JPS6022507B2 - charge transfer device - Google Patents

charge transfer device

Info

Publication number
JPS6022507B2
JPS6022507B2 JP48071715A JP7171573A JPS6022507B2 JP S6022507 B2 JPS6022507 B2 JP S6022507B2 JP 48071715 A JP48071715 A JP 48071715A JP 7171573 A JP7171573 A JP 7171573A JP S6022507 B2 JPS6022507 B2 JP S6022507B2
Authority
JP
Japan
Prior art keywords
charge
electrode
transfer
substrate
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48071715A
Other languages
Japanese (ja)
Other versions
JPS5022584A (en
Inventor
英夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP48071715A priority Critical patent/JPS6022507B2/en
Priority to NL7404581A priority patent/NL7404581A/xx
Publication of JPS5022584A publication Critical patent/JPS5022584A/ja
Publication of JPS6022507B2 publication Critical patent/JPS6022507B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は、電荷移送装置、特に高移送効率および耐雰囲
気性の高い安定な電荷移送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge transfer device, and particularly to a stable charge transfer device with high transfer efficiency and high resistance to atmosphere.

一般に電荷移送装置(Char群 Tramfer比v
ice)には、電荷結合素子(ChargeCoupl
eddevice)と、表面電荷トランジスタ(Smf
aceChar群Twnsistor)と、バケツリレ
ー形素子(BucketBri鉾de比vice)とが
含まれる。
Generally, a charge transfer device (Char group Transfer ratio v
ice) includes a charge-coupled device (ChargeCoupl).
eddevice) and surface charge transistors (Smf
It includes aceChar group Twnsistor) and a bucket brigade type element.

このうち、電荷結合素子は、半導体表面に薄い絶縁膜を
設け、更にその絶縁膜上に多数の電極を配設した新規な
構造を有するもので、これについてはすぐに発表されて
いる。(The技11S松temTechnicaIJ
oumal.Apm.1970.斑7頁乃至600頁、
表題「Char袋 Coupled Semi con
ductorDevices」と「Expenmenは
IVerjficationoftheChar袋Co
upledDeviceConcept」)上記素子は
電極に正または負の電圧を印加することによって半導体
基板中における少数キャリア‐である電荷に対する電位
の井戸(Poにntialwell)を形成し、この電
位の井戸に上記電荷を貯え、この貯えた電荷を上記電極
下の半導体基板表面を次々と移送する動作機構をもつ。
本発明の理解を容易ならしめるため、更に従来の電荷結
合素子について言及する。
Among these, the charge-coupled device has a novel structure in which a thin insulating film is provided on the semiconductor surface and a large number of electrodes are further disposed on the insulating film, and this is being announced soon. (The technique 11S pine temTechnicaIJ
oumal. Apm. 1970. Spots 7 pages to 600 pages,
Title: ``Char Bag Coupled Semi con
ductorDevices” and “Expenmen IVerjficationoftheChar Bag Co
The device applies a positive or negative voltage to the electrodes to form a potential well (ntial well at Po) for charges that are minority carriers in the semiconductor substrate, and stores the charges in this potential well. , has an operating mechanism that sequentially transfers the stored charge to the surface of the semiconductor substrate below the electrode.
To facilitate understanding of the present invention, further reference will be made to a conventional charge coupled device.

第1図は技11研究所において最初に発表された基本の
3相の電荷結合素子の動作を示す。
Figure 1 shows the operation of the basic three-phase charge-coupled device first announced at the Technical Research Institute.

半導体基板1の上に通常500A〜3000△程度の薄
い絶縁膜2を介して電極3が極く近接して多数配設され
ている。その動作機構は、まず適当な電極3に正あるい
は負の電圧Vcを印加して電極3の基板表面に電荷4を
貯える。次にこのVGを低くしつつこの電極に隣合った
電極3にVcなる電圧を印加する。こうすることによっ
て先の電極3下の基板表面部に貯えられなくなった電荷
4は上記の隣接した電極3下の基板表面部下に移動を始
める。これを順次くりかえして電荷4を移送し、ドレィ
ン電源7によって逆方向バイアスされた基板と逆の導電
性をもつドレィン5によって集め、ドレィン電極6を通
じて負荷抵抗8の両端の電圧として検出する。移送電荷
4の注入法は照射光による光譲起電荷を集める方法や第
1図に示したように、基板と逆の導電性をもつソース9
からソース電極10を通じて電荷を注入する方法などが
ある。この電荷移送素子の電荷移送は電荷を有した粒子
の拡散によって行われ基本的な電荷移送素子では外部電
界を有しないので、粒子自体のもつ電荷による自己譲起
加速電界(self−induced−dmt−fie
ld)によって移動は行われる。その故電荷密度が高い
移動初期程移動は速やかに行われるが、移動の後半にお
ける低い電荷密度のときには移動はそれに従って遅くな
る。特に移動の最後では自己誘起加速電界による移動よ
りむしろ熱拡散(thermaldiffusion)
による移動がまさる。通常の移送電荷密度2〜5×1び
2ケ/仇においてはその99%は自己誘起加速電界によ
って移動し、残りの1%は熱拡散によって移動は行なわ
れる。(JoumalofAppliedPhysje
s誌、42巻9号、1971年8月、3斑6頁乃至35
94頁、表題「ChargeTra船ferinCha
rgeCoupledDevices」参照)それ故電
極下に貯えた電荷の移動は後になる程遅くなり、理論的
にはすべての電荷を移送するには無限の時間が必要とな
る。
A large number of electrodes 3 are disposed very close to each other on a semiconductor substrate 1 via a thin insulating film 2 of usually about 500A to 3000A. Its operating mechanism is to first apply a positive or negative voltage Vc to a suitable electrode 3 to store charge 4 on the substrate surface of the electrode 3. Next, while lowering this VG, a voltage Vc is applied to the electrode 3 adjacent to this electrode. By doing this, the charges 4 that are no longer stored on the surface of the substrate under the previous electrode 3 begin to move below the surface of the substrate under the adjacent electrode 3 mentioned above. This is repeated in sequence to transfer the charge 4, collect it through the drain 5 which has conductivity opposite to the substrate biased in the reverse direction by the drain power source 7, and detect it as a voltage across the load resistor 8 through the drain electrode 6. The transfer charge 4 can be injected by collecting photoinduced charges caused by irradiation light, or by using a source 9 with conductivity opposite to that of the substrate, as shown in Figure 1.
There is a method of injecting charges through the source electrode 10. Charge transfer in this charge transfer element is performed by the diffusion of charged particles, and a basic charge transfer element does not have an external electric field. fie
The movement is performed by ld). Therefore, the faster the charge density is at the beginning of the movement, the faster the movement is, but when the charge density is lower in the latter half of the movement, the movement becomes slower accordingly. Especially at the end of the movement, thermal diffusion occurs rather than movement due to self-induced accelerating electric field.
It is better to move by. At a normal transfer charge density of 2 to 5.times.1 to 2 cells, 99% of the charge is transferred by a self-induced accelerating electric field, and the remaining 1% is transferred by thermal diffusion. (JoumaloofAppliedPhysje
S magazine, Vol. 42, No. 9, August 1971, 3 spots, pp. 6-35
Page 94, titled “ChargeTra ship ferinCha
Therefore, the later the charge stored under the electrode moves, the slower it becomes, and theoretically it would take an infinite amount of time to transfer all the charge.

しかるに現実の素子では有限の時間内に移送するのみな
らず、できうるなら速い速度で移送しても高い効率を得
るようにしたい。1段当りの電荷の移る割合を移送効率
りで表わし、移送されないで取り残される割合をごで表
わせばL2 ど=抗▽:1‐り…”m で表わされる。
However, in actual devices, it is desirable not only to transfer within a finite time, but also to transfer at a high speed if possible with high efficiency. The rate at which charges are transferred per stage is expressed as transfer efficiency, and the rate at which charges are left behind without being transferred is expressed as L2 = resistance ▽: 1 - ri...''m.

いま移送する長さ、叫ま電荷の移動度、VGは電極印加
電圧およびtは移送時間である。ちなみに3相の基本的
な電荷結合素子における各パラメータの値を仮定(L=
20仏m、仏=500の/V・S、VG=20V、t=
33仇s)してりを計算するとご=1・2×10一3…
…【21 となり、り=99.班%となる。
The length to be transferred, the mobility of the transferred charge, VG is the voltage applied to the electrode, and t is the transfer time. By the way, assume the values of each parameter in a basic three-phase charge-coupled device (L=
20 French m, French = 500 /V S, VG = 20 V, t =
33. If you calculate the difference, it will be = 1・2×1013...
…[21, and ri=99. Group %.

この各定数の値は電極長20一mの3相の基本的なシリ
コンを用いた電荷結合素子をIM舷20Vの移送パルス
電圧で駆動したときの値であり、どの実測値も上記の計
算値によく合致する。電荷移送装置ではこの取り残し損
失どの減少対策が特に重要な問題となっている。なぜな
ら電荷移送素子においてm段移送すると全体を通じての
効率りallはりal1コりm=(1一ご〉m……(3
}と表わされ、たとえばり=99.9%のような高い効
率をもつ素子でも30娘安も移送すると{1’式からり
all=70%となってしまい最初に移送した電荷量の
30%が失われるからである。
The values of each of these constants are the values when a three-phase basic silicon charge-coupled device with an electrode length of 201 m is driven with a transfer pulse voltage of 20 V on the IM side, and any actual measured value is the calculated value above. matches well. In charge transfer devices, measures to reduce this residual loss have become a particularly important issue. This is because when the charge transfer element transfers m stages, the overall efficiency is 1 m = (1 1 m)... (3
} For example, even if an element with a high efficiency such as 99.9% is transferred, if 30 charges are transferred, all becomes 70% due to equation 1', and 30% of the initially transferred charge amount is transferred. This is because % is lost.

素子自体の効率がいかに高くなったとしても原理的に刀
=100%でない限り、その移送段数mには限りがある
。前述した【1ー式からあきらかなように取り残し損失
ごは移送時間tの逆数に比例しているから移送時間tを
長くすれば長くする程ごは小さくなる。すなわち前述の
試算例ではIMHzにおいてご=1.2×10‐3であ
り、これを100K位、10K比で駆動すればそれぞれ
ご=1.2×10‐4 ご=1.2×10‐5となって
ごは極く小さくなる。しかるに電荷移送素子にはもう1
つの重要な取り残し損失が存在し、これは周波数にほぼ
依存せずおおよそ一定の値ごoをもつ。以下本発明の理
解を助けるためこのごoを詳しく説明する。第2図に電
位によって説明した基本的な電荷結合素子の動作機構を
示した。
No matter how high the efficiency of the element itself becomes, in principle, unless the efficiency is 100%, there is a limit to the number of transport stages m. As is clear from the above-mentioned equation (1), the loss left behind is proportional to the reciprocal of the transfer time t, so the longer the transfer time t is, the smaller the loss will be. In other words, in the trial calculation example mentioned above, at IMHz, ko = 1.2 x 10-3, and if this is driven at about 100K and a 10K ratio, ko = 1.2 x 10-4 and ko = 1.2 x 10-5. The rice becomes extremely small. However, there is one more charge transfer element.
There are two important residual losses, which are approximately independent of frequency and have approximately constant values. This feature will be explained in detail below to help understand the present invention. FIG. 2 shows the basic operating mechanism of a charge coupled device explained in terms of potential.

説明の便宜上素子をn−チャネル型とし、したがって基
板1はp型半導体、ソース9、ドレィン5はn型領域、
移送電荷4は電子とした。図中の11一1,11一2,
11一3は鰭子に対する爵位であり、基板1、絶縁膜2
、電極3を縦方向に切断したときの各部分における電位
を示している。図中の12は半導体基板1と絶縁膜2の
界面近傍に存在する電荷に対する捕獲準位分布(tra
pleveldisのb山ion)を示しており、この
分布のポテンシャル11下には常に電荷4が捕獲されて
いる。この捕獲準位12の存在が前述した一定の取り残
し損失ごoを与える。以下第2図を用いて電荷結合素子
の動作を説明する。
For convenience of explanation, the device is assumed to be an n-channel type, so the substrate 1 is a p-type semiconductor, the source 9 and the drain 5 are n-type regions,
The transferred charges 4 were electrons. 11-1, 11-2 in the diagram,
11-3 are titles for fins, substrate 1, insulating film 2
, shows the potential at each part when the electrode 3 is cut in the longitudinal direction. 12 in the figure is a trap level distribution (tra) for charges existing near the interface between the semiconductor substrate 1 and the insulating film 2.
pleveldis b peak ion), and a charge 4 is always captured under the potential 11 of this distribution. The existence of this trap level 12 provides the above-described certain residual loss. The operation of the charge coupled device will be explained below with reference to FIG.

まず移送電荷3に印加される電圧Vcを0とする。First, the voltage Vc applied to the transferred charge 3 is set to zero.

このとき基板1をアース電位として考えると電子に対す
る電位11−1は基板1から電極3まで平坦である。こ
のとき捕獲準位分布のうち基板の0電位より下の部分は
捕獲された電荷4−1で満されている。この状態で電極
3にVGなる正の電圧を印加する。すると第2図bに示
すように、電位は11一2になり、このとき空乏層は半
導体基板表面から半導体中に伸び、半導体表面部の表面
電位めsはほぼVGに近くなっている。ここに外部から
電荷である電子を注入するとdsは4・さくなり、空乏
層も縮む。貯えうる限度まで電荷が貯えられたときには
ぐsは半導体基板のフェルミ準位のほぼ2倍となってい
る。シリコンではこのdsは0.5V以下である。電子
が貯えられて電位が上昇するに従って電位は今まで捕獲
準位に貯えられていた電子4−1の最上部を越し、新た
に捕獲準位に電荷が捕獲されて捕獲電子分布は4一3の
ようになる。この新たに捕獲された電子は一部捕獲準位
を介して基板の多数キャリアである正孔と再結合して完
全に消滅する。この消滅した電子は純粋な損失として電
荷量が減少することになる。また一度捕獲準位に捕えら
れた電子の残りの一部は、次の段階で電極3に印加する
電圧Vcを徐々に0とし、基板表面部に貯えた電子4を
隣りの電極下の基板表面部に移送するときに再び捕獲か
ら解除されて放出され隣りに移る。しかしこのときに捕
獲された電子はすべて放出されずに一部残ってしまう。
すなわち電圧VGが○となったときにそのまま捕獲され
て残った電子は取り残し損失として計数されることにな
る。この取り残された電子の放出の時定数は比較的長く
、移送時間が少くとも300一s(クロックパルス周波
数に換資すると1皿Hz)以内では一定の量として測定
されるので前述した一定の取り残し損失ごoが現われる
。以上述べたように基本的な電荷結合素子には、電荷を
基板表面部に貯えるので、捕獲準位の影響をうけ、比較
的低いIM比以下の周波数にて一定の取り残し損失ごo
が存在するだけでなく、電荷が消滅して信号が小さくな
る重大な欠陥を有する。
At this time, if the substrate 1 is considered to be at ground potential, the potential 11-1 for electrons is flat from the substrate 1 to the electrode 3. At this time, the portion of the trap level distribution below the 0 potential of the substrate is filled with the trapped charges 4-1. In this state, a positive voltage VG is applied to the electrode 3. Then, as shown in FIG. 2B, the potential becomes 11-2, and at this time the depletion layer extends from the surface of the semiconductor substrate into the semiconductor, and the surface potential s of the semiconductor surface portion becomes approximately VG. When electrons, which are charges, are injected from the outside, ds becomes smaller by 4.0 and the depletion layer also shrinks. When the charge is stored up to the maximum amount of charge that can be stored, the current s is approximately twice the Fermi level of the semiconductor substrate. In silicon, this ds is less than 0.5V. As the electrons are stored and the potential rises, the potential exceeds the top of the electron 4-1 that has been stored in the capture level, new charge is captured in the capture level, and the captured electron distribution becomes 4-3. become that way. These newly captured electrons partially recombine with holes, which are majority carriers of the substrate, through the capture level and are completely annihilated. The amount of charge of these annihilated electrons decreases as a pure loss. In addition, in the next step, the voltage Vc applied to the electrode 3 is gradually reduced to 0, and the remaining part of the electrons once captured in the trap level is transferred to the substrate surface under the adjacent electrode. When it is transferred to another department, it is released from capture again and moved to a neighboring area. However, all of the captured electrons are not released and some remain.
That is, when the voltage VG becomes O, the electrons that are captured and remain are counted as a loss left behind. The time constant of the emission of these left-behind electrons is relatively long, and it is measured as a constant amount within the transfer time of at least 300 seconds (one plate Hz when converted to a clock pulse frequency), so the above-mentioned fixed left-behind loss occurs. Go appears. As mentioned above, in a basic charge-coupled device, charge is stored on the surface of the substrate, so it is affected by the trap level, and there is a certain amount of residual loss at frequencies below the relatively low IM ratio.
Not only does it exist, but it also has a serious defect in which the charge disappears and the signal becomes small.

この一定の取り残し損失ごoは前述の20Am幅電極を
もつn−チャネル電荷結合素子において1〜5xlo‐
4の値が実測された。また基本的な第1図および第3図
aに示すような電荷移送素子では電極間間隙部13が存
在する。
This constant residual loss is 1 to 5×lo-
A value of 4 was actually measured. Further, in the basic charge transfer device shown in FIGS. 1 and 3a, an inter-electrode gap 13 exists.

この部分の下半導体表面部には距離が長いので電極3の
印加電圧VGの影響が小さくなる。電極3下の電位11
一4が第3図bのように表わされるとき電極間間隙13
下の電位は等価格的に負のVcが印加された第3図cの
ような電位11−5として表わされる。このとき捕獲準
&12一5は第3図bの捕獲準位12一4より持ち上っ
ており捕獲準位12−4に一時的に捕獲された電子4一
4より捕獲準位12−5に捕獲された電子4一5の方が
電位の持ち上っている分だけ少〈、それだけ空いていて
多くの電子を捕獲できることになる。したがって電極3
下の捕獲準位より電極間隙下の捕獲準位の方がより大き
な影響をもつ。また電極間間隙と同様に電極周辺部もよ
り大きな影響をもつので電極間間隙部をほとんど除いた
応用的な電荷結合素子でもその電極周辺部の捕獲準位は
より大きな影響をおよぽし、前述した電荷の消滅や一定
の取り残し損失ごoの原因となる。この表面に存在する
捕獲準位の他に一般には半導体結晶中にも捕獲準位は存
在し、これも同様の効果をもつが、その量は表面に存す
るものに比べ著しく少し、場合が多いので通常はこの表
面に存在する捕獲進位のみを問題とすればよい。
Since the distance to the lower semiconductor surface portion of this portion is long, the influence of the voltage VG applied to the electrode 3 is reduced. Potential 11 under electrode 3
When 14 is represented as shown in FIG. 3b, the interelectrode gap 13
The lower potential is equivalently represented as potential 11-5 as shown in FIG. 3c with negative Vc applied. At this time, the capture level &12-5 is lifted up from the capture level 12-4 in Figure 3b, and the electron 4-4 temporarily captured in the capture level 12-4 moves to the capture level 12-5. The number of captured electrons 4-5 is smaller due to the increased potential, which means that more electrons can be captured since there are more vacant electrons. Therefore electrode 3
The trap level below the electrode gap has a greater influence than the trap level below. Also, like the gap between the electrodes, the area around the electrodes has a greater influence, so even in applied charge-coupled devices in which the gap between the electrodes is almost completely removed, the trap levels in the area around the electrodes have a greater effect. This causes the aforementioned charge disappearance and a certain amount of residual loss. In addition to the trap levels that exist on the surface, there are generally trap levels in semiconductor crystals that have the same effect, but their amount is often significantly smaller than that existing on the surface. Normally, it is only necessary to consider the capture progress existing on this surface.

この表面の捕獲準位の影響を軽減する目的で従釆、埋め
込みチャネル型電荷結合素子(buhedchan肥l
char鞍coupleddevice)が考案されて
いる。
In order to reduce the influence of this surface trap level, a buried channel type charge coupled device (buhedchan type charge coupled device) is
A char coupled device has been devised.

(BellSystemTechnicalJouma
l誌51巻1972年9月、1635頁乃至1640頁
、表題「TheBuried C船nneI Char
ge Coupled Devicel参照)。これは
電荷を移送する部分(チャネル)を半導体基板中に設け
て表面の捕獲準位の影響を軽減したものである。第4図
に埋め込みチャネル型電荷結合素子の断面図を示す。説
明は今まで述べたようにnーチャネルで行う。第1図の
基本的な電荷結合素子に比べて異なる構造部分は基板表
面部にソース9とべレイン6を含んで形成されたn層で
ある。その動作は、まずソース9に外部から正の大きな
ソース電圧Vsをソース電源1 5により印加し、n層
14の多数電荷である電子をすべて放出する。こうする
ことによって第5図aのように半導体中に電位の谷16
を形成する。しかる後に電極3に正の電圧V。を印加し
、さらに電位の谷16を下げ第5図bの電位11一7を
形成する。この谷に電子4を注入して貯えると電位の谷
は少し上昇する。これらの電子の移送過程において移送
する電子4は決して表面の捕獲準位12にふれることは
ないので前述した捕獲準位が存在するために現われた電
荷の消滅や一定の取り残し損失ごoもない。しかしなが
らこの埋め込みチャネル型電荷結合素子には大きな欠点
が存在する。その一つは、電荷4を表面にふれさせない
ために電位の谷を十分半導体1中深く形成する必要があ
る。よく用いられる不純物濃度1×1び4ケ/地のp型
シリコンの半導体基板を用いた場合にはn層の不純物濃
度は1〜2×1び5/洲とするとn層の厚さは5仏m程
度としなければならない。5仏mの厚さのn層を形成す
るにはシリコン半導体装置製作工程の一つとして最もよ
く用いられている拡散法では非常に困難であり、通常イ
オン打込み法が用いられる。
(BellSystemTechnical
Vol. 51, September 1972, pp. 1635-1640, title: “The Buried Cship nneI Char
ge Coupled Device). In this method, a portion (channel) for transferring charges is provided in the semiconductor substrate to reduce the influence of surface trap levels. FIG. 4 shows a cross-sectional view of a buried channel type charge coupled device. The explanation will be given using n-channel as described above. The structural part that is different from the basic charge-coupled device shown in FIG. 1 is an n-layer formed on the surface of the substrate including a source 9 and veraine 6. The operation is as follows: First, a large positive source voltage Vs is externally applied to the source 9 by the source power supply 15, and all the electrons, which are the majority charges in the n-layer 14, are emitted. By doing this, a potential valley 16 is created in the semiconductor as shown in Figure 5a.
form. After that, a positive voltage V is applied to the electrode 3. is applied, and the potential trough 16 is further lowered to form the potential 11-7 shown in FIG. 5b. When electrons 4 are injected into this valley and stored, the potential valley rises a little. In the process of transporting these electrons, the transferred electrons 4 never touch the surface trap level 12, so that there is no disappearance of charges that appear due to the existence of the trap level described above, or a certain amount of loss left behind. However, this buried channel type charge coupled device has major drawbacks. One of them is that the potential valley must be formed deep enough in the semiconductor 1 to prevent the charges 4 from touching the surface. When using a commonly used p-type silicon semiconductor substrate with an impurity concentration of 1 x 1 to 4 cm, the impurity concentration of the n layer is 1 to 2 x 1 to 5, and the thickness of the n layer is 5. It must be about the size of a Buddha. It is extremely difficult to form an n-layer with a thickness of 5 m thick using the diffusion method, which is most commonly used as one of the steps for manufacturing silicon semiconductor devices, and ion implantation is usually used.

このイオン打込み法は結晶に無理に打込むので一般に結
晶を部分的に破壊し、結晶欠陥を発生させる。この欠陥
は電荷の捕獲準&としての役目を果すので電荷結合素子
にとって好ましい方法ではない。さらに本法の欠点は電
荷を表面には決してふれさせないために表面から数仏m
離れた半導体内のチャネルを移動させるので第1図の基
本的な電荷結合素子の場合と異り、電極3に印加した電
圧Vcの電荷に及ぼす影響が小さく、したがって移送可
能な電荷量も著しく少し・ことである。
Since this ion implantation method forces the implantation into the crystal, it generally destroys the crystal partially and generates crystal defects. This defect is not a preferred method for charge-coupled devices since it acts as a charge trapping quasi. Furthermore, the drawback of this method is that the charge never touches the surface, so
Unlike the basic charge-coupled device shown in FIG. 1, since the channel in the semiconductor is moved from a distance, the effect of the voltage Vc applied to the electrode 3 on the charge is small, and therefore the amount of charge that can be transferred is also significantly small.・It is a thing.

上記の構造をもつ埋め込みチャネル型電荷結合素子の場
合約一桁移送電荷量が少い。電荷量が少なければ出力電
圧も小さく、したがって譲導雑音の影響を受け易く信号
対雑音比も低下する。また同機に電極3の影響が深い半
導体中には及びにくいので、前述した電極のない電極間
間隙部の存在の影響がより強く現われ、電極間間隙都下
に深い電位の谷16が現われ、これが移送電荷4に対す
るすし、込みとなって電荷移送が停止してしまう。
In the case of a buried channel type charge coupled device having the above structure, the amount of transferred charge is about one order of magnitude smaller. If the amount of charge is small, the output voltage is also small, and therefore it is susceptible to conducted noise and the signal-to-noise ratio is also reduced. In addition, since the influence of the electrode 3 is difficult to reach deep into the semiconductor, the influence of the aforementioned gap between the electrodes without an electrode appears more strongly, and a deep potential valley 16 appears below the gap between the electrodes. The amount of charge transferred to the transfer charge 4 becomes too large, and the charge transfer stops.

それ故、埋め込みチャネル型電荷結合素子では極端に電
極間間隙部を狭くしなければならない。本発明は以上述
べてきた従来の基本的電荷結合素子の捕獲準位の影響を
うける欠点、および従来の埋め込みチャネル型電荷結合
素子の移送電荷量の少し、ことと電極間間隙部の影響を
強く受ける欠点をすべて除去し、高い移送効率をもち、
移送電荷量を多く、間隙部の影響の小さい電荷結合素子
を提供する。
Therefore, in a buried channel type charge coupled device, the inter-electrode gap must be extremely narrow. The present invention solves the above-mentioned disadvantages of the conventional basic charge-coupled device, which is affected by the trap level, and the small amount of transferred charge of the conventional buried channel type charge-coupled device, and the strong influence of the gap between the electrodes. It eliminates all the disadvantages of transfer, has high transfer efficiency,
To provide a charge-coupled device that can transfer a large amount of charge and is less affected by gaps.

第6図に本発明の実施例の断面構造を示した。FIG. 6 shows a cross-sectional structure of an embodiment of the present invention.

本発明はソース9とドレィン間6の間の半導体表面部に
薄い基板と異なる導電性をもつ領域17(説明上n型層
とする)を設けることを特徴とする。従来の埋め込みチ
ャネル型電荷結合素子と異なるところは、電荷を2の表
面部17を通すことであり、これによって基板と異なる
導電性をもつn型領域14を完全に空乏化するための高
いソ−ス電圧15が不必要となるだけでなく、基板表面
部17中を移送するため、移送電極3に印加するパルス
電圧の影響が強く及び、移送電荷量は基本の電荷結合素
子と同じである。この本発明の動作を第2図、第6図と
同様に電位分布を示す第7図によって説明する。第2図
の基本形電荷結合素子と異なるところは表面にn型層が
あるために表面部分で電位が拡散電位(n型層とp型層
の電位差、通常0.5〜1.0V程度)分だけ下ってい
る。これによって捕獲準位分布12−9は常に電子によ
って満されていることである。この状態に正の電圧VG
を印加すると第2図と同様に電位11−10が形成され
、移送電荷4が満されるにつれ電位11は上昇し、最的
時には11−11に落ちつく。第7図a,bは、後に説
明する第9図において、n型領域17と、PN接合によ
る空乏層の伸びXnが等しい場合である。よって、電極
3に何ら電圧を印加しなくても、領域17は空乏層とな
っており電荷蓄積、移送は不可能である。このとき、電
荷を満すためには、電極3に正の電圧を印加すれば、空
乏層は押しやられ電荷蓄積、移送が可能となる。これを
第7図bに示す。この過程において捕獲準位12は常に
電子4で満されており、移送電荷4−11を新たに捕獲
する余地はない。これによって捕獲準位12が存在して
も捕獲準泣の影響をうけることはなく、したがって前述
した基本型電荷結合素子の欠点である空いた捕獲準位分
布12が移送電荷4を捕獲する現象が現われない。また
基本形電荷結合素子では、第3図に示したように移送電
極3の電極間間隙部および周辺部の捕獲準位のより強い
捕獲効果が存在するが、本発明を用いればこの効果をも
除去しうる。一般に移送電極下より電極間間隙部や周辺
部の捕獲準位の方がより強い効果をもつことはすでに第
3図によって説明した。この現象を考慮すれば、電極下
の半導体基体を除いて、電極間間隙部および周辺部のみ
に基板と異なる導電性をもつ層を形成しても本発明の主
旨は達成される。また、本発明の電荷結合素子は基板表
面部を移送するため電荷量は基本形電荷結合素子と同じ
であり埋め込みチャネル型電荷結合素子の場合のように
1桁少ない電荷量の移送ではないので信号が小さく信号
対雑音比が悪化することもない。
The present invention is characterized in that a region 17 (for the sake of explanation, it is an n-type layer) having a conductivity different from that of a thin substrate is provided on the semiconductor surface between the source 9 and the drain 6. The difference from the conventional buried channel type charge coupled device is that the charge is passed through the surface part 17 of 2, which requires a high source to completely deplete the n-type region 14, which has a different conductivity from the substrate. Not only is the pulse voltage 15 unnecessary, but since the pulse voltage is transferred through the substrate surface 17, the influence of the pulse voltage applied to the transfer electrode 3 is strong, and the amount of transferred charge is the same as in the basic charge-coupled device. The operation of the present invention will be explained with reference to FIG. 7, which shows the potential distribution similarly to FIGS. 2 and 6. The difference from the basic charge-coupled device in Figure 2 is that there is an n-type layer on the surface, so the potential at the surface is equal to the diffusion potential (potential difference between the n-type layer and the p-type layer, usually about 0.5 to 1.0 V). It's only going down. This means that the trap level distribution 12-9 is always filled with electrons. In this state, a positive voltage VG
When is applied, a potential 11-10 is formed as in FIG. 2, and as the transfer charge 4 is filled up, the potential 11 rises and finally settles down to 11-11. FIGS. 7a and 7b show a case where the elongation Xn of the depletion layer due to the PN junction is equal to that of the n-type region 17 in FIG. 9, which will be described later. Therefore, even if no voltage is applied to the electrode 3, the region 17 becomes a depletion layer and cannot accumulate or transfer charges. At this time, in order to fill the charge, by applying a positive voltage to the electrode 3, the depletion layer is pushed away and charge storage and transfer becomes possible. This is shown in Figure 7b. In this process, the trap level 12 is always filled with electrons 4, and there is no room for newly trapping the transferred charges 4-11. As a result, even if the trap level 12 exists, it will not be affected by the trapping quasi-depletion, and therefore, the phenomenon that the empty trap level distribution 12 traps the transferred charge 4, which is the drawback of the basic charge-coupled device described above, is avoided. Doesn't appear. In addition, in the basic charge-coupled device, as shown in FIG. 3, there is a stronger trapping effect of the trapping level in the interelectrode gap and peripheral portion of the transfer electrode 3, but this effect can also be eliminated by using the present invention. I can do it. It has already been explained with reference to FIG. 3 that, in general, the trap level in the inter-electrode gap and the peripheral area has a stronger effect than under the transport electrode. Taking this phenomenon into consideration, the gist of the present invention can be achieved even if a layer having a conductivity different from that of the substrate is formed only in the inter-electrode gap and the peripheral area, excluding the semiconductor substrate under the electrode. In addition, since the charge-coupled device of the present invention transfers the surface of the substrate, the amount of charge is the same as that of the basic charge-coupled device, and the amount of charge is not transferred by an order of magnitude less than in the case of a buried channel type charge-coupled device, so the signal is It is small and the signal-to-noise ratio does not deteriorate.

また本発明の大きな特徴の一つとして電極間間隙部の半
導体基板にも移送電極3の印加電圧VGの影響が及ぶこ
とと、基板1とn層17との間には0.5V〜1.0V
の拡散電位によってその電位は固定されているので、第
3図に示したように基本形電荷結合素子の電極間間隙部
下に電位の持ち上りが発生してこれが電荷の移送を妨げ
ることがないために電極間間隙部の存在がそれ程大きな
移送の妨げとならない。前述した本発明による20ムm
幅の電極のnチャネル型電荷結合素子では電極間間隙部
の長さが6ムmの場合でも十分動作した。基本型電荷結
合素子ではこの長さは3仏mが限度である。したがって
本発明は埋め込みチャネル型電荷結合素子に存在する強
い電極間間隙部の移送防書効果がほとんどなく、比較的
広い電極間間隙部でも動作するので3仏m以下になると
著しく製作が困難となる電極間間隙部を形成する必要が
ないので素子の製作は容易である。本発明において基板
と異なる導電性をもつn型層17を厚くするあるいは導
電率を高くすると定常的にソース9とドレィン6間に電
流が流れてしまい正常な電荷移送装置の動作を行わなく
なる。
Furthermore, one of the major features of the present invention is that the voltage VG applied to the transfer electrode 3 also affects the semiconductor substrate in the inter-electrode gap, and that the voltage VG applied to the transfer electrode 3 is 0.5V to 1.5V between the substrate 1 and the n-layer 17. 0V
Since the potential is fixed by the diffusion potential of The existence of the inter-electrode gap does not significantly impede transfer. 20 mm according to the present invention described above
An n-channel charge-coupled device with a width of electrodes operated satisfactorily even when the length of the inter-electrode gap was 6 mm. In a basic charge coupled device, this length is limited to three meters. Therefore, the present invention has almost no strong transport protection effect of the inter-electrode gap that exists in a buried channel type charge-coupled device, and can operate even in a relatively wide inter-electrode gap, so it becomes extremely difficult to manufacture when the gap is less than 3 fm. Since there is no need to form an inter-electrode gap, the device is easy to manufacture. In the present invention, if the thickness of the n-type layer 17, which has a conductivity different from that of the substrate, is increased or the conductivity thereof is increased, a current constantly flows between the source 9 and the drain 6, and the charge transfer device does not operate normally.

第8図にその実施例を示す。これは1000Aの酸化膜
を通してリン原子を4皿eVのエネルギーでイオン打込
みしたMOS電界効果型トランジスタのドレィン電流I
Dの平方根とゲート電圧VGの関係であり、パラメータ
Crは打込み量である。リンィオンを打込まない初期の
特性■においては1。が流れ始める電圧V。の値(しき
し、値)VTはOVであるが、打込む量を多くするとV
Tは負となり、Cr=2×1び2/あのとき■のように
ついにはVGの印力oのみで1。を遮断することができ
なくなる。この点が前述した正常な電荷移送装置動作を
しなくなる点である。したがって本発明では基板と異な
る導電性をもつ層17の厚さdとその不純物濃度Csに
は制限が存在する。尚、本発明の駆動は、以下の2つの
条件で可能となる。
An example is shown in FIG. This is the drain current I of a MOS field effect transistor in which phosphorus atoms were ion-implanted with an energy of 4 eV through an oxide film of 1000 A.
This is the relationship between the square root of D and the gate voltage VG, and the parameter Cr is the implantation amount. 1 for the initial characteristic ■ that does not hit Rinion. The voltage V at which begins to flow. The value of VT is OV, but if you increase the amount of implantation, V
T becomes negative, and Cr = 2 x 1 and 2/At that time, as in ■, it finally becomes 1 with only the VG's impression o. It becomes impossible to shut off. At this point, the charge transfer device no longer operates normally as described above. Therefore, in the present invention, there are limitations on the thickness d of the layer 17 having a conductivity different from that of the substrate and its impurity concentration Cs. Note that the driving of the present invention is possible under the following two conditions.

すなわち、1つは、蓄積していない領域17が空乏化し
ていることと(電流が流れてしまわない為に。)転送相
互間の電極3の電位関係が、前方(電荷が新たに入る領
域)の電極への印加電圧が、後方(電荷が現在蓄積され
ており次段へ送る領域)の電極への印加電圧より、相対
的に、高くなっていること(電荷が移送されないからで
ある。)の2点である。前述の第1の条件は、第8図に
示されているように、MOSTrのしきし、値電圧で示
されるものであり、領域17の濃度、深さによって任意
の値を探るものである。
That is, one is that the region 17 that is not accumulated is depleted (because no current flows), and the potential relationship between the electrodes 3 between the transfer points is that the region 17 where new charges enter is in the forward direction (region where new charges enter). The voltage applied to the electrode is relatively higher than the voltage applied to the electrode at the rear (the area where charge is currently being accumulated and sent to the next stage) (because no charge is transferred). There are two points. As shown in FIG. 8, the above-mentioned first condition is expressed by the threshold value voltage of the MOSTr, and an arbitrary value is searched for depending on the concentration and depth of the region 17.

重要な点は、Pn接合による空乏層Xnによって、領域
17が遮断されないとき(XPが正のとき)は、負の電
圧を印加しなければ、電流を止められない点である。こ
れは、負の電圧により電子が押しやられるからである。
このdとCsの限定領域を次に説明する。第9図に不純
物が階段状に分布した電極3−絶縁膜2−n型領域17
一p型領域(基板)1のバンド構造を示した。電極3の
印加重圧VGに負を印加すると、絶縁膜2とn型領域1
7の界面18に正孔が蓄積され、界面から空乏層がXs
だけ伸びる。このとき表面電圧◇sはほぼn型層17の
フェルミ準位中FNの2倍となっている。またn型領域
17とp型領域1の接合部19からn型層に向って空乏
層Xnだけ伸びている。このとき×sとXnの加わった
空乏層XDがn型層17の厚さdを越えていれば第2図
のように残りのn型層の厚さ×Rは○である。このとき
には電流が流れない。しかしXsとXnの加わった空乏
層の厚さXDがdを越えず、したがってXRが正の場合
、ここには定常的にn型層が残留し、これが電子に対す
る導電路となって第8図■の曲線のようにVcを大きく
してもIDは定常的に流れてしまう。これらの関係を数
式で表わすと xn=紙器清掌 .・・…■ ×S=ノ三雲者二 ‐‐‐‐‐‐‐‐‐‘5)Vb
i=やFP一つFN …・・・{6
1XD=X3十Xn .....
.(7)となる。
The important point is that when the region 17 is not blocked by the depletion layer Xn formed by the Pn junction (when XP is positive), the current cannot be stopped unless a negative voltage is applied. This is because electrons are pushed away by negative voltage.
The limited regions of d and Cs will be explained next. FIG. 9 shows an electrode 3, an insulating film 2, and an n-type region 17 in which impurities are distributed in a stepwise manner.
The band structure of the p-type region (substrate) 1 is shown. When a negative pressure VG is applied to the electrode 3, the insulating film 2 and the n-type region 1
Holes are accumulated at the interface 18 of 7, and a depletion layer forms from the interface
only grows. At this time, the surface voltage ◇s is approximately twice the Fermi level FN of the n-type layer 17. Furthermore, a depletion layer Xn extends from the junction 19 between the n-type region 17 and the p-type region 1 toward the n-type layer. At this time, if the depletion layer XD to which ×s and Xn are added exceeds the thickness d of the n-type layer 17, the thickness ×R of the remaining n-type layer is ◯ as shown in FIG. At this time, no current flows. However, if the thickness XD of the depletion layer including Xs and Xn does not exceed d, and therefore XR is positive, an n-type layer remains here constantly, and this becomes a conductive path for electrons, as shown in Figure 8. As shown in the curve (2), even if Vc is increased, the ID constantly flows. These relationships can be expressed as a mathematical formula: xn=Shikiki Seisho. ...■ ×S=No Mikumosha 2 ‐‐‐‐‐‐‐‐‐'5) Vb
i= or FP one FN ......{6
1XD=X30Xn. .. .. .. ..
.. (7) becomes.

一般に実際の素子ではNo>>NAなのでXs>〉Xn
すなわちXoはほとんどXsのみで占められる。
Generally, in actual devices, No>>NA, so Xs>>Xn
That is, Xo is almost exclusively occupied by Xs.

ここでN^,Noはそれぞれp型層、n型層の不純物濃
度ごsは基板の誘電率、qは素電荷量である。以上から
n型層17が存在する条件は XR=d−Xo ”””{8}に
おいてXR>0となればよい。
Here, N^ and No are the impurity concentrations of the p-type layer and n-type layer, s is the dielectric constant of the substrate, and q is the elementary charge amount. From the above, the condition for the existence of the n-type layer 17 is that XR>0 in XR=d-Xo """{8}.

基板にシリコンを用いた場合、×。× when using silicon for the substrate.

は第10図に示す■の関係となる。またn型層中の不純
物量すなわち不純物面密度はXo×CBから求められて
第10図中の■の関係となる。すなわち本発明は第10
図中■の直線より下の部分の領域で成立するものである
。また基本型電荷結合素子を含む電荷移送装置の信号と
なる移送電荷量の最大値は動作態にもよるが1〜5×1
ぴ2/めである。
is the relationship shown in FIG. 10. Further, the amount of impurity in the n-type layer, that is, the surface density of impurity, is determined from Xo×CB and has the relationship shown in (■) in FIG. That is, the present invention is the tenth
This is true in the region below the straight line marked ■ in the figure. In addition, the maximum value of the amount of transferred charge that serves as a signal for a charge transfer device including a basic charge-coupled device is 1 to 5 × 1, depending on the operating state.
It's P2/Me.

電極下のSj表面に誘起される電荷密度Peは基本的に
は、次式で表わされる。oe=声 ルま絶縁膜の誘電率、Tiは絶縁膜の厚さ、Vは印加電
圧、qは素電荷量である。
The charge density Pe induced on the surface of Sj under the electrode is basically expressed by the following equation. oe=dielectric constant of the insulating film, Ti is the thickness of the insulating film, V is the applied voltage, and q is the elementary charge amount.

たとえば、通常よく用いられるSi02膜の値を採ると
、ご=3.45×ごo (ごo =8.854×10‐
14F/肌)V=10V、Ti=500△とすると、D
e=3.8×1ぴ2/地と求められる。
For example, if we take the value of the Si02 film that is commonly used, then = 3.45 x Goo (Go = 8.854 x 10-
14F/skin) When V=10V and Ti=500△, D
It is calculated as e=3.8×1pi2/ground.

Ti、Vは任意に変えられる値であるが、絶縁膜が薄く
なると絶縁耐圧が低くなるので、自ずと限界がある。
Ti and V are values that can be changed arbitrarily, but as the insulating film becomes thinner, the dielectric strength voltage decreases, so there is a limit.

また電圧Vも一般には、標準値5V、12Vが多く用い
られる。5V系では、Ti=200A、350△、50
0Aがよく用いられる。
Further, as for the voltage V, standard values of 5V and 12V are generally used. For 5V system, Ti=200A, 350△, 50
0A is often used.

この場合、それぞれDe=4.8×1ぴ2/幼、 2.7×1ぴ2/地、 1.9×Iび2/c堆 となる。In this case, De=4.8×1pi2/yo, respectively. 2.7×1 piece 2/ground, 1.9 x I2/c becomes.

よって、最大移送電荷量は、約1〜5×1び2/地とな
る。
Therefore, the maximum amount of charge transferred is approximately 1 to 5×12/ground.

この移送電荷量に対してn型層17の電荷量は信号の移
送電荷のほぼ1′10以上すなわち不純物面密度CB×
Xoが1び1肌‐2以上あればよい。これは、通常移送
電荷を送る場合S/N比として40〜6のBが必要とさ
れる。4正旧では、最大移送電荷量の1′10以6MB
では、1/1000が最少移送電荷量であり、雑音は、
これ以下でなければならない。
With respect to this transferred charge amount, the charge amount of the n-type layer 17 is approximately 1'10 or more of the signal transferred charge, that is, the impurity surface density CB×
It is sufficient if Xo is 1 and 1 skin - 2 or more. This requires an S/N ratio of 40 to 6 B when normally transferring charges. 4. In the old and new versions, the maximum transfer charge amount is 1'10 or more 6MB
Then, 1/1000 is the minimum amount of transferred charge, and the noise is:
It must be less than this.

従って、実際のデバイスでは余裕をもって1′100、
1/1000の1ぴ音以上の値すなわち、1/10の電
荷量を基準にして、有害なトラップを埋める。トラツプ
は、1/10の電荷量程度あるわけではないが、埋める
ための時間等に影響するため、1/lo以上が好ましい
。上限については、特に、実際の使用を考慮して決定す
べきである。
Therefore, in an actual device, there is a margin of 1'100,
Harmful traps are filled based on a value of 1/1000th of a tone or more, that is, a charge amount of 1/10th. Although the amount of charge in the trap is not about 1/10, it is preferable that the amount of charge is 1/10 or more because it affects the time to fill the trap. The upper limit should be determined in particular with consideration to actual use.

ここでCBは、基板(バルク)の濃度 (Concentration)を表わすもので、アク
セプタ濃度NA、ドナー濃度NDの総称である。
Here, CB represents the concentration of the substrate (bulk), and is a general term for acceptor concentration NA and donor concentration ND.

またp型基板の不純物濃度N^は基本型電荷結合素子を
含む電荷移送装置において通常1び4〜1ぴ6/洲の範
囲で選ばれることが多い。これに比べてn型層不純物濃
度Noを十分精度よく制御できうるのは1び5/地以上
である。これらの限定条件を考慮すると第10図におい
て本発明における使用可能なNo、Xoの値はそれぞれ
iび5/塊以上、1りm以下となる。またn型層17の
不純物量は信号の移送電荷とほぼ同程度まで許容できる
。これ以上になると信号以外にn型層の電荷が出力に検
出されるようになり特性は劣化するだけでなく、このと
きのn型層の厚さXDは第10図から100△以下でな
ければならず、このような薄い層は実際に形成が非常に
困難であることから本発明の主旨ではn型層の不純物面
密度は最大1び3/がである必要がある。このときにn
型層の不純物濃度は1び9/めである。すなわち本発明
ではn型層の最小の不純物面密度は1び1/仇以上この
ときの不純物濃度は1び5/塊以上、従って厚さ×Dは
1ムm以下であり、最大の不純物面密度は1び3/塊以
下、このとき厚さ×。
Further, the impurity concentration N^ of the p-type substrate is usually selected in the range of 1.4 to 1.6/s in a charge transfer device including a basic charge coupled device. In comparison, the n-type layer impurity concentration No can be controlled with sufficient precision at 1 to 5/ground or higher. Considering these limiting conditions, the values of No and Xo that can be used in the present invention in FIG. 10 are 5/mass or more and 1 or less, respectively. Further, the amount of impurity in the n-type layer 17 can be allowed to be approximately the same as the transfer charge of the signal. If it exceeds this, the charge of the n-type layer will be detected in the output in addition to the signal, and the characteristics will not only deteriorate, but the thickness of the n-type layer at this time, XD, must be less than 100△ from Fig. 10. However, since such a thin layer is actually very difficult to form, the gist of the present invention requires that the impurity surface density of the n-type layer be 1 to 3/3 at maximum. At this time n
The impurity concentration of the mold layer is 1 to 9/th. That is, in the present invention, the minimum impurity surface density of the n-type layer is 1 and 1/2 or more, in which case the impurity concentration is 1 and 5/mass or more, so the thickness x D is 1 mm or less, and the maximum impurity surface density is 1 and 5/mass or more. The density is less than 1 to 3/mass, at which time the thickness is x.

は100△以上、したがって不純物濃度は1び9/均以
下である。また以上の本発明の説明においてn型層17
の不純物濃度を階段状に分布しているとしたが、実際に
はガウス分布に近いことが多く前述の数値をわずか変更
しなければならないが本質的に本発明の主旨とは無関係
である。
is 100△ or more, so the impurity concentration is 1 to 9/average or less. In addition, in the above description of the present invention, the n-type layer 17
Although it is assumed that the impurity concentration is distributed in a stepwise manner, in reality, it is often close to a Gaussian distribution, and the above-mentioned values have to be slightly changed, but this is essentially unrelated to the gist of the present invention.

本発明は本発明の構造を実現する手段を限定はしない。The present invention does not limit the means for realizing the structure of the present invention.

1仏m以下の厚さの薄い基板と異なる導電性をもつ層1
7を形成するには通常半導体製作工程でよく用いられる
、熱拡散による方法、ィオン打込みによる方法、あるい
は不純物を含んだ絶縁膜たとえばリンあるいは棚素を含
んだシリコン酸化膜20をシリコンの表面に直接堆積し
、その後摂氏数100度の熱処理をしてわずかに拡散す
る方法などを用いればよい。これを第11図に示す。こ
れらの濃度、厚さ、面密度等が前述の実施例と同様でよ
いのは、以下の理由による。
A thin substrate with a thickness of 1 m or less and a layer 1 with different conductivity
7 can be formed by thermal diffusion, ion implantation, which are commonly used in semiconductor manufacturing processes, or by directly depositing an impurity-containing insulating film, such as a silicon oxide film 20 containing phosphorus or shelf elements, on the silicon surface. A method may be used in which the material is deposited and then heat-treated at several 100 degrees Celsius to cause slight diffusion. This is shown in FIG. The reason why these concentrations, thicknesses, areal densities, etc. may be the same as those in the above-mentioned embodiments is as follows.

すなわち、一般に、電極3の間隙部のSi基板表面には
、電極3の影響が及びにくい。
That is, in general, the surface of the Si substrate in the gap between the electrodes 3 is hardly affected by the electrodes 3.

これは、蟹極3間隙が離れているためである。従って、
この部分のトラップの影響が最も大きい。
This is because the three crab pole gaps are far apart. Therefore,
This part of the trap has the greatest effect.

従って第6図の電極間隙部が最も動作に好適な構造であ
れば、この部分の不純物濃度やその構造がそのまま第1
2図の間隙部にあてはまることができる。基本的には、
間隙部のトラップが最も影響が大きいので、第12図の
ように電極下に領域17が存在すれば、本発明第6図と
同じ濃度、厚さ、面密度を間隙部に設けてやればよいの
である。
Therefore, if the electrode gap shown in Fig. 6 has the most suitable structure for operation, the impurity concentration and structure of this part remain the same as the first one.
This can be applied to the gap shown in Figure 2. Basically,
Since the traps in the gap have the greatest influence, if a region 17 exists under the electrode as shown in FIG. 12, it is sufficient to provide the same concentration, thickness, and areal density in the gap as in FIG. 6 of the present invention. It is.

以上本発明を説明するのに半導体基板にp型シリコン、
基板と異なる導電性をもつ層17にn型シリコンを用い
、したがって移送電荷を電子としたが、導電性を互いに
逆にすれば移送電荷が正孔となり印加電圧群の正負を逆
にするのみであり、本質的に本発明の主旨に違いはない
In order to explain the present invention, p-type silicon is used as a semiconductor substrate,
N-type silicon was used for the layer 17, which has a conductivity different from that of the substrate, so that the transferred charges were electrons, but if the conductivities were reversed, the transferred charges would become holes, and all that was needed was to reverse the polarity of the applied voltage group. Yes, there is essentially no difference in the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の基本型電荷結合素子の断面
構造とその電位分布を示す図、第3図は磁極間間隙部の
電位分布を示す図、第4図および第5図は埋め込みチャ
ネル型電荷結合素子の断面構造とその電位分布を示す図
、第6図および第7図は本発明の電荷移送装置の断面構
造とその電位分布を示す図、第8図および第9図は本発
明を説明する、lo−Vc曲線およびバンド構造、第1
0図は本発明の限定領域を示す図、第11図は本発明の
実施例を示す図である。 図面付号の説明、1・・・・・・半導体基体、2・・・
・・・絶縁膜、3・・・・・・移送電極、4・・・・・
・移送電荷、5・・・・・・ドレイン、6・・・・・・
ドレィン電極、7・・・・・・ドレイン電源、8・・・
・・・負荷抵抗、9・・・・・・ソース、10・・・・
・・ソース電極、11・・・・・・電位、12・・・・
・・捕獲準位分布、13・…・・電極間間隙部、14・
・・…基板と異なる導電性をもつ層、15・・・・・・
ソース電源、16・・・・・・電位の谷、17・・・・
・・薄い基板と異なる導亀性をもつ層、18・・・・・
・絶縁膜と基板との界面、19・・・・・・基板と基板
と異なる導電・性をもつ層の接合部、20・・・・・・
不純物を含んだ絶縁膜。 オー図 】・ 2 図 才4図 オ3図 ★S図 ★つ図 オ8図 了午函 矛ら図 オーー 図 オー0 図
Figures 1 and 2 are diagrams showing the cross-sectional structure of a conventional basic charge-coupled device and its potential distribution, Figure 3 is a diagram showing the potential distribution in the gap between magnetic poles, and Figures 4 and 5 are embedded FIGS. 6 and 7 are diagrams showing the cross-sectional structure of a channel-type charge-coupled device and its potential distribution, FIGS. 6 and 7 are diagrams showing the cross-sectional structure of the charge transfer device of the present invention and its potential distribution, and FIGS. Illustrating the invention, lo-Vc curve and band structure, 1st
0 is a diagram showing a limited area of the present invention, and FIG. 11 is a diagram showing an embodiment of the present invention. Explanation of drawing numbers, 1...Semiconductor substrate, 2...
...Insulating film, 3...Transfer electrode, 4...
・Transfer charge, 5...Drain, 6...
Drain electrode, 7...Drain power supply, 8...
...Load resistance, 9...Source, 10...
... Source electrode, 11... Potential, 12...
...Capture level distribution, 13...Inter-electrode gap, 14.
...Layer with conductivity different from that of the substrate, 15...
Source power supply, 16...Valley of potential, 17...
・・Layer with a thin substrate and different torpor conductivity, 18・・・・・
・Interface between the insulating film and the substrate, 19... Junction between the substrate and a layer with a different conductivity/property from the substrate, 20...
An insulating film containing impurities. Diagram O]・2 Diagram 4 Diagram O3★S Diagram★Tsu Diagram

Claims (1)

【特許請求の範囲】[Claims] 1 主表面上に絶縁膜を有する第1導電型の半導体基体
と、前記絶縁膜上に所定の間隔をへだてて設けられた複
数の移送電極からなる電極列とを具備し、上記移送電極
下の絶縁膜下の半導体基体表面部を外部印加パルスによ
つて第2導電型の電荷を次々と移送する電荷移送装置に
おいて、上記半導体基体表面領域に、不純物濃度10^
1^5〜10^1^9/cm^3、厚さ1μm〜100
Å、不純物面密度10^1^1〜10^1^3/cm^
2の範囲の第2導電型の導電性をもつ表面層を設けてな
り、上記第2導電型の電荷は、上記表面層の設けられた
上記半導体基体表面部を上記外部印加パルスによつて次
々と移送され、上記表面層は、上記電極列下の上記半導
体基体表面領域に、上記電極列に沿つて連続して形成さ
れた第2導電型不純物層であることを特徴とする電荷移
送装置。
1 A semiconductor substrate of a first conductivity type having an insulating film on its main surface, and an electrode array consisting of a plurality of transfer electrodes provided on the insulating film at predetermined intervals, In a charge transfer device that sequentially transfers charges of a second conductivity type to a surface portion of a semiconductor substrate under an insulating film by externally applied pulses, an impurity concentration of 10^ is applied to the surface region of the semiconductor substrate.
1^5~10^1^9/cm^3, thickness 1μm~100
Å, impurity surface density 10^1^1 ~ 10^1^3/cm^
A surface layer having a second conductivity type in a range of 2 is provided, and the charge of the second conductivity type is sequentially applied to the surface portion of the semiconductor substrate on which the surface layer is provided by the externally applied pulse. The charge transfer device is characterized in that the surface layer is a second conductivity type impurity layer continuously formed along the electrode row in a surface region of the semiconductor substrate below the electrode row.
JP48071715A 1973-04-06 1973-06-27 charge transfer device Expired JPS6022507B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP48071715A JPS6022507B2 (en) 1973-06-27 1973-06-27 charge transfer device
NL7404581A NL7404581A (en) 1973-04-06 1974-04-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48071715A JPS6022507B2 (en) 1973-06-27 1973-06-27 charge transfer device

Publications (2)

Publication Number Publication Date
JPS5022584A JPS5022584A (en) 1975-03-11
JPS6022507B2 true JPS6022507B2 (en) 1985-06-03

Family

ID=13468489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48071715A Expired JPS6022507B2 (en) 1973-04-06 1973-06-27 charge transfer device

Country Status (1)

Country Link
JP (1) JPS6022507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2044168C3 (en) * 1970-09-05 1981-03-12 Bayer Ag, 5090 Leverkusen Colloid mixtures
JPS5633414B2 (en) * 1971-12-06 1981-08-04

Also Published As

Publication number Publication date
JPS5022584A (en) 1975-03-11

Similar Documents

Publication Publication Date Title
Kolodny et al. Analysis and modeling of floating-gate EEPROM cells
CN1327512C (en) Nanocrystal electron device
CN100590853C (en) Semiconductor memory and method for forming same
KR100459895B1 (en) Memory device with quantum dot and method of manufacturing the same
KR19980079362A (en) Nonvolatile semiconductor memory device
JP2004047936A (en) Semiconductor storage device
JPH0344970A (en) Cell structure for semiconductor storage device
CN1976041B (en) Non-volatile semiconductor memory device and method for manufacturing the same
US3697786A (en) Capacitively driven charge transfer devices
EP0034653B1 (en) Dual electron injector structures
Esser et al. The peristaltic charge coupled device
JP4490630B2 (en) Method for erasing nonvolatile memory
JPS6022507B2 (en) charge transfer device
KR101701612B1 (en) A silicon nano-tip thin film for flash memory cells
KR100640973B1 (en) Method for Programming/Erasing in Flash Memory Device
JPH0587030B2 (en)
Chang et al. FinFlash with buried storage ONO layer for flash memory application
KR100701368B1 (en) Sonos structure of semiconductor device
JPS6235572A (en) Semiconductor nonvolatile memory element
An et al. Substrate-bias assisted hot electron injection method for high-speed, low-voltage, and multi-bit flash memories
Endoh et al. New design technology for EEPROM memory cells with 10 million write/erase cycling endurance
Neugebauer et al. Electron trapping in thin SiO2 films due to avalanche currents
Kamal et al. A two-terminal nanocrystalline silicon memory device at room temperature
JPS60224269A (en) Semiconductor device
Balland et al. Interfacial tunnel interaction in MOS elements in depletion