JPS60224507A - Air-permeable molding die - Google Patents

Air-permeable molding die

Info

Publication number
JPS60224507A
JPS60224507A JP8066484A JP8066484A JPS60224507A JP S60224507 A JPS60224507 A JP S60224507A JP 8066484 A JP8066484 A JP 8066484A JP 8066484 A JP8066484 A JP 8066484A JP S60224507 A JPS60224507 A JP S60224507A
Authority
JP
Japan
Prior art keywords
mold
powder
backing layer
fired body
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8066484A
Other languages
Japanese (ja)
Inventor
豊治 夫馬
林 洋次郎
丘 久米
富岡 正則
稲垣 竹裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Shinto Industrial Co Ltd
Original Assignee
Sintokogio Ltd
Shinto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Shinto Kogyo KK filed Critical Sintokogio Ltd
Priority to JP8066484A priority Critical patent/JPS60224507A/en
Publication of JPS60224507A publication Critical patent/JPS60224507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は通気性成形型に関する。[Detailed description of the invention] The present invention relates to a breathable mold.

本願発明者達は先の特許出願において特願昭58−62
784号、特願昭58−71258号、特願昭58−7
1259号及び特願昭58−80943号等に開示して
いる如く、金属粉とセラミック粉を骨材とし、これに硬
化、焼成過程において蒸発又は焼失する成分を含む粘結
剤、さらに必要に応じて鋼繊維をそれぞれ添加すること
により得られる複合焼成体から成り、その表面に少なく
とも酸化鉄分を含む緻密な硬化層を有する通気性構造の
成形型を提案している。しかし、この成形型を通気性を
必要とする成形加工、例えば真空成形用型、ブロー成形
用型などのプラスチック成形加工に利用する場合、型温
度が」−昇すると製品の冷却速度が遅くなって離型に時
間がかかり、まtコ早く離型しすぎて製品が変形したり
する問題があり、或いは型温度が低すぎると製品の成形
が不十分になるなどの問題があった。
The inventors of this application filed a patent application in 1982-1986 in an earlier patent application.
No. 784, Japanese Patent Application No. 1983-71258, Japanese Patent Application No. 58-7
As disclosed in No. 1259 and Japanese Patent Application No. 58-80943, etc., metal powder and ceramic powder are used as aggregates, and a binder containing components that evaporate or burn out during the hardening and firing process is further added as necessary. We have proposed a mold with an air-permeable structure, which is made of a composite fired body obtained by adding steel fibers and has a dense hardened layer containing at least iron oxide on its surface. However, when this mold is used for molding processes that require ventilation, such as vacuum molding molds, blow molding molds, etc., when the mold temperature rises, the cooling rate of the product slows down. There are problems in that it takes a long time to release the mold, and that the product is deformed if the mold is released too quickly, or that the product is not sufficiently molded if the mold temperature is too low.

本発明はこれらの問題点に鑑みて成されたものであって
、その目的とするところは強度的に問題がなく、通気性
、熱伝導性或いは温度調節能力等の優れた通気性成形型
を提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide an air-permeable mold that does not have any problems in terms of strength and has excellent air permeability, thermal conductivity, and temperature control ability. It is about providing.

以下に、本発明を実施例に基づき詳細に説明する。第1
図に示す如く、(1)は中央部に四部(1a)を備えた
多孔質状の複合焼成体で、この複合焼成体(1)は金属
粉とセラミック粉からなり、型面を含む外周部に緻密な
硬化層(2)を有すると共に、この硬化層(2)の内側
に未焼成混合組織から成るバッキング層(3)を有して
いる。前記硬化層(2)はセラミック粉に分散した金属
酸化物粒と焼成セラミック粒との接合組織からなってい
る。この硬化層(2)の生成機構は必ずしも明確ではな
いが、一般には金属粉が酸化し、セラミック粒子との界
面で拡散接合的な接着が行われた結果と考えられる。そ
して、この硬化層(2)には粘結剤が乾燥工程および酸
化性雰囲気中での焼成工程で蒸発あるいは焼失すること
により微細(5〜10μmのどとじ)な気孔が形成され
、この微細な気孔により多孔質でありながら緻密で平滑
な面性状を構成している。
The present invention will be explained in detail below based on examples. 1st
As shown in the figure, (1) is a porous composite fired body with four parts (1a) in the center, and this composite fired body (1) is made of metal powder and ceramic powder, and the outer periphery including the mold surface. It has a dense hardened layer (2), and a backing layer (3) made of an unfired mixed structure inside this hardened layer (2). The hardened layer (2) consists of a bonding structure of metal oxide particles dispersed in ceramic powder and fired ceramic particles. Although the formation mechanism of this hardened layer (2) is not necessarily clear, it is generally considered to be the result of oxidation of metal powder and diffusion bonding at the interface with ceramic particles. Then, in this hardened layer (2), fine pores (5 to 10 μm thick) are formed as the binder evaporates or burns away during the drying process and the firing process in an oxidizing atmosphere. This creates a porous yet dense and smooth surface.

一方、硬化層(2)の内側にあるバッキング層(3)は
十分に焼成のなされないままの金属粉とセラミック粉と
の混合組織からなっており、それら金属粉あるいはセラ
ミック粉の界面にはさきの粘結剤の蒸発或いは焼失によ
り気孔が形成されている。
On the other hand, the backing layer (3) located inside the hardened layer (2) consists of a mixed structure of metal powder and ceramic powder that have not been sufficiently fired, and there is a Pores are formed due to evaporation or burning out of the binder.

このバッキング層(3)の気孔は硬化層(2)の気孔と
通じており、従って複合焼成体(1)は全体が多孔質の
通気構造となっている。
The pores of this backing layer (3) communicate with the pores of the hardened layer (2), so the composite fired body (1) has a porous ventilation structure as a whole.

このような多孔質状の複合焼成体(1)は骨材と粘結剤
を配合混練してスラリー状試料を得しめこのスラリー状
試料を流し込み成形する工程と、成形体を乾燥ないし1
次焼成する工程と、この工程を経たものを酸化性雰囲気
条件で焼成する7に程により得られる。
Such a porous composite fired body (1) is produced by mixing and kneading aggregate and a binder to obtain a slurry sample, pouring and molding the slurry sample, and drying or drying the molded body.
It is obtained by the next firing step and step 7 of firing the product after this step under oxidizing atmosphere conditions.

まず、スラリー状試料を得る工程は金属粉とセラミック
粉あるいはさらに鋼繊維を十分に混合攪拌し、これに硬
化過程で蒸発する成分を含む粘結剤を二とえばエチルシ
リケートなどのシリカゾルやコロイダルシリカなどを添
加して十分に混合攪拌することからなる。次いで、前記
スラリー状試料を所望型形状に固化成形し成形体を得る
。これは、たとえば型枠で囲まれた内部に模型或いは現
物をセットし、この型枠内にさきのスラリー状試料を流
し込み、所要時間放置することなどにより行うもので、
この流し込みに際して、硬化剤を加えたり、充填性を助
長するため振動を加えたり、スクイズすることなども効
果的である。
First, the process of obtaining a slurry sample is to thoroughly mix and stir metal powder and ceramic powder or steel fibers, and add a binder containing components that evaporate during the curing process, such as silica sol such as ethyl silicate or colloidal silica. etc., and thoroughly mixed and stirred. Next, the slurry sample is solidified and molded into a desired shape to obtain a molded body. This is done, for example, by setting a model or actual object inside a mold, pouring the slurry sample into the mold, and leaving it for the required time.
During this pouring, it is also effective to add a hardening agent, apply vibration to promote filling properties, or squeeze.

さらに詳述すると、「金属粉」としては、鋳鉄粉、電解
粉、純鉄粉などの鉄粉やニッケル粉、銅粉などの非鉄金
属粉が用いられる。このうち、鋳鉄粉は焼成時に遊離カ
ーボンの燃焼により気孔形成を促進する利点がある。
More specifically, as the "metal powder", iron powder such as cast iron powder, electrolytic powder, pure iron powder, and non-ferrous metal powder such as nickel powder and copper powder are used. Among these, cast iron powder has the advantage of promoting pore formation by burning free carbon during firing.

「セラミック粉」としては、高温での変形率が小さく、
金属粉と接合しやすいものたとえばムライト、焼成アル
ミナ、活性アルミナ、電融アルミナ、クロマイト、シリ
マナイトなどで代表される中性系のもの、溶融シリカ、
ジルコニウム、溶融ジルコンで代表される酸性系のもの
が一般に適当であるが、マグネシア質で代表される塩基
性のものや滑石なども用いることができる。
As a "ceramic powder", the deformation rate at high temperatures is small,
Materials that easily bond with metal powder, such as neutral materials such as mullite, calcined alumina, activated alumina, fused alumina, chromite, and sillimanite, fused silica,
Acidic materials such as zirconium and fused zircon are generally suitable, but basic materials such as magnesia and talc can also be used.

また、「鋼繊維」としては、一般にステンレス系のもの
が適当といえる。ステンレス系の鋼繊維は焼成工程で消
失しないため、硬化層及びバッキング層の両層に対する
補強効果が高いからである。
Furthermore, as the "steel fiber", stainless steel fibers are generally suitable. This is because stainless steel fibers do not disappear during the firing process, so they have a high reinforcing effect on both the hardened layer and the backing layer.

これ以外の鋼繊維たとえば快削鋼などを用いてもよく、
またガラス繊維、炭素繊維、セラミ、ツク繊維などを用
いてもバッキング層の補強効果は得られ、亀裂防止、セ
ラミック粉の脱落防止のメリ・ソトは得られる。鋼繊維
はそれ自体の強度が大きくかつ表面積の大きいもの、た
とえばビビリ振動切削法などで生成したものが適当とい
える。
Other steel fibers such as free-cutting steel may also be used.
Further, the reinforcing effect of the backing layer can be obtained by using glass fiber, carbon fiber, ceramic, tungsten fiber, etc., and the advantages of preventing cracking and preventing ceramic powder from falling off can be obtained. Suitable steel fibers are ones that have high strength and a large surface area, such as those produced by a chatter vibration cutting method.

前記金属粉とセラミック粉と粘結剤の配合比は概ね重量
比で(1〜5):(1〜5)、1が好ましい。
The mixing ratio of the metal powder, ceramic powder, and binder is approximately (1 to 5):(1 to 5) by weight, preferably 1.

ここで、金属粉とセラミ、ツク粉と粘結剤の配合比の下
限を規定したのは、使用可能な最低限の型強度を得るの
に必要だからである。
Here, the lower limit of the mixing ratio of metal powder and ceramic, and of wood powder and binder is specified because it is necessary to obtain the minimum usable mold strength.

」1限を規定したのは、骨材が多すぎると成形性の面か
ら粘結剤の被覆能を低下させ、強度の低下や型表面の安
定性劣化を生じさせるからである。
The reason for specifying the first limit is that too much aggregate will reduce the ability to cover the binder from the viewpoint of moldability, resulting in a decrease in strength and deterioration in the stability of the mold surface.

次に、前工程で得られた成形体を型枠から脱型したのち
、自然乾燥又は/及び1次焼成を行い、さらに成形体は
酸化性雰囲気条件で2次焼成する。
Next, the molded body obtained in the previous step is removed from the mold, and then air-dried and/or primary firing is performed, and the molded body is further fired for a second time under oxidizing atmosphere conditions.

酸化性雰囲気は空気でもよいし、酸素供給を配慮したい
わゆる酸素富化空気でもよい。焼成条件は骨材及び粘結
剤などの配合比、型寸法、目的とする気孔率或いは生産
の観点より異なるが、一般的には焼成温度400〜15
00°C1焼成時間1時間以上が適当であるがこれらの
温度、時間に限定されるものではな(、焼成時間が長く
なれば硬化層は成長、増大する。従って、硬化層を厚く
したい場合には焼成時間を長(すればよく、逆に薄くし
たい場合には焼成時間を短くすればよい。この酸化性雰
囲気での2次焼成工程によりセラミック粉の焼成と成形
体に分散されている金属粉の酸化焼結が進行し、表面か
ら内部に向かって緻密な硬化層(2)が漸進的に生成さ
れ、このとき同時に成形体中に残留する粘結剤揮発分が
燃焼除去されて多孔質化が促進され、2次焼成の完了に
より、第1図で示すような多孔質状の複合焼成体(1)
が得られる。
The oxidizing atmosphere may be air or may be so-called oxygen-enriched air in consideration of oxygen supply. Firing conditions vary depending on the blending ratio of aggregates and binders, mold dimensions, target porosity, and production aspects, but generally the firing temperature is 400-15
A firing time of 1 hour or more at 00°C is appropriate, but it is not limited to these temperatures and times (The longer the firing time, the more the hardened layer will grow. Therefore, if you want to thicken the hardened layer, If you want to make the product thinner, you can shorten the firing time.This secondary firing process in an oxidizing atmosphere allows the ceramic powder to be fired and the metal powder dispersed in the molded body to be heated. As the oxidation sintering progresses, a dense hardened layer (2) is gradually generated from the surface to the inside, and at the same time, the volatile components of the binder remaining in the compact are burned off and the compact becomes porous. is promoted, and upon completion of the secondary firing, a porous composite fired body (1) as shown in Fig. 1 is produced.
is obtained.

次いで、第1図の複合焼成体(1)をA−A’位置で切
断して未焼成バッキング層(3)を露出するとともに型
表面にショツト粒が当っても型表面が損傷しないように
ゴム板でマスキングしたあと、バッキング層(3)に向
けてショツト粒等の投射材を投射装置より投射して未焼
成バッキング層(3)をきれいに除去し、第2図に示す
如く、背面に空洞部(4a)を有しかつ外周部に硬化層
(2)を備えた中空成形室(4)を得た。この際、投射
装置(図示せず)から投射されるショツト粒によって型
がかけたり、クラックが発生することもなく均一厚さの
硬化層(2)のみを残してバッキング層(3)だけがき
れいに除去された。
Next, the composite fired body (1) in Fig. 1 is cut at the A-A' position to expose the unfired backing layer (3) and to prevent the mold surface from being damaged even if shot particles hit the mold surface. After masking with a plate, the unfired backing layer (3) is thoroughly removed by projecting a shot material such as shot particles toward the backing layer (3) using a projection device, and a cavity is formed on the back side as shown in Figure 2. (4a) and a hardened layer (2) on the outer periphery of the hollow molding chamber (4) was obtained. At this time, the shot particles projected from the projection device (not shown) do not cause molding or cracks, leaving only the hardened layer (2) of uniform thickness and only the backing layer (3) clean. removed.

なお、バッキング層(3)の除去手段は前記投射装置の
他にサンドブラスト装置、サンダー、グラインダー、ド
リル等、また硬化層(2)を削除する場合はサンダー、
グラインダー、カッター等でそれぞれ肖1り落とすよう
1こすればよい。
In addition to the above-mentioned projection device, means for removing the backing layer (3) include a sandblasting device, sander, grinder, drill, etc., and when removing the hardened layer (2), a sander,
All you have to do is rub it once with a grinder, cutter, etc. to remove the grain.

次いで、中空成形室(4)の空洞部(4a)に型面背部
に沿って導管(5)を配置して、水、空気、液体窒素、
液化炭酸ガス或いは温水、熱風等の温度調節用の媒体を
通す流路(6)を形成したあと、該空洞部(4a)にバ
インダーとして予め硬化触媒を含有したフラン系樹脂を
添加、混合した粒子状物質(7)を導管(5)を埋没さ
せるように充填、硬化させて第3図に示すような通気性
成形型(8〕を得た。
Next, a conduit (5) is placed in the cavity (4a) of the hollow molding chamber (4) along the back of the mold surface, and water, air, liquid nitrogen,
After forming a flow path (6) through which a temperature regulating medium such as liquefied carbon dioxide, hot water, or hot air passes, a furan-based resin containing a curing catalyst as a binder is added to the cavity (4a) and mixed with the particles. The material (7) was filled so as to bury the conduit (5) and cured to obtain a breathable mold (8) as shown in FIG.

なお、粒子状物質(7)としては熱伝導性、強度、耐熱
性の面からアルミ合金、銅合金、鉄系等の粒子径が10
0μ〜3tm程度の比較的小さいものが効果的である。
In addition, as particulate matter (7), from the viewpoint of thermal conductivity, strength, and heat resistance, aluminum alloys, copper alloys, iron-based materials, etc. with a particle size of 10
A relatively small size of about 0μ to 3tm is effective.

また、これら粒子状物質(7)の他に塩化ビニール樹脂
、A−B−3樹脂、スチレン樹脂等のプラスチック樹脂
や酸化硅素、硅酸ジルコニウム、酸化アルミ、ガラス等
の無機系化合物の粒状物でも良い。
In addition to these particulate substances (7), particulates of plastic resins such as vinyl chloride resin, A-B-3 resin, and styrene resin, and inorganic compounds such as silicon oxide, zirconium silicate, aluminum oxide, and glass may also be used. good.

また、前記空洞部(4a)に鉄系の導管(5)の代りに
紙製或いは発泡ポリスチロール製の導管を配置したあと
硫酸ナトリウム、エチルシリケート、コロイダルシリカ
などの耐熱性バインダーを加えたアルミ合金、銅合金、
鉄系等の粒子状物質を充填、硬化し、その後前記紙製或
いは発泡ポリスチロール製の導管を焼失させて流路(6
)を形成するようにしても良く、また前記紙製或いは発
泡ポリスチロール製導管の代りにシェル中子を用いて前
記アルミ合金、銅合金、鉄系等の粒子状物質を充填、硬
化し、その後焼いて前記シェル中子を崩壊、除去し流路
(6)を形成するようにしても良い。
In addition, a pipe made of paper or polystyrene foam is arranged in place of the iron-based pipe (5) in the hollow part (4a), and then aluminum alloy is added with a heat-resistant binder such as sodium sulfate, ethyl silicate, or colloidal silica. ,Copper alloy,
A particulate material such as iron is filled and hardened, and then the paper or expanded polystyrene conduit is burned out to form a flow path (6
), and instead of the paper or foamed polystyrene conduit, a shell core may be used to fill and harden the aluminum alloy, copper alloy, iron-based, etc. particulate material, and then The shell core may be destroyed and removed by baking to form the channel (6).

また、粒子状物質(7)の硬化手段としては、前記の他
にバインダーとしてウレタン系樹脂を添加、混合した粒
子状物質(7)を充填したあと、アミン系ガスを通気さ
せて硬化する方法、或いは硅酸ナトリウムをバインダー
として用い、充填後二酸化炭素ガダを通気させて硬化さ
せる方法、さらには熱硬化性のフェノール樹脂をバイン
ダーとして用い、充填後、150〜180°Cの温度で
加熱、硬化させてもよい。次に、本発明の具体的な実施
例を示す。
In addition, the particulate material (7) can be cured by filling the particulate material (7) in which a urethane resin is added and mixed as a binder in addition to the above, and then curing by passing an amine gas through the mixture; Alternatively, sodium silicate is used as a binder, and after filling, carbon dioxide gas is aerated and cured.Furthermore, a thermosetting phenol resin is used as a binder, and after filling, the material is heated and cured at a temperature of 150 to 180°C. It's okay. Next, specific examples of the present invention will be shown.

(実施例) 金属粉として鋳鉄粉(粒径44μアンダー)とセラミッ
ク粉として合成ムライト粉(粒径75μアンダー)を重
量配合比で1:1に均一に混合し、さらに粘結剤として
硬化触媒を含むエチルシリケートを鋳鉄粉と合成ムライ
ト粉の合計重量に対して25wt%添加してこれらを十
分に混合、攪拌してスラリー状試料を得る。ついで、こ
のスラリー状試料を模型をセットした型枠に振動を与え
ながら流し込み、所定時間静置して固化、成形したのち
、固化した成形体を離型後空気中に24時間放置して自
然乾燥する。次いで、焼成炉に装入し酸化性雰囲気中で
焼成温度900°Cにて4時間2次焼成を行い、複合焼
成体を得た。
(Example) Cast iron powder (particle size under 44μ) as metal powder and synthetic mullite powder (particle size under 75μ) as ceramic powder were uniformly mixed in a weight ratio of 1:1, and a curing catalyst was further added as a binder. Ethyl silicate containing 25 wt% of the total weight of cast iron powder and synthetic mullite powder is added, and these are sufficiently mixed and stirred to obtain a slurry sample. Next, this slurry-like sample was poured into a mold with a model set while being vibrated, and left to stand for a predetermined period of time to solidify and form.After the solidified molded product was released from the mold, it was left in the air for 24 hours to air dry. do. Next, it was charged into a firing furnace and subjected to secondary firing at a firing temperature of 900° C. for 4 hours in an oxidizing atmosphere to obtain a composite fired body.

ついで、この複合焼成体の背面を切断して内部の未焼成
バッキング層を露出するとともに型表向にショツト粒が
当っても型表面が損傷しないようにゴム板等でマスキソ
グしたあと、前記未焼成バッキング層に向けて投射装置
より粒径0.5朋のシ3ット粒を投射速度70”/se
cでもって投射密度がが100 ’9/・になろように
投射して未焼成バッキング層をきれいに除去して空洞部
を形成するとともにこの空洞部の型面背部に銅製の導管
(9)を配IFIして流路(10)を形成し、さらに該
空洞部にバインダーとして予め硬化触媒を含有したフラ
ン系樹脂を添加、混合した粒子径が1.511のアルミ
合金の粒子状物質(11)を導管(9)が埋没するよう
に充填、硬化させて第4図に示すような通気性成形型(
12)を得た。
Next, the back side of this composite fired body is cut to expose the internal unfired backing layer, and after masking with a rubber plate or the like so that the mold surface will not be damaged even if the shot particles hit the mold surface, the unfired backing layer is removed. Thick grains with a particle size of 0.5 mm are projected from a projection device toward the backing layer at a speed of 70"/se.
The unfired backing layer was thoroughly removed by projecting at a projection density of 100'9/· to form a cavity, and a copper conduit (9) was placed behind the mold surface of this cavity. IFI is performed to form a flow path (10), and further, a furan-based resin containing a curing catalyst in advance as a binder is added and mixed into the cavity, and aluminum alloy particulate material (11) with a particle size of 1.511 is added. The conduit (9) is filled and hardened so that it is buried, and a breathable mold (
12) was obtained.

次いで、この通気性成形型(12)を、第4図に示す如
く、−側に開口を有し他側面に外部に通じる通気孔(1
3a)を複数個備えた枠体(13)に型面を開口側に向
けるとともに背面を通気孔(13a)側にして嵌め込ん
だあと、通気性成形型(12)の背面側より真空ポンプ
(図示せず)で通気孔(138)を介して吸引すると、
120°Cに加熱された0、5朋の塩化ビニールシート
の樹脂製品が約6秒で吸引、成形された。
Next, as shown in FIG. 4, this breathable mold (12) has an opening on the negative side and a ventilation hole (12) communicating with the outside on the other side.
3a) is fitted into the frame (13) with the mold surface facing the opening side and the back side facing the ventilation hole (13a), and then inserting the vacuum pump ( (not shown) through the vent hole (138).
A resin product made of 0.5 mm vinyl chloride sheet heated to 120°C was sucked and molded in about 6 seconds.

このようにして、水温16°C1流量5ノ//m、nの
冷却水を流路(10)中に通水しながら連続して50個
の樹脂製品を成形したが、通気性成形型(12)の型上
昇温度は40°Cであった。
In this way, 50 resin products were continuously molded while passing cooling water at a water temperature of 16°C and a flow rate of 5 n/m into the channel (10). The mold rising temperature in 12) was 40°C.

(比較例) 前記実施例と同じ成分、条件より成る通気性成形型(1
2)を用いて冷却水を通さないで前記同様に50個成形
すると、通気性成形型(12)の型温度は60°Cに上
昇した。
(Comparative example) A breathable mold (1
When 50 pieces were molded in the same manner as described above using 2) without passing cooling water, the mold temperature of the breathable mold (12) rose to 60°C.

従って、前記実施例に比べて樹脂製品の冷却速度が遅く
なって離型に時間がかかり生産性が犬l]に低下した。
Therefore, the cooling rate of the resin product was slower than in the previous example, and it took longer to release the product from the mold, resulting in a drop in productivity.

以」二の説明によって明らかなように、本発明は作業始
めにおいて型温度が冷えている場合とか連続して使用し
たために型温度があがった場合には、型背面に形成した
流路に温度調節用の媒体を通すことによって型温度を所
定温度に制御できるため、生産性が大1】に向上するな
どの効果を有し、この種の業界に寄与する効果は著大で
ある。
As is clear from the following explanation, the present invention provides temperature control in the flow path formed on the back of the mold when the mold temperature is cold at the beginning of work or when the mold temperature rises due to continuous use. Since the temperature of the mold can be controlled to a predetermined temperature by passing the medium through the mold, it has the effect of greatly improving productivity, and the effect of contributing to this type of industry is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明による通気性成形型の製作工程
を示すものにして第1図は複合焼成体の断面図、第2図
は第1図における複合焼成体の背面を切断しバッキング
層を除去して成る中空成形型の断面図、第3図は中空成
形型の背面空洞部に流路を設は粒子状物質を充填して成
る本発明の通気性成形型の断面図、第4図は本発明の通
気性成形型を真空成形装置の枠体に嵌め込んだ状態を示
す断面図である。 (1):複合焼成体 (2):硬化層 (3):未焼成バッキング層(6)(10) :流路(
7) (11) :粒子状物質 (8)(12) :通
気性成形型を1 図 誉2図 亭3図
Figures 1 to 3 show the manufacturing process of a breathable mold according to the present invention. Figure 1 is a cross-sectional view of the composite fired body, and Figure 2 is a cross-sectional view of the composite fired body in Figure 1. FIG. 3 is a cross-sectional view of a hollow mold with the backing layer removed, and FIG. 3 is a cross-sectional view of a breathable mold of the present invention in which a flow path is provided in the back cavity of the hollow mold and filled with particulate matter. FIG. 4 is a sectional view showing a state in which the breathable mold of the present invention is fitted into the frame of a vacuum forming apparatus. (1): Composite fired body (2): Hardened layer (3): Unfired backing layer (6) (10): Channel (
7) (11) : Particulate matter (8) (12) : Breathable mold 1 Zuhom 2 Zutei 3

Claims (1)

【特許請求の範囲】 1、金属粉とセラミック粉を骨材とし、これに蒸発又は
焼失する成分を含む粘結剤を混合しt二試料を成形、焼
成した複合焼成体から成り、この複合焼成体の外周部に
おける金属酸化物を含有する緻密な硬化層のみ残して内
部の未焼成バッキング層は除去して空洞部を設けるとと
もに該空洞部に温度調節用の媒体を通す流路を形成する
ように粒子状物質を充填して成る通気性成形型。 2、金属粉とセラミック粉を骨材とし、これに蒸発又は
焼失する成分を含む粘結剤を混合した試料を成形、焼成
した複合焼成体から成り、この複合焼成体の外周部にお
ける金属酸化物を含有する緻密な硬化層の一部又は/及
び内部の未焼成バッキング層の一部若しくは全部を除去
して内部に空洞部を設けるとともに該空洞部に温度調節
用の媒体を通す流路を形成するように粒子状物質を充填
して成る通気性成形型。
[Scope of Claims] 1. A composite fired body made of metal powder and ceramic powder used as aggregate, mixed with a binder containing a component that evaporates or burns out, molded and fired as a sample; Only the dense hardened layer containing metal oxides on the outer periphery of the body is left, and the internal unfired backing layer is removed to provide a cavity and form a flow path through which a temperature regulating medium is passed. A breathable mold made of a mold filled with particulate matter. 2. Consists of a composite fired body made by molding and firing a sample of metal powder and ceramic powder aggregate mixed with a binder containing components that evaporate or burn out, and metal oxides on the outer periphery of this composite fired body. A part of the dense hardened layer containing the and/or part or all of the internal unfired backing layer is removed to create a cavity inside and a flow path for passing a temperature regulating medium in the cavity. A breathable mold that is filled with particulate matter.
JP8066484A 1984-04-20 1984-04-20 Air-permeable molding die Pending JPS60224507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066484A JPS60224507A (en) 1984-04-20 1984-04-20 Air-permeable molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066484A JPS60224507A (en) 1984-04-20 1984-04-20 Air-permeable molding die

Publications (1)

Publication Number Publication Date
JPS60224507A true JPS60224507A (en) 1985-11-08

Family

ID=13724628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066484A Pending JPS60224507A (en) 1984-04-20 1984-04-20 Air-permeable molding die

Country Status (1)

Country Link
JP (1) JPS60224507A (en)

Similar Documents

Publication Publication Date Title
JP3557430B2 (en) Metal casting mold, metal casting method, and molded article of refractory composition used therefor
JP4352423B2 (en) Metal casting mold
KR910000953B1 (en) Composite and durable forming model with permability
EP0888199B1 (en) Sleeves, their preparation, and use
JPH0366446A (en) Casting method of molten iron and filter for molten iron
JP3240023B2 (en) Manufacturing method of durable air-permeable type
KR840000602B1 (en) Production of metal casting sand moulds
US3876420A (en) Thermal insulation molten metal
US4605057A (en) Process for producing core for casting
JPS60224507A (en) Air-permeable molding die
US2169385A (en) Manufacture of foundry molds
JPH0663684A (en) Production of ceramic core for casting
US2851752A (en) High strength investment casting mold
JPH08332547A (en) Casting method and mold and its production
JPH0252606B2 (en)
US5318092A (en) Method for controlling the collapsibility of foundry molds and cores
JPS63140740A (en) Mold for casting active metal of high melting point
JPH0663683A (en) Production of casting mold
JPH0636954B2 (en) Composition for easily disintegrating mold
JPH0252605B2 (en)
JPH0210118B2 (en)
JPH0336611B2 (en)
JPS6153007A (en) Method of heating-molding ceramics
JPS58369A (en) Casting of cast iron
US3815658A (en) Process for making a metallurgically slow reacting mold