JPS60225619A - Liquid filter material - Google Patents

Liquid filter material

Info

Publication number
JPS60225619A
JPS60225619A JP8015684A JP8015684A JPS60225619A JP S60225619 A JPS60225619 A JP S60225619A JP 8015684 A JP8015684 A JP 8015684A JP 8015684 A JP8015684 A JP 8015684A JP S60225619 A JPS60225619 A JP S60225619A
Authority
JP
Japan
Prior art keywords
fibers
liquid
particles
perforated material
charged substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8015684A
Other languages
Japanese (ja)
Inventor
Yoshimi Oshitari
忍足 義見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8015684A priority Critical patent/JPS60225619A/en
Publication of JPS60225619A publication Critical patent/JPS60225619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inexpensive filter material having high removal efficiency, by adsorbing and removing particles having a small particle size by the electrostatic adsorbing action of a perforated material to which a charged substance was adhered. CONSTITUTION:In using a fiber as the constitutional material of a perforated material 3, a polyester fiber 1 with a thickness of 0.1 denier and a polyester fiber with a thickness of 1.1 denier melted at about 200 deg.C are mixed in a ratio of 8:2 and the resulting mixture is formed into the perforated material 3 having a basis wt. of 50-150g/m<2> by a papermaking process and heated to mutually adhere the fibers. As a charged substance, aluminium hydroxide, iron oxide or a high-molecular flocculant are used. In the case aluminum hydroxide, the perforated material 3 is impregnated with a 1-10% aluminum chloride solution and, after the impregnated one is dehydrated so as to leave about 200% of said slution, neutralization treatment is applied thereto by sodium carbonate to form aluminum hydroxide particles which are, in turn, adhered to the surfaces of the fibers by the charge thereof.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は液体中に含有される粒子を除去するための濾過
材に関するもので、著しく高い除去効率をもつ濾過材の
提供を目的とするものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a filter material for removing particles contained in a liquid, and provides a filter material with extremely high removal efficiency. The purpose is to

(従来の技術) LSI半導体素子など、製造過程における粉塵の付着が
、性能の大きな低下や寿命の短縮などにつながるものに
おいては、製造環境における空気の浄化と、半導体基板
その他の洗浄に使用される水の浄化が強く要求されるが
、特に最近におけるような素子の一層の小型化は、一層
高度な空気と水の浄化を要求する。これに対して種々の
研究がなされ、空気の浄化に対しては本発明者により、
その要求を満足するに足る例えは集塵効率が99999
9%以上、即ちは”、’] 00%でありしかも著しく
高い集塵効率をもちながらも、辻力損失が従来の高性能
のものと殆ど変らないか、それ以下の極めて実用的な空
気接紙が実現され、上記半導体製造工業のみならず放射
性排気の無放射能化など、各種の用途に大きな貢献を及
ぼしている。
(Conventional technology) For products such as LSI semiconductor devices, where dust adhesion during the manufacturing process can significantly reduce performance or shorten life, it is used to purify the air in the manufacturing environment and to clean semiconductor substrates and other objects. Although there is a strong demand for water purification, the recent miniaturization of devices in particular requires even more sophisticated air and water purification. Various studies have been conducted in this regard, and the present inventor has conducted research on air purification.
An example that satisfies this requirement is a dust collection efficiency of 99999.
9% or more, that is, ",'] 00%, and although it has extremely high dust collection efficiency, it is an extremely practical air contact with a cross-section force loss that is almost the same as or less than that of conventional high-performance products. The paper has made a major contribution not only to the semiconductor manufacturing industry mentioned above, but also to a variety of other uses, such as making radioactive exhaust air non-radioactive.

(従来技術の問題点) しかし水の浄化における現在の技術では、成る粒径以下
の微粒子の除去は不可能であって浄化に限界のあること
、製造が面倒であって価額が高いため、目詰りによる濾
過材の交換などに要する保守管理費が高額になること、
圧力損失が著しく高くなって被浄化液体の送給が困難に
なl)、処理速度を著しく遅くするなど不満足な現状に
ある。
(Problems with the prior art) However, with the current technology for water purification, it is impossible to remove fine particles smaller than the particle size of The maintenance costs required for replacing filter media due to clogging are high;
The present situation is unsatisfactory, as the pressure drop becomes extremely high, making it difficult to feed the liquid to be purified (1), and significantly slowing down the processing speed.

即ち液体の濾過材として現在までに開発されているもの
は、金属粒の焼結体、セルローズ、合成樹脂、アスベス
トなどの繊維を抄紙したもの、更には合成樹脂フィルム
に電子線により孔を明けたり、合成樹脂フィルムの製造
時発泡側を混入し、これを加熱することにより脱泡して
孔を明けた所謂ボアタイプであ【〕、その原理は除去し
ようとする粒子の粒径よl)小さい孔を作り、これによ
って粒子の通過を明止して除去しようとするものである
。しか、し焼結金属によるものでは金属粒子の大きさに
もとづく制限から、また繊維によるのでは繊維の径を成
る太さ以下に作ることができないことにもとづく制約か
ら、要求を満足させるような微粒子の通過■止孔を作り
得す、要求された除去効率をもつ濾過材を作【〕得ない
。そこで現状では合成樹脂フィルム孔を明けたものか主
流となりっ△ つあるが、これとて孔明は技術上の制約から孔の径を現
在以下に小さくすることができない。従って現在以上の
除去効率は望み得ないば力口〕か、仮に孔明けが実現さ
れたとしても、孔の径が小さくなれはなる程圧力損失は
著しく犬となl)、この方式では圧力損失の面から達成
できる除去効率には限界がある。また液体濾過材におい
ては濾過材を通った液体中の粒子が、零になることが最
終的な理想であるが、除去すべき粒子よl)小さい径の
孔を設けて粒子の通過なド■止する原理のものでは、孔
をなくさない限り零には出来す、これでは液体の流通が
できなくなって、液体濾過材としての機能を根本的に喪
失する。従ってこの従来方式の考え方では圧力損失が低
く、しかも除去効率がコ00%の液体濾過材の実現は原
理的に不可能である。
In other words, the liquid filtration materials that have been developed to date include sintered metal particles, paper made from fibers such as cellulose, synthetic resin, and asbestos, and synthetic resin films with holes made with electron beams. This is the so-called bore type, in which foamed material is mixed in during the production of synthetic resin film, which is degassed by heating to form pores. The aim is to create a filter that clearly blocks the passage of particles and removes them. However, when using sintered metal, there are restrictions based on the size of the metal particles, and when using fibers, there are restrictions based on the fact that the diameter of the fibers cannot be made smaller than the specified thickness. It is not possible to create a filter medium with the required removal efficiency that can create a hole for the passage of water. Therefore, at present, the mainstream is a synthetic resin film with holes, but due to technical constraints, Komei cannot make the hole diameter smaller than the current size. Therefore, it is impossible to hope for a removal efficiency higher than the current level; or even if drilling were to be achieved, the pressure loss would be significantly lower as the diameter of the hole becomes smaller. There are limits to the removal efficiency that can be achieved. In addition, in the case of liquid filter media, the final ideal is for the particles in the liquid that pass through the filter to be reduced to zero, but holes with a diameter smaller than the particles to be removed are provided to prevent particles from passing through. In the case of filters based on the principle of filtering, it is possible to reduce the flow to zero unless the pores are removed, which would make it impossible for liquid to flow and fundamentally lose its function as a liquid filtering material. Therefore, with this conventional approach, it is theoretically impossible to realize a liquid filter material with low pressure loss and 00% removal efficiency.

本発明は」―記のように現在の技術では実現が困伽であ
る高性能でしかも安価な液体濾過材を実現し、前記半導
体素子の洗浄水の高度の浄化による性能の向上、更には
放射性廃液の無放射能化による公害防1にの万全などに
寄与しうるようにしたものである。次に図面を用いて本
発明の詳細な説明する。
The present invention realizes a high-performance and inexpensive liquid filtration material that is difficult to realize with current technology, improves performance by highly purifying the washing water for semiconductor devices, and further improves radioactivity. This system is designed to contribute to thorough pollution prevention by making waste liquid radioactive. Next, the present invention will be explained in detail using the drawings.

〔発明の構成〕[Structure of the invention]

3− (問題点を解決するための手段および作用)本発明の特
徴とするところは、微粒子の除去を液流通孔のみに頼る
という従来の固定観念を打破してなされたものである。
3- (Means and effects for solving the problems) The present invention is characterized by breaking away from the conventional fixed idea that the removal of fine particles relies only on liquid flow holes.

即ち成る粒径以」二の粒子については、その粒径以下の
径をもつ有孔第2の液流通孔によ番)通過を阻止して除
去し、液流通孔を通過する粒径の粒子については、有孔
材にもたせた荷電物質例えば活性化されて電荷をもつ水
酸化アルミニウム、水酸化鉄などの無機物質や、高分子
凝集剤例えばポリアクリルアミド系、アクリル酸エステ
ル系、アルギン酸ソーダの有機物質がもつ静電的な吸着
作用の利用により吸着除去するようにして、機械的と静
電的な両件用により目的を達成できるようにしたことを
特徴とするものであって、有孔材としては抄紙繊維、金
属焼結体、金網などを必要に応じて使用でき、これへの
荷電物質の付着は例えば次の方法によって行われる。
In other words, particles with a particle size smaller than or equal to the particle size are removed by blocking the second liquid flow hole having a diameter smaller than the particle size, and particles with a particle size that passes through the liquid flow hole are removed. For example, charged substances such as activated and charged inorganic substances such as aluminum hydroxide and iron hydroxide, and organic polymer flocculants such as polyacrylamide, acrylic ester, and sodium alginate can be used. It is characterized by being able to achieve the purpose by using both mechanical and electrostatic properties, by adsorbing and removing substances by utilizing the electrostatic adsorption effect of the substance. Paper fibers, metal sintered bodies, wire mesh, etc. can be used as necessary, and the charged substance can be attached to these by, for example, the following method.

有孔材の構成材として繊維を使用する水濾過材の場合に
は、0.1デニールの太さのポリエステル繊維と、約2
00″Cで溶融する太さ1.1デニール 4− のポリエステル繊維とを、8:2の割合(重阻比)で混
合して50〜]−50gr/ rri’に抄紙したもの
を加熱して繊維相互を接着した有孔材を形成する。
In the case of water filtration media that uses fibers as the constituent material of the porous material, polyester fibers with a thickness of 0.1 denier and approximately 2
Polyester fibers with a thickness of 1.1 denier 4- which melt at 00''C are mixed at a ratio of 8:2 (weight ratio) to form a paper of 50~]-50gr/rri' and then heated. A porous material is formed by bonding the fibers together.

次にこれに金属塩である例えばアルミ酸ナトリウム、或
いは塩化アルミニウムなどの]〜10%溶液を含浸させ
て、約200%有孔材に残るように吸水脱水したのち、
これを例えはアルカリ性をもつ炭酸ナトリウムにより中
和処理して、荷電された水酸化アルミニウム粒子を生成
し、その電荷により繊維の表面によく付着させ、最後に
よく水洗して濾過時流れ出さないように残った無機物質
を除去する。
Next, this is impregnated with a ~10% solution of a metal salt such as sodium aluminate or aluminum chloride, and after absorbing and dehydrating it so that about 200% remains in the porous material,
For example, this is neutralized with sodium carbonate, which has alkaline properties, to generate electrically charged aluminum hydroxide particles, which adhere well to the surface of the fibers due to their charge, and are then thoroughly washed with water to prevent them from flowing out during filtration. Remove remaining inorganic substances.

また例えば水酸化鉄を繊維の表面に付着させる場合には
、例えば硫酸鉄の1〜10%水溶液中に抄紙した繊維を
入れて含浸させたのち、炭酸ナトリウムにより中和して
繊維の表面に荷電した水酸化鉄を付着させ、最後によく
水洗することによって行われるが、これらの場合中和反
応により荷電された水酸化アルミニウム粒子が生成され
るのであるから、中和反応が長時間持続するように中和
剤の性質濃度などを選定して荷電を強くし、吸着性能を
高めるように考慮することが重要である。
For example, when attaching iron hydroxide to the surface of fibers, for example, the paper-made fibers are impregnated with a 1 to 10% aqueous solution of iron sulfate, and then neutralized with sodium carbonate to charge the surface of the fibers. This is done by depositing iron hydroxide on the aluminum hydroxide, followed by thorough washing with water. In these cases, the neutralization reaction produces charged aluminum hydroxide particles, so it is necessary to ensure that the neutralization reaction lasts for a long time. It is important to consider the characteristics and concentration of the neutralizing agent to strengthen the charge and improve the adsorption performance.

また有機物の凝集剤を用いて有孔材に荷電性をもたせる
場合には、凝集剤として水に離溶性のものを選定するの
がよい。
Further, when an organic flocculant is used to impart chargeability to the porous material, it is preferable to select a flocculant that is soluble in water.

このようにすれば有孔材における液流通孔の径を、所望
の圧力損失が得られるように選定しながら、高度の除去
作用を得ることができ、静電的な吸着作用が万全であれ
ば原理的には低圧力損失であって、濾過材通過後の液中
の粒子の数を零にできる濾過材を提供できる。また有孔
材に荷電物質を付着させればよく、従来のように合成樹
脂フィルムに小さい孔をあけるような面倒な方法をとる
必要がないので、高い除去効率をもつ液体濾過材を安価
に供給でき、濾過材の交換などに要する費用を少なくで
きる。次に本発明の実施例について説明する。
In this way, it is possible to obtain a high degree of removal action while selecting the diameter of the liquid flow hole in the porous material so as to obtain the desired pressure loss, and if the electrostatic adsorption action is perfect, then In principle, it is possible to provide a filter material that has low pressure loss and can reduce the number of particles in the liquid after passing through the filter material to zero. In addition, it is only necessary to attach a charged substance to a porous material, and there is no need to use the conventional method of making small holes in a synthetic resin film, so we can provide a liquid filtration material with high removal efficiency at a low cost. This reduces the cost of replacing filter media. Next, examples of the present invention will be described.

(実施例) 図に示すように0.1デニ一ルポリエステル繊維80%
(重量比)(1)と、200℃で溶融するバインダ用l
]デニールポリエステル繊維20%(重量比)(2)を
、50 gr/ m2で抄紙し加熱して、0]デニ一ル
ポリエステル繊維間を接着した有孔材(3)を形成する
。そしてこれにアルミ酸ナトリウムの1%水溶液を含浸
させて、濾過材に約200%残るように脱水する。次に
炭酸すトリウムにより中和して、水酸化アルミニウム層
(4)を繊維の表面に付着させたのち、繊維の表面に不
安定な状態で存在する無機物を水洗により除去して、濾
過時無機物が流れ出すのを防1にする。
(Example) As shown in the figure, 80% 0.1 denier polyester fiber
(weight ratio) (1) and l for binder that melts at 200℃
] Denier polyester fibers 20% (weight ratio) (2) are made into paper at 50 gr/m2 and heated to form a porous material (3) in which the denier polyester fibers are bonded together. Then, this is impregnated with a 1% aqueous solution of sodium aluminate and dehydrated so that about 200% remains in the filter medium. Next, the aluminum hydroxide layer (4) is attached to the surface of the fibers by neutralization with sodium carbonate, and the inorganic substances existing in an unstable state on the surface of the fibers are removed by washing with water. 1 defense against flowing out.

第1表は一]二記のように作られた本発明濾過材と、本
発明と同等の繊維を用いて作られた水酸化アルミニウム
を付着させない従来の濾過材とをそれぞれ]0枚重ね、
これにそれぞれ第2表に示すような粒子が混入した( 
]、 Oc c当りの混入数)、半導体基板切断に使用
された冷却水を濾過面積]d当り0.04 l/ mi
nの流速で通した結果を対比したものである。これから
明らかなj;うに、従来の場合濾過材は表面の色が]0
枚共に褐色または薄褐色に着色されて、濾過材を通過し
た液体中に粒 7− 8− 子が存在することを示している。しかし本発明の場合に
は」一部の2枚の濾過材のみが褐色または薄褐色に着色
されるが、他の8枚は着色されず濾過材を通過した液体
中の粒子が零であるか、または極めて少ないことを示し
ている。またテンダル式の粒子測定器を用いて濾過材を
通過した液体中の粒子を、粒径が05μのものについて
計数したところ、従来の濾過材では]、 Oc c中の
粒子の数(]O回の測定の平均)は約]万箇であったの
に対し、本発明濾過材では約10箇であって、本発明の
ものが極めて高い除去率をもっことが判る。また従来の
濾過材で流速0.04e/minにおける濾過面積1c
r!当りの初期圧力損失は0. I Kpであるに対し
、本発明では0.15 Kfであって、実用的な範囲内
に収まっていることを示している。しかし本発明におけ
る圧力損失の増大は、表面に付着させた水酸化アルミニ
ウムによ)l、液流通孔が小さくなることによって生じ
たものである。従って水酸化アルミニウムを付着させた
状態において、液流通孔の径が従来のものと同等となる
ように、有孔体を形成する繊維の太さを変えてやれば、
圧力損失を従来のものと同等とすることができる。また
繊維の太さと荷電物質の付着厚さを調節することにより
、更に低圧損にすることもできる。
Table 1 shows that the filtration material of the present invention made as described in 1) and 2 and the conventional filtration material to which aluminum hydroxide does not adhere, which is made using fibers equivalent to those of the present invention, are laminated, respectively.
Particles as shown in Table 2 were mixed into these (
], number of contaminants per Oc c), filtration area of cooling water used for cutting semiconductor substrates] 0.04 l/mi per d
This is a comparison of the results obtained when the sample was passed at a flow rate of n. It is clear from this that the surface color of the conventional filter material is 0
Both sheets are colored brown or light brown, indicating the presence of particles in the liquid that has passed through the filter medium. However, in the case of the present invention, only some of the two filter media are colored brown or light brown, while the other eight filter media are not colored and the particles in the liquid that have passed through the filter media are zero. , or very few. In addition, when we counted the particles in the liquid that passed through the filter medium using a Tendal-type particle measuring device with a particle size of 05μ, we found that with the conventional filter medium, the number of particles in Oc c (]O times The average of the measurements was about 10,000 points, whereas the filter material of the present invention had about 10 points, which shows that the filter material of the present invention has an extremely high removal rate. Also, with the conventional filter material, the filtration area is 1c at a flow rate of 0.04e/min.
r! The initial pressure loss per unit is 0. I Kp, whereas in the present invention it is 0.15 Kf, which is within a practical range. However, the increase in pressure loss in the present invention is caused by the aluminum hydroxide attached to the surface and the smaller liquid flow holes. Therefore, if the thickness of the fibers forming the porous body is changed so that the diameter of the liquid flow hole is the same as that of the conventional one when aluminum hydroxide is attached,
Pressure loss can be made equal to that of the conventional method. Furthermore, by adjusting the thickness of the fibers and the thickness of the charged substance attached, it is possible to further reduce the pressure loss.

以」二本発明について説明したが、濾過すべき液の性質
によっては、付着させる荷電物の性質および有孔材の材
質を選定することによl)、被濾過液による荷電物質の
脱落や有孔体が溶けるのを防いで、油やアルカリ液など
の水以外の液の濾過を、高い除去効率のもとて行いつる
As described above, the present invention has been described in two ways. Depending on the properties of the liquid to be filtered, by selecting the properties of the charged substance to be attached and the material of the porous material, it is possible to prevent the charged substances from falling out or forming By preventing the pores from dissolving, it is possible to filter liquids other than water, such as oil and alkaline liquid, with high removal efficiency.

(考案の効果) 以上の説明から明らかなように、本発明によれば高い除
去効果をもちながら低圧力損失、しかも安価な液体濾過
材を提供しつるもので、半導体製造などにおける高度な
水の浄化に大きな寄与をなすものである。
(Effects of the invention) As is clear from the above explanation, the present invention provides a liquid filter material that has a high removal effect, low pressure loss, and is inexpensive. It makes a major contribution to purification.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明液濾過体の構成概略図である。 (1)・・・・主構成繊維、 (2)・・・・バインダ用繊維、 (3)・・・・有孔材、 (4)・・・・荷電物質層。 特許出願人 忍 足 義 見 11− −12〜 手 続 補 正 書(方式) %式% I 事件の表示 特願昭59.−80156号 2 発明の名称 液体濾過材 38 補正をする者 事件との関係 出願人 忍 足 義 見 4、代理人 東京都新宿区西新宿]、−23−1 5補正指令の日付 昭和59年7月31日 (発送) 6、補正の対象 明細書の「発明の詳細な説明」の欄 The figure is a schematic diagram of the structure of the liquid filtration body of the present invention. (1) Main constituent fibers, (2) Fiber for binder, (3) ... Perforated material, (4)...Charged substance layer. Patent applicant Yoshimi Shinobu 11- -12~ Supplementary Procedures (Method) %formula% I Incident display Special application 1984. -No. 80156 2 Name of the invention liquid filtration media 38 Person who makes amendments Relationship to the case: Applicant Shinobi Ashigi See 4. Agent Nishi-Shinjuku, Shinjuku-ku, Tokyo], -23-1 5 Date of amendment order July 31, 1980 (shipped) 6. Subject of correction “Detailed description of the invention” column in the specification

Claims (1)

【特許請求の範囲】[Claims] 有孔材に荷電物質を付着させ、有孔材の液流通孔により
その径より大きい液中の粒子の通過を明止し、液流通孔
を通過する粒径の粒子を上記荷電物質により吸着して濾
過組上に捕捉することを特徴とする液体濾過材。
A charged substance is attached to a porous material, the liquid flow holes of the porous material make it clear that particles in the liquid larger than the diameter of the hole pass through, and the particles having a particle size that passes through the liquid flow holes are adsorbed by the charged substance. A liquid filtration material characterized in that the liquid is captured on a filtration assembly.
JP8015684A 1984-04-23 1984-04-23 Liquid filter material Pending JPS60225619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8015684A JPS60225619A (en) 1984-04-23 1984-04-23 Liquid filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8015684A JPS60225619A (en) 1984-04-23 1984-04-23 Liquid filter material

Publications (1)

Publication Number Publication Date
JPS60225619A true JPS60225619A (en) 1985-11-09

Family

ID=13710435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8015684A Pending JPS60225619A (en) 1984-04-23 1984-04-23 Liquid filter material

Country Status (1)

Country Link
JP (1) JPS60225619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206586A1 (en) * 2020-04-06 2021-10-14 Общество С Ограниченной Ответственностью "Аквафор" (Ооо "Аквафор") Filter material and personal protective means based thereon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206586A1 (en) * 2020-04-06 2021-10-14 Общество С Ограниченной Ответственностью "Аквафор" (Ооо "Аквафор") Filter material and personal protective means based thereon

Similar Documents

Publication Publication Date Title
TWI412395B (en) Uses of fibrillated nanofibers and the removal of soluble, colloidal, and insoluble particles from a fluid
CA1142452A (en) Purification of liquids with treated filter aid material and active particulate material
CA2519235C (en) Filter media with enhanced microbiological interception capability
JP2005515880A5 (en)
US20190344289A1 (en) Electrostatic removal of colloidal, soluble and insoluble materials from a fluid
JP2011056343A (en) Valuable resource recovery system and method for operation thereof
JP4880929B2 (en) Composite structure and filter using the same
JP5933771B2 (en) Activated carbon sheet for water purification and water purification filter
JP5745865B2 (en) Activated carbon sheet for water purification and water purification filter
US3880754A (en) Filtering with polyacrylonitrile or polyamide fibers as filter aid
JPS60225619A (en) Liquid filter material
US3577339A (en) Filtration method of separating liquids from extraneous materials
KR20200064593A (en) Filter for non-electric power gravity type water purifier
JPS63273093A (en) Condensate purifier
JPH0360710A (en) Filter medium for purifying air
IL31867A (en) Improved hyperfiltration process
JP2018054610A (en) Radioactive material adsorbing functional non-woven fabric and method for manufacturing the same
CN108126529B (en) Filter membrane material attached with nano sponge adsorption material and preparation method thereof
CN111701339A (en) Multi-scale positively charged composite filter material and preparation method thereof
JPH0360711A (en) Filter medium for purifying air
Risch et al. The Separation Power of Highly Porous 3D Nanofiber Sponges
JPH0966296A (en) Water treatment method and apparatus
Tepper et al. High Performance Turbidity Filter
JPH01262914A (en) Filter medium
RU2036698C1 (en) Absorbing filtering material and method of its production, method of separation of gases from radioactive substances