JPS6022569B2 - Grounded instrument transformer device - Google Patents

Grounded instrument transformer device

Info

Publication number
JPS6022569B2
JPS6022569B2 JP53067923A JP6792378A JPS6022569B2 JP S6022569 B2 JPS6022569 B2 JP S6022569B2 JP 53067923 A JP53067923 A JP 53067923A JP 6792378 A JP6792378 A JP 6792378A JP S6022569 B2 JPS6022569 B2 JP S6022569B2
Authority
JP
Japan
Prior art keywords
xlw
tertiary
xlu
low voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53067923A
Other languages
Japanese (ja)
Other versions
JPS54158647A (en
Inventor
昭 矢木
退二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP53067923A priority Critical patent/JPS6022569B2/en
Publication of JPS54158647A publication Critical patent/JPS54158647A/en
Publication of JPS6022569B2 publication Critical patent/JPS6022569B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は接地形計器用変圧器装置に係り、特に1次側ヒ
ューズ溶断時に、これを効率的に検出なし得る接地形計
器用変圧器装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grounded instrument transformer device, and more particularly to a grounded instrument transformer device that can efficiently detect when a primary fuse blows out.

火力発電所等に於ける6.靴V回路の接地形計器用変圧
器等に於いては、電源回路の中性点が4000の抵抗を
介してて接地されているので、三相回路電圧に対して中
性点が固定された状態となる。
6. At thermal power plants, etc. In the grounded instrument transformer of the shoe V circuit, the neutral point of the power supply circuit is grounded through a 4000Ω resistor, so the neutral point is fixed for the three-phase circuit voltage. state.

一方、電源の中性点が非接地の場合でも、接地形計器用
変圧器が2台以上同一電源に接続される場合、同様に1
次側中性点が固定された状態となる。かかる状態に於い
て、3次側に負担があると、1次側のヒューズ溶断時に
も2次電圧が低下せず、従って2次側電圧に基〈1次側
のヒューズ溶断検出が出釆ないという問題がある。
On the other hand, even if the neutral point of the power supply is ungrounded, if two or more grounded instrument transformers are connected to the same power supply, one
The next neutral point becomes fixed. In such a situation, if there is a load on the tertiary side, the secondary voltage will not drop even when the primary side fuse blows, and therefore, based on the secondary side voltage, detection of the primary side fuse blowout will not occur. There is a problem.

従って、これに対処すべく、2次側の各相端子間に約1
000の抵抗を接続して、1次側ヒューズ溶断時に確実
に2次側電圧を低下させようとする方法が試みられてい
た。しかしながら、この様な方法では、常時3相で36
oワット〔=(報誌)2×,ooQX3〕の発熱損失が
あり、電力損、温度上昇の問題の他に、抵抗器の寸法が
大きくなる等の欠点があつた。従って本発明の目的は、
抵抗器の代りに、数式的解析に塞いて決定された2次と
3次の負担に対応する2個のIJアクトルを用いる事に
より、常時の損失を非常に小さく抑えると共に、2次側
に接続されるリアクトルを低電圧リレーと並列接続とす
る事により、1次側ヒューズ溶断時に、この事を低電圧
リレーの動作によって検出し得る新規の接地形計器用変
圧器装置を提供するにある。
Therefore, in order to deal with this, approximately 1
Attempts have been made to connect a resistor of 0.000 to ensure that the secondary voltage decreases when the primary fuse blows. However, with this method, 36
There was a heat loss of o watts [= (report) 2 x, ooQX3], and in addition to the problems of power loss and temperature rise, there were also drawbacks such as the size of the resistor becoming large. Therefore, the object of the present invention is to
By using two IJ actors corresponding to the secondary and tertiary loads determined through mathematical analysis instead of resistors, the constant loss can be kept extremely small and the connection to the secondary side can be made. The present invention provides a novel ground voltage instrument transformer device which can detect a fuse blowout on the primary side by the operation of the low voltage relay by connecting a reactor connected in parallel with a low voltage relay.

以下、図面に従って本発明を更に詳細に説明する。第1
図は本発明の−実施例に係る接地形計器用変圧器装置の
回路構成図で〜同図中1は接地形言器用変圧器、2は5
脚鉄心「 3,4,5はそれぞれ前記5脚鉄心2のU,
V,W脚に巻回される1次コイル、6,7,8はそれぞ
れ前記5脚鉄心2のU,V,W脚に巻回される2次コイ
ルも99 10,1 1‘まそれぞれ前記5脚鉄心2の
U,V,脚に巻回される3次コイルである。
Hereinafter, the present invention will be explained in more detail with reference to the drawings. 1st
The figure is a circuit configuration diagram of a grounding instrument transformer device according to an embodiment of the present invention. In the figure, 1 is a grounding instrument transformer, 2 is a 5
Leg core ``3, 4, and 5 are U of the five leg core 2, respectively.
The primary coils 6, 7, and 8 are respectively wound around the V and W legs, and the secondary coils are also 99, 10, 1, and 1', respectively, which are wound around the U, V, and W legs of the five-leg iron core 2. This is a tertiary coil wound around the U, V, and legs of the five-leg iron core 2.

なお、前記1次コイル3? 亀,5はY接続され各相は
TU,TV,TWの各端子に引き出され、中性点は端子
TOに引き出され、接地される。一方、2次コイル6,
7,8もY接続され各相はU,V,Wの各端子に引き出
され「中性点は端子TQに引き出される。更に。3次コ
イル9? 10,11は、接続点をb,c、開放端をa
;fとする開放△に接続される。
In addition, the primary coil 3? The torso and 5 are Y-connected, and each phase is drawn out to each terminal of TU, TV, and TW, and the neutral point is drawn out to the terminal TO and grounded. On the other hand, the secondary coil 6,
7 and 8 are also Y-connected, and each phase is drawn out to the U, V, and W terminals, and the neutral point is drawn out to the terminal TQ. Furthermore, the tertiary coils 9, 10, and 11 connect the connection points to b and c. , open end a
; Connected to open △ with f.

また、12はY接続されると共に、その中性点は、例え
ば4000の抵抗器Rを通じて前記端子TOに接続され
る3相電源、13は端子u,v間及び端子v,w間に接
続される2個の低電圧リレー、15,16は両低電圧リ
レー13,13に並列に接続された追加リアクトル、1
4は一般の2次員燈ト17は一般の3次負担、18は状
況に応じて介挿される三次回路の追加コンデンサである
。かかる構成に於いて、一般の2次負担14は普通には
数VAと小さいので無視する。
Further, 12 is Y-connected, and its neutral point is connected to the terminal TO through a resistor R of, for example, 4000, and 13 is connected between the terminals u and v and between the terminals v and w. two low voltage relays, 15 and 16 are additional reactors connected in parallel to both low voltage relays 13 and 13;
4 is a general secondary light; 17 is a general tertiary load; 18 is an additional capacitor for the tertiary circuit which is inserted depending on the situation. In such a configuration, the general secondary load 14 is usually as small as a few VA, so it is ignored.

また、2次側の2個の低電圧リレー13は力率が悪いの
でリアクタンス分のみと考え、それぞれリアクタンスX
2とする。また、追加リアクトル15,16のそれぞれ
のリアクタンスはX肌,XRwとする。なお、前記各リ
アクトル15,16はそれぞれ低電圧リレー13に並列
に接続されている訳であるが、この場合のそれぞれの合
成のリアクタンスをXLU,×肌とする。 ちなみに、
前記合成リアクタンスXLU,XLwは、X…=美喜主
李寺U 。
Also, since the two low voltage relays 13 on the secondary side have a poor power factor, they are considered to have only a reactance component, and each has a reactance
Set it to 2. Further, the reactances of the additional reactors 15 and 16 are assumed to be X skin and XRw, respectively. Note that each of the reactors 15 and 16 is connected in parallel to the low voltage relay 13, and the combined reactance of each in this case is expressed as XLU, x skin. By the way,
The synthetic reactances XLU, XLw are:

}XLW=譜合憲 ■ で表わされる。}XLW=Fugoken ■ It is expressed as

さて、3次負担17は、一般には多数の地絡方向リレー
等であり、力率が悪いのでリアクタンス分のみと考え、
これをX3とする。そして、状況に応じて接続されるコ
ンデンサ18の容量リアクタンスをXcoとすると、こ
れを3次負担17‘こ並列に接続した場合の合成リアク
タンスふはふ=農学巻 ‘3’ で表わされる。
Now, the tertiary burden 17 is generally a large number of relays in the ground fault direction, etc., and since the power factor is poor, it is considered that it is only the reactance component.
Let this be X3. If the capacitive reactance of the capacitor 18 connected depending on the situation is Xco, then the composite reactance when this is connected in parallel with the tertiary load 17' is expressed as ``fuhafu'' = Agricultural Volume '3'.

なお、コンデンサ18が無い場合の合成リアクタンスふ
が、ふ=×3 {4
1となる事は勿論である。
In addition, the combined reactance when there is no capacitor 18 is Fuga, F=×3 {4
Of course, it will be 1.

また、2次側の正常時の線間電圧をEL、そして欠相時
を含めた各線間電圧をEuv,Evw,Ew心、そして
0相電圧をEoとする。
Further, the line voltage on the secondary side during normal operation is EL, the line voltages including those during open phase are Euv, Evw, Ew core, and the 0-phase voltage is Eo.

なお、3次の各相コイル9,IQ,11の巻回数は2次
の各相コイル6,7,8のそれと同じとする。この場合
、3次側の端子a−f間の電圧虫afは2次側0相電圧
Eoに等しくなる。一方、2次、3次の各コイル6〜1
1にかかる電圧をそれぞれもu,Ev,Ew,Ea,E
b’Ecとし、3次の各コイル9〜11の相間の電圧を
Eo,Euv,Evwとし、更に1次、2次、3次の各
コイル4〜】1に流れる電流をそれぞれlv,lw,l
u,lv,lw,loとする。
Note that the number of turns of the tertiary phase coils 9, IQ, and 11 is the same as that of the secondary phase coils 6, 7, and 8. In this case, the voltage af between the terminals a and f on the tertiary side becomes equal to the secondary side 0-phase voltage Eo. On the other hand, each secondary and tertiary coil 6 to 1
The voltages applied to 1 are respectively u, Ev, Ew, Ea, E
b'Ec, the voltages between the phases of the tertiary coils 9 to 11 are Eo, Euv, Evw, and the currents flowing through the primary, secondary, and tertiary coils 4 to 1 are lv, lw, respectively. l
Let u, lv, lw, lo.

ちなみに、接地形計器用変圧器1の励磁電流は無視する
為、耳u=Ea,Ev=Bb,Ew=Ecとなる。以上
述べた如き構成に於いて、以下その動作、特に各相の1
次側ヒューズ溶断時の動作を第2図〜第4図の電圧、電
流ベクトル図に従って説明する。
Incidentally, since the excitation current of the grounded instrument transformer 1 is ignored, the ears u=Ea, Ev=Bb, and Ew=Ec. In the configuration described above, the operation will be explained below, especially one of each phase.
The operation when the next fuse blows out will be explained with reference to the voltage and current vector diagrams shown in FIGS. 2 to 4.

今、U相欠相が発生した場合、V相の2次コイル7の電
流ivと3次コイルloの電流i〇は共に1次コイル4
の電流ivより供給される。
Now, if a U-phase open phase occurs, the current iv of the V-phase secondary coil 7 and the current i of the tertiary coil lo are both the primary coil 4
is supplied from the current iv.

同様に、W相の2次コイル8及び3次コイルliの電流
iw,1oは1次コイル5の電流iwより供給される。
なお、U相に於いては、1次コイル3よりの電流の供給
が無く。鉄心の励磁電流を無視している為、2次コイル
6及び3次コイル9の各電流iu,loは各コイルの巻
回方向が逆である事から互いに打ち消し合う事となる。
従って、1u=1○ (5)となり、
また iu=洋 (6’ ‐ 丘。
Similarly, currents iw and 1o of the W-phase secondary coil 8 and tertiary coil li are supplied from the current iw of the primary coil 5.
Note that in the U phase, no current is supplied from the primary coil 3. Since the excitation current of the iron core is ignored, the currents iu and lo of the secondary coil 6 and the tertiary coil 9 cancel each other because the winding directions of the respective coils are opposite.
Therefore, 1u=1○ (5),
Also iu = western (6' - hill).

の10=反6 .・・・ ‘81 Ea十Eb+Ec十Bo=0 ・ ・ . ・ ‘9’Eu+E
V+EW+E○ニ0である。
10 = anti-6.・・・ '81 Ea ten Eb + Ec ten Bo=0 ・ ・ .・ '9'Eu+E
V+EW+E○ni0.

ここで、Ev,Ewは不変であり、従ってEuが変化す
る。かかる状態を電圧、電流のベクトル図で示すと第2
図に示す如くなる。即ち、U相欠相時には、u点カギu
1点に移る事となる。従って、2次線間電圧をELとし
て第3図に及び‘5},‘61,{7}式から次の関係
式を得ることができる。EuV十E。
Here, Ev and Ew remain unchanged, and therefore Eu changes. This state is shown in the second vector diagram of voltage and current.
The result will be as shown in the figure. That is, when the U phase is open, the U point key U
This brings us to point 1. Therefore, the following relational expression can be obtained from FIG. 3 and equations '5}, '61, and {7}, assuming that the secondary line voltage is EL. EuV1E.

=EL OQXLU
(11)Euv=x河7流・EL Xo (12)Eo=満了
流・EL次に「V相欠相時の電流、電圧のベクトル図は
第3図に示す通りであり、v点がv′点に移る。
=EL OQXLU
(11) Euv = x river 7 current / EL ’ point.

この場合は、− (
13)iv=loとなり、また . ・ − (1心1v+1u二
−IW ・ EuV (15)l
u=反中・ EVW (16
)−IW;反3・ E。
In this case, − (
13) iv=lo, and . - (1 core 1v+1u2-IW ・EuV (15)l
u = anti-China/EVW (16
) - IW; anti-3・E.

(17)10;反5である
(17) 10; anti-5.

これらの関係式(13)〜(17)より、以下の関係式
を得ることができる(後記「付録」参照跡宅羊砦申決を
瀦(I8) EVW=好学異学鰐苦渋(19) E。
From these relational expressions (13) to (17), the following relational expressions can be obtained (see "Appendix" below) .

:群宴軍培法痔隻(2の更に、W相欠相時の電流、電圧
のベクトル図は第4図に示す通りであり、w点がw′点
に移る。
: Gunge Gunpeiho Hemorrhoids (Furthermore, the vector diagram of the current and voltage when the W phase is open is as shown in Figure 4, and the point W moves to the point W'.

この場合は、U相欠相時の場合と同様にして、次の関係
式を得る。Evw+Eo=EL
(21)E側=x点字・Eし (22)Xo
(23)Eo=両;忌・Eし
以上の各関係式中、(11),(18),(19),(
22)式より、×LU,XLw,Xoの値を選ぶと、3
相のうちのいずれか1相が欠相した場合にも、2つの低
電圧リレー13が接続されている線間電圧Euv,E冊
の一方のみを、該リレの整定電圧以下とする事が出来る
In this case, the following relational expression is obtained in the same manner as in the case of U-phase open phase. Evw+Eo=EL
(21) E side = x Braille/E (22) Xo
(23)Eo=both; death・E In each of the above relational expressions, (11), (18), (19), (
22) Selecting the values of ×LU, XLw, and Xo from the formula, 3
Even if one of the phases is open, only one of the line voltages Euv and E to which the two low voltage relays 13 are connected can be made lower than the setting voltage of that relay. .

例えば、低電圧リレー13を75Vに整定し、XLU;
1370,XLw=3380とすると、この場合に許容
される3次回路のりアクタンスXoは、正常時の線間電
圧EL=110V,U相欠相時にEuvく75V,V相
欠相時にEuv<75,Eww>75V、またW相欠相
時にEvw<75Vとなる様なXoという条件から求め
る事ができる。
For example, set the low voltage relay 13 to 75V, XLU;
1370, XLw=3380, the allowable tertiary circuit actance Xo in this case is: normal line voltage EL=110V, Euv<75V when U phase is missing, Euv<75 when V phase is missing, It can be determined from the conditions of Xo such that Eww>75V and Evw<75V when the W phase is open.

即ち「(11)よりこの条件を計算するとXo>63.
930 (11)′となり、ま
た(18)式よりXo>59.630またはXo<−2
23.430 (18)′が求まり、更に(22)式
より、Xo>157.730
(22)′となる。
In other words, ``If we calculate this condition from (11), Xo>63.
930 (11)', and from equation (18), Xo>59.630 or Xo<-2
23.430 (18)' is found, and from equation (22), Xo>157.730
(22)′.

なお、(19)式で見る限り、Xoは任意の値でよい為
、上記(11)′,(18)′,(22)′式を満足す
るXoの範囲は、Xo>157.730となる。従って
、X山=1370,XLw=3380という条件の下で
は、Xoが(22)′式を満足する様な値の範囲にあれ
ば、1次側のどの相のヒューズ熔断時にも、2個の低電
圧リレー(13)のいずれかを動作させる事ができるも
のである。ちなみに、第1図の構成に於いては、U相及
びV相溶断の場合は、u−v間の低電圧リレー13が、
W相溶断の場合はv〜w間の低電圧リレー13がそれぞ
れ動作する事となる。なお、3次回路リアクタンンスX
oが小さ過ぎて〜上記(22)式を満足し得ない場合は
、‘3}式に基いて追加コンデンサ18を適宜接続して
、リアクタンス増大を行なえばよい。
As far as we can see from equation (19), Xo can be any value, so the range of Xo that satisfies the above equations (11)', (18)', and (22)' is Xo>157.730. . Therefore, under the conditions of X mountain = 1370 and XLw = 3380, if Xo is within the value range that satisfies equation (22)', two fuses will be It is capable of operating any of the low voltage relays (13). Incidentally, in the configuration shown in FIG. 1, in the case of U-phase and V-phase fusing, the low voltage relay 13 between u and v
In the case of W-phase fusing, each of the low voltage relays 13 between v and w will operate. In addition, the tertiary circuit reactance
If o is too small to satisfy Equation (22) above, reactance may be increased by appropriately connecting the additional capacitor 18 based on Equation '3}.

また、XLU,XLwの値については、一方が判明すれ
ば、他方は既述の式を用いて必要な値を求める事ができ
る事は勿論である。第5図は本発明の他の実施例に係る
接地形計器用変圧器装置の部分回路構成図を示すもので
、特に第1図の構成に於ける追加リアクトル15,16
のそれぞれのリアクタンスXRU,×Rwが等しい場合
の対策を例示するものである。
Furthermore, as for the values of XLU and XLw, if one is known, it goes without saying that the other can be found as a necessary value using the above-mentioned formula. FIG. 5 shows a partial circuit configuration diagram of a grounded instrument transformer device according to another embodiment of the present invention, in particular the additional reactors 15, 16 in the configuration of FIG.
This is an example of a countermeasure when the respective reactances XRU and ×Rw are equal.

即ち、第5図の構成に於いては、追加リアクトル16に
対して、追加するコンデンサ19を並列接続して所期の
目的を達成している。例えば、XLU=1370の場合
に、コンデンサ19の静電容量をc2、容量リアクタン
スをXc2とすると、338:台空拳書 (
2のXc2=97・486(Q) (
25)となり、従って回路の周波数を50批とすると、
C2:ゴZ=3265(一F) (26)を得る事が
できる。
That is, in the configuration shown in FIG. 5, an additional capacitor 19 is connected in parallel to the additional reactor 16 to achieve the intended purpose. For example, in the case of XLU=1370, if the capacitance of the capacitor 19 is c2 and the capacitance reactance is Xc2, then 338: Taikukensho (
2 Xc2=97・486(Q) (
25), so if the frequency of the circuit is 50 degrees, then
C2: Go Z = 3265 (1F) (26) can be obtained.

即ち、v−w間に静電容量32.65山Fのコンデンサ
を接続する事により×Lw=3斑○となり、先に例示し
た条件の値と同じになる。ちなみに、追加コンデンサ1
9は追加リアクトル15に対して、並列接続しても同様
効果を得る事ができる事は勿論である。以上述べた如く
、本発明によれば、接地形計器用変圧器に於いて、1次
欠相時に3つの線間電圧のうち、低電圧リレーの接続さ
れた2つの線間電圧のいずれか一方のみを整定値以下に
低下させる為、両緑間電圧が共に低下する母線電圧低下
とは区別して、1次側のヒューズ溶断を検出し得ると共
に、2つの低電圧リレーに並列に接続される追加リアク
トルのリアクタンス値は2次、3次回路に接続される力
率の悪いリレー類のりアクタンス値を計算に入れて数式
的に求め得る事から、確実に新期の目的を達する事が可
能であり、更に抵抗器を用いた1次側ヒューズ溶断検出
と比較すれば発熱、電力損等が無く、また各相毎に低電
圧リレーを設ける必要が無い事から簡単な構成にして効
率的に1次側ヒューズ溶断検出を行う事のできる新規の
接地形計器用変圧器装置を得る事がべきる。
That is, by connecting a capacitor with a capacitance of 32.65 peaks F between v and w, ×Lw=3 spots, which is the same as the value under the previously exemplified condition. By the way, additional capacitor 1
9 can of course be connected in parallel to the additional reactor 15 to obtain the same effect. As described above, according to the present invention, in a grounded instrument transformer, at the time of primary phase failure, one of the two line voltages to which the low voltage relay is connected is selected among the three line voltages. In order to lower the voltage below the set value, it is possible to detect a fuse blowout on the primary side, distinguishing it from a drop in bus voltage in which the voltage between both greens drops together, and an additional relay connected in parallel to the two low voltage relays. Since the reactance value of the reactor can be calculated mathematically by taking into account the reactance value of relays connected to the secondary and tertiary circuits with poor power factor, it is possible to definitely achieve the new objectives. Furthermore, compared to primary side fuse blowout detection using a resistor, there is no heat generation, power loss, etc., and there is no need to install a low voltage relay for each phase, so the primary side fuse can be detected efficiently with a simple configuration. A new ground voltage instrument transformer system capable of side fuse blown detection should be obtained.

式(18)(19),(20)は次のようにして導出さ
れる。
Equations (18), (19), and (20) are derived as follows.

E肌,EvW,E。E skin, EvW, E.

の値を幾何学的な手段を用いて算出するために第6図を
参照する。第6図は第3図のu,v,w,v′をそのま
ま用い、第3図の電流ベクトルは少し拡大して表現して
おり、v′1=1u,v′p=1v,v′n=IWに対
応している。電圧ベクトルにおいては「びw線とw′と
の交点をqとし、またu,v,wを通る円の中心を0,
mw線とv8線との交点をk,v′q線とこれに対する
w点からの垂線との交点をt,v′q線とこれに対する
u線からの垂線との交点をsとし、v′s=y,雌=y
′,tq=a,v′t=x,wt=x′とする。
Reference is made to FIG. 6 to calculate the value of by using geometric means. In Fig. 6, u, v, w, v' in Fig. 3 are used as they are, and the current vector in Fig. 3 is slightly expanded and expressed, v'1 = 1u, v'p = 1v, v' It corresponds to n=IW. In the voltage vector, let q be the intersection of the ``w'' line and w', and let 0 be the center of the circle passing through u, v, and w.
The intersection of the mw line and the v8 line is k, the intersection of the v'q line and the perpendicular line from point w to this is t, the intersection of the v'q line and the perpendicular line from the u line to this is s, and v' s=y, female=y
', tq=a, v't=x, wt=x'.

v′v線(E。)とln線(二v′p=1。=lv)と
は(17)式からして互いに直交し、その交点をmとし
、v′m=b,mn=zとする。以上のように作図され
た第6図において、△uvw‘ま正三角形であり、vk
線は中心aを通り、しかもuw=ELであることからV
k=−熱L (30)であ
る。
From equation (17), the v′v line (E.) and the ln line (2v′p=1.=lv) are orthogonal to each other, and their intersection point is m, and v′m=b, mn=z shall be. In Figure 6 drawn as above, △uvw' is an equilateral triangle, and vk
Since the line passes through the center a and uw=EL, V
k=−heat L (30).

また、V′I=lu=を V′n=IW=史 XLU uq=Eし ×LU+XLw XLW qw=EL×LU+XLW である。Also, V′I=lu= V′n=IW=history XLU uq=E ×LU+XLw XLW qw=EL×LU+XLW It is.

△v′nmと△wv′tは相似であり、 lwzbl E側一X−X′一XLW △v′lmと△uv′sも相似であり、 IU ‐にヱ‐b l EUV一 y −y,一XLU また△v′mn及び△v′lmはそれぞれ直角三角形で
あるから#十z2=12w
(31)が十(1。
△v'nm and △wv't are similar; , 1
(31) is ten (1.

−z)2 =12U (32)△vk
qと△wtqは相似であり「vk kq uk−uq Vん一tq− tq すなわち、 EL(×LW・×LU) 2a(×LU十×LW) 両辺を2奏し、整理して、 細L2 EL2(×LU−XLwア
(33)x′2一a2〆LU+X肌ア△Mqは直角三角
形であるから X′2十a2=く羊芋蔓三)2 a2=(浩史)2‐X′2 脚 (34)式のa2を(31)式に代入し、さらに(33
)式を展開し、x′‘こつい解いてみる。
-z)2 =12U (32)△vk
q and △wtq are similar, and ``vk kq uk-uq Vnichitq-tq That is, EL (×LW・×LU) 2a (×LU 10×LW) Play both sides twice and rearrange them to obtain Thin L2 EL2 (×LU-XLw a
(33)x'2-a2〆LU+X skin a△Mq is a right triangle, so (31) and further (33
) Expand the equation and try to solve x''.

x′2(XLU−×Lw)2=3(×LU+XLw)2
{(孝三学三)2−X2}i班L2‐X肌2−&傷(X
LU十XLW)23′2(XLU十XLW)2 十X′
2(XLU−XLW)2 ニ班L2・XLw2舷′2(
XL2U十XLU・XLw+XLw2)=斑L2・Xだ
=2ノXLU≦雲害毒章+×LW2 (35)このx
′の値を(34)式に代入することにより、J?元ミフ
3てここaゴ曲2‐(両席) EいXLW(XLW−XLU 一ZXLU+X肌)JXビLu+XLU.X肌十XLw
Z次に△W′tについて次の関係式が成立する。
x′2(XLU−×Lw)2=3(×LU+XLw)2
{(Kozo Gakusan) 2-X2} i Group L2-X Skin 2- & Scars (X
LU x XLW) 23'2 (XLU x XLW) 2 x'
2 (XLU-XLW) 2 Group L2/XLw2'2 (
XL2U10XLU・XLw+XLw2)=Spot L2・X=2 no XLU≦Cloud Harm Poison Chapter+×LW2 (35) This x
By substituting the value of ' into equation (34), J? Former Mifu 3 Tekoko ago song 2 - (both seats) Ei XLW (XLW-XLU 1 ZXLU + X skin) JX Bi Lu + XLU. X skin 10XLw
The following relational expression holds true for Z-order ΔW't.

X2十×′2ニE2vwx:ゾ蚕不コス
(37)(37)式のx′‘こ(35)式のx′
の値を代入してん 班2いX2肌x= E2vw
−父×2LU+×しU.×Lw+X2Lw)△雌qと△
wtq‘ま相似であり、qw−wt qu US y′=洋‐X′ この(39)式のx′に(35)式のx′の値を代入し
て′ Jき富亡7ヌ;古 (40
)y=2ゾ×2LU+XLU・XLw+XLw△VuS
について〆十y′2=Eもv y=ノE2Uv−y′2 (4
1)この(41)式のy′に(40)式のy′の値を代
入して、3E2L・×2LU y:」E2W−岬LU+XLU,池十X2LW)、に、
でに・べたこ・kq=uk−uq EL XLU・EL 2 XLU+XLW EL〆LW−XLU) (43)−
aXしu十×肌)△vqtについて vq=ノ(kq)2十(vk)2 が成立し、これに(43)式及び(30)式を代入して
E。
X20×′2niE2vwx: Zoseifu Cos
(37) x'' of equation (37) and x' of equation (35)
Substituting the value of Team 2 x 2 skin x = E2vw
-Father x 2 LU + x Shi U. ×Lw+X2Lw)△Female q and△
wtq' is similar, and qw-wt qu US y' = Western - X' Substituting the value of x' in equation (35) for x' in equation (39),' (40
)y=2zo×2LU+XLU・XLw+XLw△VuS
For
1) Substitute the value of y' in equation (40) for y' in equation (41), and get 3E2L x 2LU y: "E2W - Misaki LU + XLU, Ikeju x 2LW),"
Deni・Betako・kq=uk−uq EL XLU・EL 2 XLU+XLW EL〆LW−XLU) (43)−
vq = ノ (kq) 20 (vk) 2 holds true for Δvqt, and by substituting equations (43) and (30) into this, we obtain E.

:ELJX2肌十×LU,XLW+X2LWXLU+X
LWVq=ノE洋竿煮砦十牢 ELJX2LU+XLu・XLw+X2Lw
仏心XLU十×しWさらにまた、図から明らかなごとく
、 vv′=E。
: ELJX2 skin ten x LU, XLW+X2LWXLU+X
LWVq=NoE Yogani Fortress Ten Prisons ELJX2LU+XLu・XLw+X2Lw
Buddha's mind

=vq−qt−tv′ニVq−a‐x (
45) である。
=vq-qt-tv'dVq-a-x (
45).

この(45)式に(36)式及び(38)式を代入して
この式の両辺をX肌で割算し、整理して、里L−
EL(水2LU+磯LU・XLw+X2Lw)X肌一が
肌〆Lu+X肌)ゾX2Lu+X山・XLw+בLw
次に、△uqsと△vqkは相似であり、qq qS
SuVq qk kv これにそれぞれの値を代入して この(47)式の左辺と右辺、及び(40)式を用いて
ELゾX2LU+X山,XLW+X2LWXLU+XL
W 同様に(47)式の中辺と右辺、及び(40)式かり(
48)式からEoを求めるに当り、 E。
Substituting equations (36) and (38) into equation (45), dividing both sides of this equation by
EL (Water 2LU + Iso LU・XLw+X2Lw)
Next, △uqs and △vqk are similar, and qq qS
SuVq qk kv Substituting each value into this and using the left and right sides of equation (47) and equation (40), EL ZoX2LU+X mountain, XLW+X2LWXLU+XL
W Similarly, the middle and right sides of equation (47), and equation (40) (
48) In calculating Eo from the formula, E.

;(E。十×十a)−(X十a)=(E。;(E. 10 x 10 a) - (X 10 a) = (E.

十x+a)+(y−a−x)一yであるから「絹局(4
8),(49),(42)式から、E。
Since 10x+a)+(y-a-x)1y
8), (49), and (42), E.

=ELゾX2LU+XLU。XLW+X2LWXLU+
XLWこの式の両辺はXLU割って整理し、 E。
=ELzoX2LU+XLU. XLW+X2LWXLU+
XLW Divide both sides of this equation by XLU, rearrange it, and get E.

ELX2LU+3×しU・XLw十 LwX
LU一2XLU(XLU+XLw)JXLU+ LU・
XLw+X2Lw− E2Uv− 粕2しX2
Lu 仏×2LU+XLU。XLw+X2Lw式(13
),(14),(17)及び第6図により、L:・V=
麦=pV′=in;lm=mn (51)=(L−Z
)十z‐為十☆ (52) この(52)式と(38),(42)式から(46),
(50),(53)式を互いに加え合せ、かつ整理し、
(ち十;十壬)E。
ELX2LU+3×shiU・XLw10 LwX
LU-2XLU (XLU+XLw) JXLU+ LU・
XLw+X2Lw- E2Uv- Kasu2shiX2
Lu Buddha x 2LU+XLU. XLw+X2Lw formula (13
), (14), (17) and FIG. 6, L:・V=
Wheat = pV' = in; lm = mn (51) = (L-Z
) 10z-Tameju☆ (52) From this equation (52), (38), and (42), (46),
Add equations (50) and (53) together and rearrange them,
(chiju; ten 壬)E.

こ窯こJX2LU+XLU‐XLW十だ…(5心EO=
E寿き麦拳毒殺手斧桜;拳努法拳法W (55)さらに
、(54)式及び(50)式から、&=(志十;十ュ)
E。
This kiln is JX2LU+XLU-XLW ten…(5 hearts EO=
E-juki Mugiken Poison Killing Hatchet Cherry Blossom; Kentempo Kempo W (55) Furthermore, from formulas (54) and (50), &= (Shijyu; Juyuu)
E.

‐(志十支)EOXLW ELQ2LU十XLU,XLW+X2LWXLU,XL
wJがLU+XLU.XLw十X2Lw・ Eし〆
2LU+磯山・XLw+が2肌 −
滋2L −Eo偽〆LU+X小幅応崎凧十
ノ器岬LU+XぷM禍ふこれを整理して、Eo
EL(水2LU+松LU・XLU+X2LwXLw が
肌〆LU+XLw)JXLU+XLU・XLw+X2肌
刺瞳ご 舷ふ X2LU−4×2Lu+XLU・
XLw+X2Lw)(56)餌L〆3LU+X2LU・
XLw−XLU・X2肌‐Xもw)一がLU.XLw(
XLU十X肌)JX2山十XLU・XLw十X乙肌式(
56),(50)を用いて(志‐史十字)E。
-(Shijushi) EOXLW ELQ2LU1XLU, XLW+X2LWXLU, XL
wJ is LU+XLU. XLw ten
Shigeru 2L -Eo False〆LU +
EL (Water 2LU + Pine LU・XLU+X2LwXLw is skin 〆LU+XLw) JXLU+XLU・XLw+X2 skin pierced eyes Gunf X2LU-4×2Lu+XLU・
XLw+X2Lw) (56) Bait L〆3LU+X2LU・
XLw-XLU・X2 skin-X also w) One is LU. XLw(
XLU 10X Skin) JX2 Mountain 10XLU/XLw 10X Skin Type (
56), using (50) (shi-shijuji) E.

3E2L 十2ノ鏡‐父x2LU+xLU・XLWMLW)EL〆
2山一X2肌)一XLU・XLWJX2LU+XLU・
XLW+Xz肌十2ゾ法似2小浦馬LW+x2LW(5
7)式(50)を変形してE。
3E2L Twelve Mirrors - Father x2LU+xLU・XLWMLW)EL〆2Mountain1X2Skin)1XLU・XLWJX2LU+XLU・
XLW +
7) Transform Equation (50) to obtain E.

EL〆LU+2XLwXLU−泌LUJXLU
+XLU・XLw+X乙肌− 細2L‐ノ畔雌U
+xLU・MX2LW) E仇U+汎w2 E。
EL〆LU+2XLwXLU-secretLUJXLU
+XLU・XLw+X Otsuhada- Thin 2L-Nohan female U
+xLU・MX2LW) E enemy U + general w2 E.

=2〉×2LU+×山・X肌+LWJ 郷 − E2Uv−父X2LU+XLU.XLW+X2LW
)この式(58)と式(55)とからX2しU+XLU
・XしW+X2LW E2Uv=E2L・Xo(XしU‐×LW+XLU.ふ
十XLw‐ベアE2L・ふ〆LU+2×LwXLU,X
LW+XLU,ふ十XLW,ふ十E2LEし.XLU」
X2肌十XLW.ふ十X。
=2〉×2LU+×Mountain/X skin+LWJ Go-E2Uv-Father X2LU+XLU. XLW+X2LW
) From this formula (58) and formula (55), we get X2 and U+XLU
・Xshi W +
LW+XLU, Fuju XLW, Fuju E2LE. XLU”
X2 skin ten XLW. F1X.

2 (59DEUv=x山.xLW+×LU.ふ十X
Lw・ふEvwもEUvと同様にして求めることができ
る。
2 (59DEUv=x mountain.xLW+×LU.Fu
Lw・FEvw can also be obtained in the same manner as EUv.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る穣地形計器用変圧器装
置の回路構成図、第2図、第3図、第4図は第1図に示
した回路の動作を説明する為のべクトル図、第5図は本
発明の他の実施例に係る接地形計器用変圧器装置の部分
回路構成図、第6図は各電圧と各インピーダンスとの関
係式の導出過程を説明するための説明図である。 1・・・接地形計器用変圧器、2・・・5脚鉄心、3,
4,5…1次コイル、6,7,8…2次コイル、9,1
0,11・・・3次コイル、13・・・低電圧リレー、
15,16…追加リアクトル、18,19…追加コンデ
ンサ。 多Z図 拝2図 鷲3図 溝4図 多5図 鍔6図
FIG. 1 is a circuit configuration diagram of an instrument transformer device for flat terrain according to an embodiment of the present invention, and FIGS. 2, 3, and 4 are diagrams for explaining the operation of the circuit shown in FIG. 1. A vector diagram, FIG. 5 is a partial circuit configuration diagram of a ground voltage instrument transformer device according to another embodiment of the present invention, and FIG. 6 is a diagram for explaining the process of deriving the relational expression between each voltage and each impedance. FIG. 1... Grounded instrument transformer, 2... 5 leg iron core, 3,
4, 5...Primary coil, 6,7,8...Secondary coil, 9,1
0,11...Tertiary coil, 13...Low voltage relay,
15, 16...Additional reactor, 18, 19...Additional capacitor. Ta-Z zuhai 2 eagle 3 groove 4 tazo 5 tsuba 6

Claims (1)

【特許請求の範囲】[Claims] 1 次側及び2次則がY接続され、3次側が開放Δ接続
されると共に1次側の中性点が3相電源の中性点に対し
て電気的に固定されて使用される接地形計器用変圧器と
、この接地形計器用変圧器の2次側の2組の線間に接続
される低電圧リレーと、前記接地計器用変圧器の3次側
開放端間に接続される低力率の3次負担と、前記低電圧
リレーにそれぞれ並列に接続されたリアクトルと、前記
3次負担に並列に接続されたリアクトルまたはコンデン
サからなるインピーダンス素子とを備え、前記2次側の
両リアクトルのリアクタンス及び3次側のインピーダン
ス素子のリアクタンスが、前記計器用変圧器の1次側1
相欠相時に前記両低電圧リレーが接続されている線間の
線間電圧の一方のみがその低電圧リレーの整定電圧以下
になるように設定されていることを特徴とす接地形計器
用変圧器装置。
A grounding configuration in which the primary and quadratic sides are Y-connected, the tertiary side is open Δ-connected, and the neutral point on the primary side is electrically fixed to the neutral point of the three-phase power supply. a potential transformer, a low voltage relay connected between two sets of lines on the secondary side of the grounded potential transformer, and a low voltage relay connected between the open ends of the tertiary side of the grounded potential transformer; A tertiary power factor burden, a reactor connected in parallel to each of the low voltage relays, and an impedance element consisting of a reactor or a capacitor connected in parallel to the tertiary burden, and both reactors on the secondary side and the reactance of the impedance element on the tertiary side are the primary side 1 of the potential transformer.
A grounded instrument transformer, characterized in that, in the event of a phase loss, only one of the line voltages between the lines to which both of the low voltage relays are connected is set to be equal to or lower than the set voltage of the low voltage relay. equipment.
JP53067923A 1978-06-06 1978-06-06 Grounded instrument transformer device Expired JPS6022569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53067923A JPS6022569B2 (en) 1978-06-06 1978-06-06 Grounded instrument transformer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53067923A JPS6022569B2 (en) 1978-06-06 1978-06-06 Grounded instrument transformer device

Publications (2)

Publication Number Publication Date
JPS54158647A JPS54158647A (en) 1979-12-14
JPS6022569B2 true JPS6022569B2 (en) 1985-06-03

Family

ID=13358913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53067923A Expired JPS6022569B2 (en) 1978-06-06 1978-06-06 Grounded instrument transformer device

Country Status (1)

Country Link
JP (1) JPS6022569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319379U (en) * 1986-07-24 1988-02-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319379U (en) * 1986-07-24 1988-02-08

Also Published As

Publication number Publication date
JPS54158647A (en) 1979-12-14

Similar Documents

Publication Publication Date Title
Shah et al. New adaptive digital relaying scheme to tackle recloser–fuse miscoordination during distributed generation interconnections
Didier et al. A novel approach to determine the optimal location of SFCL in electric power grid to improve power system stability
Kimbark Selective-pole switching of long double-circuit EHV line
Wheeler et al. Use of superconducting fault current limiters for mitigation of distributed generation influences in radial distribution network fuse–recloser protection systems
Funmilayo et al. An approach to mitigate the impact of distributed generation on the overcurrent protection scheme for radial feeders
CN108418236A (en) A kind of flexibility multimode switch AC fault ride-through method
Ghanbari et al. New approach to improve sensitivity of differential and restricted earth fault protections for industrial transformers
Hojjaty et al. Intelligent protection coordination restoration strategy for active distribution networks
Liao et al. Evaluation of voltage imbalance on low‐voltage distribution networks considering delta‐connected distribution transformers with a symmetrical NGS
Jhuma et al. Hybrid islanding detection technique for distribution network considering the dynamic behavior of power and load
JPS6022569B2 (en) Grounded instrument transformer device
Khan et al. Analysis of ferroresonance suppression and transient response performances for various ferroresonance suppression circuits in capacitive voltage transformers
CN109510168A (en) Mode of connection, the apparatus and system of voltage transformer
Tarko et al. Temporary overvoltages in high‐voltage power systems caused by breaks of circuit continuity during single‐phase earth faults
CN104521129B (en) Inverter in parallel on choke
Kovač Translating CIM model to bus-branch model
Horton et al. Unbalance protection of fuseless, split-wye, grounded, shunt capacitor banks
Solak et al. Modeling and analysis of the single-core phase shifting transformer and its differential protection
Mork et al. Leakage inductance model for autotransformer transient simulation
Ehrenberger et al. Nelder Mead method used in protection setting optimization
US2020972A (en) Protective arrangement for electric systems
Hu et al. Improved active and reactive power control for symmetrical bipolar MMC‐HVDC systems during DC side PTG fault
Salam et al. Symmetrical and unsymmetrical faults
Hafidz et al. Optimal placement of resistive superconducting fault current limiter by considering short‐circuit current and transient stability of power system
Sravani et al. Improvement of Power System Stability Using SFCL in Electric Power Grid under Voltage Unbalance conditions