸で測定できるように
なる。しかしながら、」二連の方法によると小さな寸法
の物体を測定するには、第1のプリズム対4,6間の距
離を近刊けなければならず、その際に第2のプリズム対
6,7が都度になって測定できなくなる領域が生ずる欠
点があった。
In the line sensor camera configured in this way, the measurement part is a fixed part W and a variable 1'% part. Divided into L2, the dimensions of the object 1 are expressed as these cells 11+, so the distance between the first prisms j4 and 5 is widened to J+"2.
If you increase the value of , you will be able to measure the dimensions of larger objects. However, in order to measure objects of small dimensions according to the double method, the distance between the first pair of prisms 4, 6 must be shortened, while the second pair of prisms 6, 7 There was a drawback that there were areas that could not be measured every time.

本発明はプリズム対の移動方向等を工夫することによっ
て上記欠点を除去したものである。以下にその実施例と
ともに説明する。
The present invention eliminates the above drawbacks by devising the moving direction of the prism pair. This will be explained below along with examples.

第2図は本発明の一実施例を示すものである。FIG. 2 shows an embodiment of the present invention.

同図において1〜7までは第1図における同符号のもの
に対応する。但しプリズム4,5の位置は第1図のもの
と異なり固定している。8,9は光軸x−x’方向に可
動の第3のプリズム対、10゜11rri固定の第4の
プリズム対である。第3のプリズム対8,9の位置は測
定物体に最も遠いイから口金経て・・のように移動でき
る構造にな−ている。
In the figure, 1 to 7 correspond to the same reference numerals in FIG. However, the positions of the prisms 4 and 5 are fixed, unlike those in FIG. Reference numerals 8 and 9 indicate a third pair of prisms movable in the direction of the optical axis xx', and a fourth pair of prisms fixed at 10°11rr. The third pair of prisms 8 and 9 are structured so that they can be moved from A, which is the farthest from the object to be measured, to the base, and so on.

次にこの構成にもとず〈動作について説明する。Next, the operation will be explained based on this configuration.

先ず測定物体が1の場合には、その周辺部(直径−D+
)’e通って照射された平行光線は(以下説明を簡潔に
するため第2図で右半分の光線について説明する)12
の位置に置かれたプリズム9の選手のQlで直角に曲げ
られ、以後第4のプリズム11、第1のプリズム5、第
2のプリズム了によってそれぞれ直角に曲げられた結果
、再び光軸に平行に々す、レンズ2で収束されラインセ
ンサ3上の一点PK像を結ぶ。同様にハの位1バにプリ
ズム9が置かれると、測定物体1′ (直径−D2)’
ffi通る平行光線はプリズム上の点Q2を通って同じ
くP′点に結像する。この結果プリズム9全」=方に移
動することによって、大きな物体の寸法′(!:′1t
tl定できることになる。一方物体の寸法が小さい場合
の限界としては光軸上の一点Q、を通る」;うにプリズ
ム9の位置をイの位置に移動させればよい。
First, if the measurement object is 1, its periphery (diameter - D +
) 'e The parallel ray irradiated through is (below, to simplify the explanation, the right half of the ray in Figure 2 will be explained) 12
The prism 9 placed at the position is bent at a right angle by the athlete's Ql, and then bent at right angles by the fourth prism 11, the first prism 5, and the second prism R. As a result, it is parallel to the optical axis again. The light is then converged by the lens 2 to form a single point PK image on the line sensor 3. Similarly, if prism 9 is placed at position C, measurement object 1' (diameter - D2)'
The parallel light beam passing through ffi passes through point Q2 on the prism and forms an image at point P'. As a result, by moving the entire prism 9 in the direction, the size of the large object is
tl can be determined. On the other hand, when the size of the object is small, the limit is to pass through one point Q on the optical axis; the position of the sea urchin prism 9 may be moved to the position A.

これは物体の寸法が0の場合に対応する。従って上記実
施例によれば、プリズム9の位置をイ〜)・と移動する
ことにより測定物体の寸法がOからFil成り大きい範
囲まで広い範囲で連続的に使用できる。実際の物体の寸
法は次式で与えられる。
This corresponds to the case where the dimensions of the object are zero. Therefore, according to the above-mentioned embodiment, by moving the position of the prism 9 in the following order, the measurement object can be used continuously over a wide range of dimensions from O to Fil. The actual dimensions of the object are given by:

D==2a+M@Pi・QなおMげレンズの倍率係数、
Piはライセンサ素子のピッチ、Qは読セリカウント数
である。したが−で、あらかじめプリズムの基準位置を
めそこでの上式右辺の第2項に箱出するDの長さをめて
おき、次にプリズムの基準位置からの移動量(=a)を
開側すればこれらよりDが1回路的演算手段によりめる
D==2a+M@Pi・QThe magnification coefficient of the M lens,
Pi is the pitch of the licensor element, and Q is the read count number. However, in -, we set the length of D to be boxed out in the second term on the right-hand side of the above equation in advance using the reference position of the prism, and then calculate the amount of movement of the prism from the reference position (=a). In this case, D is determined from these by a one-circuit arithmetic means.

なお上記実施例で+d、プリズム対8,9を可動にした
が、同様の効果はプリズム対6+ 7を光軸方向に移動
可能としても実現できる。また各プリズムの役割は光線
を直角に曲げることであるからプリズムの代りに鏡面を
用いて反射させてもよい。
Although +d and the prism pair 8 and 9 are made movable in the above embodiment, the same effect can also be achieved by making the prism pair 6+7 movable in the optical axis direction. Furthermore, since the role of each prism is to bend the light beam at right angles, a mirror surface may be used instead of the prism to reflect the light beam.

プリズム対8,9の移動量の計測手段にはマイクロメー
タを用いても、あるいけ移動量エンコーダを用いて表示
方法の自動化をしてもよい。
A micrometer may be used as a means for measuring the amount of movement of the prism pair 8, 9, or a movement amount encoder may be used to automate the display method.

第3図は、本発明の寸法読取部の構成を示す実施例であ
る。同図において、23(は前記マイクロメータのつ捷
み等の操作部、22は前記マイクロメータの移動量を電
気的に読み出すだめの移動量エンコーダ、21はエンコ
ーダの読みとライセンサ−3のカウント数から測定物体
1の寸法を演算する演算器、24は演算結果を表示する
表示部である。
FIG. 3 is an embodiment showing the configuration of the dimension reading section of the present invention. In the figure, 23 (is an operation unit for controlling the micrometer, 22 is a movement encoder for electrically reading out the movement of the micrometer, and 21 is a reading of the encoder and a count number of the licensor 3). A calculator 24 calculates the dimensions of the object to be measured 1 from the measured object 1, and 24 is a display unit that displays the calculation results.

以」−説明したように本発明によれば光軸方向に可動な
プリズム対を用いて測定物体のライセンサヒへの結像条
件を変えることによって寸法測定用ラインセンサカメラ
の」11定範囲を拡大でき、その結果大きな物体の精密
測定が容易に行なえる実用上火きな効果を有する。
As explained above, according to the present invention, the fixed range of the line sensor camera for dimension measurement can be expanded by changing the imaging conditions of the measurement object on the licensor beam using a pair of prisms movable in the optical axis direction. As a result, it has a practical effect that allows precise measurement of large objects to be easily performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の寸法測定用ラインセンサ3上ラの構成図
、第2図は本発明の一実施例における寸法測定用ライン
センサ3上ラの構成図、第3図は本発明によるラインセ
ンサカメラの寸法読取?Xlsのブロック図である。 1・・測定物体、4,5,10.11 ・プリズム、8
,9−・・・第1のプリズム、6,7−・・第2のプリ
ズム、2・・・レンズ、3・・ ラインセンサ素子。 代即人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 ズ
FIG. 1 is a configuration diagram of the conventional dimension measurement line sensor 3 upper layer, FIG. 2 is a configuration diagram of the dimension measurement line sensor 3 upper layer in an embodiment of the present invention, and FIG. 3 is a line sensor according to the present invention. Camera dimensions reading? It is a block diagram of Xls. 1.Measurement object, 4, 5, 10.11 ・Prism, 8
, 9-... First prism, 6, 7-... Second prism, 2... Lens, 3... Line sensor element. Name of representative Patent attorney Toshio Nakao and 1 other person 1st
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一方向からの光線が加えられる被測定物体の他方の側に
設けられ、前記平行光線を光軸と直角方向に曲げる対を
なす第1のプリズムと、ラインセンザ素子上に設け/ζ
レンズの光軸上に対をなす第2のプリズムと、前記第1
のプリズムからの光線を第2のプリズムに樽く手段とを
設け、かつ前記第1.第2のプリズム中受くとも一方を
光軸方向に移動自在としたことを特徴とする寸法測定用
ラインセンサカメラ。
A first prism is provided on the other side of the object to be measured to which a light beam from one direction is applied, and forms a pair that bends the parallel light beam in a direction perpendicular to the optical axis; and a first prism is provided on the line sensor element.
a second prism forming a pair on the optical axis of the lens; and the first prism.
means for directing the light beam from the first prism to the second prism; A line sensor camera for measuring dimensions, characterized in that one of the second prisms is movable in the optical axis direction.
JP13255884A 1984-06-27 1984-06-27 Line sensor camera for measuring size Pending JPS6022610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13255884A JPS6022610A (en) 1984-06-27 1984-06-27 Line sensor camera for measuring size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13255884A JPS6022610A (en) 1984-06-27 1984-06-27 Line sensor camera for measuring size

Publications (1)

Publication Number Publication Date
JPS6022610A true JPS6022610A (en) 1985-02-05

Family

ID=15084097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13255884A Pending JPS6022610A (en) 1984-06-27 1984-06-27 Line sensor camera for measuring size

Country Status (1)

Country Link
JP (1) JPS6022610A (en)

Similar Documents

Publication Publication Date Title
EP2651118B1 (en) Light receiving device, focus detection device and imaging device
JPS60235424A (en) Overlay error measuring device between wafer pattern and mask pattern projected on same wafer
JPS6329619A (en) Method and apparatus for measuring dimension of object
JPH06123610A (en) Method and apparatus for optical measurement of objective
JPH02196904A (en) Method for detecting dimensions of object and apparatus for implementing the same
JPS6052710A (en) Distance detector
US3619070A (en) Method and apparatus for measuring thickness
CN104880913B (en) A kind of focusing and leveling system for improving Technological adaptability
KR100501397B1 (en) Three-dimensional image measuring apparatus
JPS6022610A (en) Line sensor camera for measuring size
JPH04113214A (en) Vehicle distance detector
JP2661205B2 (en) Focus detection device
JPS6226729Y2 (en)
JP3286246B2 (en) Position detection method and position detection device using modified Fresnel zone plate
JPS60257306A (en) Moire topography device
JPH11218674A (en) Objective lens, image pickup device, and photographing system provided with them
JPS6228402B2 (en)
SU696281A1 (en) Instrument for measuring the phase and deformation of plates
JPH02251810A (en) Stereoscopic image forming optical device
JPH11281875A (en) Device and method for correcting laser optical axis
JPS62200207A (en) Method for measuring distortion of image
JPH07117643B2 (en) Projection system for focus detection
JPS62235519A (en) Highly accurate measurement of distance
JPH0712946U (en) Refractive index distribution measurement cell
SU1165881A1 (en) Method of checking deviation of surface shape from standard shape