JPS60226023A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS60226023A
JPS60226023A JP8228684A JP8228684A JPS60226023A JP S60226023 A JPS60226023 A JP S60226023A JP 8228684 A JP8228684 A JP 8228684A JP 8228684 A JP8228684 A JP 8228684A JP S60226023 A JPS60226023 A JP S60226023A
Authority
JP
Japan
Prior art keywords
magnetic
crystal grains
magnetic field
poles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8228684A
Other languages
Japanese (ja)
Inventor
Masanobu Fujisaki
藤崎 昌伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP8228684A priority Critical patent/JPS60226023A/en
Publication of JPS60226023A publication Critical patent/JPS60226023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having a stable magnetic characteristic, uniformity and reproducibility by positioning magnetic poles of the same kind to face each other from the vertical direction of a substrate in the process of forming said substrate and forming a magnetic layer while moving the magnetic poles relatively in the horizontal direction of the substrate. CONSTITUTION:A magnetic field in a horizontal direction is generated by the repulsion of magnetic lines of force between the magnetic poles of the same kind when said poles are positioned to face each other. A magnetic plating stage is executed in such horizontal magnetic field, by which the magnetic layer is formed. Anisotropy in the horizontal direction is impressed in the deposition process in plating, by which the growth in parallel with the direction of the magnetic field is accelerated and the crystal grains slightly slender in parallel with the magnetic field are eventually formed. The crystal grains have nearly the state of the ideal needlelike single magnetic domain particles as the crystal grains are finer, thus resulting in increased Hc/Br. The improvement in the magnetic characteristic as a magnetic recording medium such as improvement in the squareness ratio and the consequent improvement in the recording and reproducing characteristics are attained. Not only the slenderer crystal grains are formed but also the magnetic characteristic for orienting the C-axis which is the direction of the axis of easy magnetization of the Co alloy more strongly in the magnetic field direction is improved and the variance thereof is decreased.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は磁気ディスク、磁気ドラム等の磁気記録体に用
いられるメッキ法にて作製される高密度磁気記録媒体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a high-density magnetic recording medium manufactured by a plating method used for magnetic recording bodies such as magnetic disks and magnetic drums.

〔従来技術〕[Prior art]

近年メッキ法にて作製さnた記録媒体が、高密度磁気記
録体として用いられるようになってきた。
In recent years, recording media manufactured by plating have come to be used as high-density magnetic recording bodies.

メッキ法にて作製さnた記録媒体が高密度磁気記録体と
して期待されている主な理由は、従来の塗付型の媒体と
比較して、第一に膜厚(δ)を薄くすることが容易、第
2に、残留磁束密度(Br)が大きい、第3に、適切な
保磁力<sc)を得やすいなどである。
The main reason why recording media produced using the plating method is expected to be used as high-density magnetic recording media is that the film thickness (δ) can be made thinner compared to conventional coating-type media. secondly, the residual magnetic flux density (Br) is large; and thirdly, it is easy to obtain an appropriate coercive force <sc).

磁気記録媒体において得られる記録密度と再生出力は、
同一ヘッドを用いる場合には、δ、Ec。
The recording density and reproduction output obtained in magnetic recording media are
When using the same head, δ, Ec.

Brとで決t9、次の関係が知られている。Determined by Br and t9, the following relationship is known.

(記録密度)α(B c / B r・δ)凭(再生出
力)α(Br・δ・Ec)捧 塗付型の媒体は磁性粉をバインダーと共に基板に塗付す
る工程となるためにその膜厚t−1μ屏以下にコントロ
ールすることは非常に難しい。こnに対してメッキ型の
場合は[L1μm程度の膜厚を得ることは比較的容易で
ある。
(Recording density) α (B c / Br・δ) (Reproduction output) α (Br・δ・Ec) Since the coating type media requires the process of applying magnetic powder to the substrate together with the binder, the It is very difficult to control the film thickness to t-1μ or less. On the other hand, in the case of a plating type, it is relatively easy to obtain a film thickness of about 1 μm.

一方Brに関してはメッキ型は塗付型にて比較して数倍
程度大きな値が得ら几、再生出力を大きくすることが可
能である。
On the other hand, regarding Br, the plated type can obtain a value several times larger than the painted type, making it possible to increase the reproduction output.

Ecに関しては、均一性、再現性など安定性を別とすn
ld、メッキの作製条件を変えることにょ9300エル
ステツドから800工ルステツド程度まで変化させるこ
とは比較的容易である。
Regarding Ec, apart from stability such as uniformity and reproducibility,
It is relatively easy to vary from 9300 oersted to about 800 oersted by changing the production conditions for ld and plating.

従ッテδ、Br、Re ’l適切にコントロールして作
製し、磁気媒体としての安定性、再現性を確保すること
が出来れば、メッキ法による磁気記録媒体は高密度磁気
記録媒体として非常に秀nたものである。
If δ, Br, and Re 'l can be manufactured with appropriate control and stability and reproducibility as a magnetic medium can be ensured, a magnetic recording medium produced by the plating method can be used as a high-density magnetic recording medium. It is an excellent thing.

ところがメッキ法にて磁性tile作成する場合、さま
ざまなメッキ条件のバラツキにより、特にHa、δ の
変化が大きく磁気特性を均一に、かつ再現性良く形成す
ることは容易ではないとさnている。
However, when creating a magnetic tile using a plating method, it is said that it is not easy to form magnetic tiles with uniform magnetic properties and good reproducibility because of variations in various plating conditions, especially in Ha and δ.

この現象の主要な原因は、磁気特性の中でもEcは磁性
膜の構造敏感な性質を持っておシ、かつ磁性層の微細構
造は磁性膜の形成過程に強く影響されるからである。微
細構造の具体的内容は結晶粒の大きさであり、又粒界を
数カ巻く非磁性体の分布の状態である。そしてメッキは
界面反応の積重さねであシ、メッキ進行に伴なう副生成
物や不純物の影響によって磁性膜の微細構造が変化しE
cの変化となって表われる。さらにメッキの駆動力は表
面電位の差のみによっており、微妙な界面現象の影響を
直接的に受けてしまい、結果的に得られる磁気特性が安
定しにぐいという欠点がメッキ法にはあった。
The main reason for this phenomenon is that among the magnetic properties, Ec is sensitive to the structure of the magnetic film, and the fine structure of the magnetic layer is strongly influenced by the process of forming the magnetic film. The specific contents of the microstructure are the size of crystal grains and the state of distribution of nonmagnetic material that wraps around the grain boundaries. Plating is a series of interfacial reactions, and the fine structure of the magnetic film changes due to the effects of by-products and impurities as the plating progresses.
It appears as a change in c. Furthermore, the plating method has the disadvantage that the driving force for plating is based only on the difference in surface potential and is directly affected by subtle interfacial phenomena, making the resulting magnetic properties difficult to stabilize.

〔目的〕〔the purpose〕

本発明の目的はメッキ法による磁性層の形成において、
得られる磁気特性が安定しにぐいという欠点を改善して
、均一性、再現性の良い磁気記録媒体を提供することに
ある。
The purpose of the present invention is to form a magnetic layer by plating,
The object of the present invention is to provide a magnetic recording medium with good uniformity and reproducibility by improving the drawback that the obtained magnetic properties are difficult to stabilize.

〔概要〕〔overview〕

本発明による磁気記録媒体はメッキ法によって形成され
るものであるが、その形成過程において基板の上下方向
から同種の磁極を対向させ、磁極を基板の水平方向に相
対的に移動させながら磁性層を形成してゆくことを特徴
とする。
The magnetic recording medium according to the present invention is formed by a plating method, and during the formation process, magnetic poles of the same type are opposed from above and below the substrate, and the magnetic layer is formed while moving the magnetic poles relatively in the horizontal direction of the substrate. It is characterized by the fact that it continues to form.

すなわち第1図に示したように同種の磁極を対向させる
と、その中間には磁力線の反発により水平方向の磁場が
発生する。・この水平磁場中で磁性メッキ工程を行ない
磁性層を形成することが本発明の要点となるところであ
る。
That is, when magnetic poles of the same type are placed opposite each other as shown in FIG. 1, a horizontal magnetic field is generated between them due to repulsion of magnetic lines of force. - The key point of the present invention is to perform the magnetic plating process in this horizontal magnetic field to form a magnetic layer.

磁性メッキ形成過程において、水平方向の磁場が存在す
ると、メッキにおける析出過程に水平方向の異方性が印
加さn、磁場の方向に平行な成長が促進され、結果とし
て磁場と平行にやや細長い結晶粒となる。結晶粒が細長
くなると六により理想的な針状の単磁区粒子の状態に近
づき、Bc/Brが大きくなる、角形比が良くなるなど
の磁気記録媒体としての磁気特性が向上し、記録再生特
性が向上する。さらに結晶粒が細長くなるばかりではな
く、Co系合金の容易磁化方向であるO軸が磁場方向に
より強く配向するために磁気特性が向上すると共に、そ
のバラツキが減少する。
During the magnetic plating formation process, when a horizontal magnetic field is present, horizontal anisotropy is applied to the precipitation process in the plating, promoting growth parallel to the direction of the magnetic field, resulting in slightly elongated crystals parallel to the magnetic field. Becomes grains. When the crystal grains become elongated, they approach the state of ideal acicular single-domain grains, which improves the magnetic properties of the magnetic recording medium, such as a larger Bc/Br and better squareness ratio, resulting in improved recording and reproducing characteristics. improves. Furthermore, not only the crystal grains become elongated, but also the O axis, which is the direction of easy magnetization of the Co-based alloy, is oriented more strongly in the direction of the magnetic field, so that the magnetic properties are improved and their variations are reduced.

〔実施例〕〔Example〕

アルミ基板の上に、非磁性の無電解N1−Pメッキを施
し、これを精密加工し、磁性メツ、キの基板として用い
た。磁極としては、希土類磁石を用いて、これを鉄のヨ
ークに接合したものを用いた。
Non-magnetic electroless N1-P plating was applied to an aluminum substrate, which was precisely processed and used as a magnetic first and second substrate. As the magnetic pole, a rare earth magnet was used, which was joined to an iron yoke.

磁極の数は8極とし全体をメッキ液でおかさnないよう
にポリプロピレンで保護したもの′ft2個用いて、デ
ィスクを上下からはさむ構成にした。女お上下の磁極は
同種の磁極が対向することとし、メッキ中はディスク管
毎分120回で回転させた。
The number of magnetic poles was eight, and two pieces of magnetic poles were protected with polypropylene so as not to be covered with the plating solution, and the disk was sandwiched from above and below. The magnetic poles on the top and bottom of the woman were of the same type, and the disk tube was rotated at 120 times per minute during plating.

磁性メッキFiOO−Ni−P e用いた。メッキ条件
を以下に示す。
Magnetic plating FiOO-Ni-Pe was used. The plating conditions are shown below.

浴組成 硫酸ニッケル mol/J 硫酸コバルト mol/J 次亜リン酸ナトリウム no 1 / J酒石酸ナトリ
ウム mol / J ホウ酸 mol/j 硫酸アンモニウム mol/j (P R9,0、液晶 80℃) mo1/ J第2図
に本実施例で用いた磁極の構造を示す。
Bath composition Nickel sulfate mol/J Cobalt sulfate mol/J Sodium hypophosphite no. 1/J Sodium tartrate mol/J Boric acid mol/j Ammonium sulfate mol/j (P R9,0, liquid crystal 80°C) mo1/J 2nd The figure shows the structure of the magnetic pole used in this example.

1#′i希土類磁石で構成した磁極であり、2は鉄製の
ヨーク、3は基板である。
1 is a magnetic pole composed of a rare earth magnet, 2 is an iron yoke, and 3 is a substrate.

本実施例によるサンプルの磁気特性は、残留磁束密度(
Br) 8000ガウス、保磁力()Ic)650エル
ステツド、角形比(S)α82であった。なお比較のた
め磁*1かけずに同じメッキ条件で作成したサンプルは
残留磁束密度(Br)、保磁力(Ec)は変らず角形比
(S)はα78であり、本実施例により、角形比が5チ
向上した。
The magnetic properties of the sample according to this example are the residual magnetic flux density (
Br) 8000 Gauss, coercive force (Ic) 650 Oersted, and squareness ratio (S) α82. For comparison, a sample prepared under the same plating conditions without applying magnetism*1 had no change in residual magnetic flux density (Br) and coercive force (Ec), and the squareness ratio (S) was α78. improved by 5 inches.

さらに保磁力(E(りの分散が半分となり、バラツキが
減少した。
Furthermore, the dispersion of the coercive force (E) was halved, and the variation was reduced.

〔効果〕〔effect〕

以上述べ友ように本発明によれば角形比などの磁気特性
が向上すると同時に、その磁気特性のバラツキが減少、
メッキ型の磁気媒体の安定性、再現性を確保することが
可能となった。なお実施例では永久磁石を用いて磁極を
構成したが、電磁石を用いても同様な効果が得られる。
As stated above, according to the present invention, magnetic properties such as squareness ratio are improved, and at the same time, variations in the magnetic properties are reduced.
It has become possible to ensure the stability and reproducibility of plated magnetic media. In the embodiment, the magnetic poles were constructed using permanent magnets, but similar effects can be obtained using electromagnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は同種の磁極を対向させた場合に発生する磁力線
の図である。 第2図は実施例で用いた磁極の形状であり、1は希土類
磁石、2はヨークでらり、3は基板である。 鵞10 ’t、2rg (α)(b)
FIG. 1 is a diagram of lines of magnetic force generated when magnetic poles of the same type are opposed to each other. FIG. 2 shows the shape of the magnetic poles used in the example, where 1 is a rare earth magnet, 2 is a yoke, and 3 is a substrate. Goose 10't, 2rg (α) (b)

Claims (1)

【特許請求の範囲】[Claims] メッキ法にて形成される磁気記録媒体で、その形成過程
において、基板の上下方向から同種の磁極を対向させ、
磁極を基板の水平方向に移動させながら磁性層を形成す
ることを特徴とする磁気記録媒体の製造方法。
A magnetic recording medium formed using a plating method. During the formation process, magnetic poles of the same type are opposed from above and below the substrate.
A method of manufacturing a magnetic recording medium, comprising forming a magnetic layer while moving a magnetic pole in the horizontal direction of a substrate.
JP8228684A 1984-04-24 1984-04-24 Production of magnetic recording medium Pending JPS60226023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8228684A JPS60226023A (en) 1984-04-24 1984-04-24 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8228684A JPS60226023A (en) 1984-04-24 1984-04-24 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60226023A true JPS60226023A (en) 1985-11-11

Family

ID=13770277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8228684A Pending JPS60226023A (en) 1984-04-24 1984-04-24 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60226023A (en)

Similar Documents

Publication Publication Date Title
CA1135411A (en) Thin film head having negative magnetostriction
JPS6314410B2 (en)
JPH04129009A (en) Thin-film magnetic reading-writing head
EP0150498B1 (en) Perpendicular magnetic recording medium
JPS60226023A (en) Production of magnetic recording medium
JPS6364816B2 (en)
JPS60101709A (en) Vertical magnetic recording medium
JP2579184B2 (en) Magnetic recording media
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JP2508462B2 (en) Soft magnetic thin film
US4594628A (en) Magnetic head having cobalt-containing zinc-ferrous ferrite core
JP2822212B2 (en) Oblique orientation method and oblique orientation device
JPS63149827A (en) Magnetic recording medium and its production
JPH0512846B2 (en)
JPH08191009A (en) Composite type hexagonal system ferrite magnetic powder
JPH0758647B2 (en) Crystalline soft magnetic thin film
JPH03154223A (en) Magnetic medium and magnetic disk device
JPH03129707A (en) Soft-magnetic thin film and magnetic head using same
JP2979557B2 (en) Soft magnetic film
JPH043562B2 (en)
JPH02236815A (en) Magnetic recording medium and its production
JPS58114329A (en) Magnetic recording medium
JPH056256B2 (en)
JPS58125235A (en) Manufacture of magnetic recording medium
JPH0562176A (en) Manufacture of magnetic recording medium