JPH0252606B2 - - Google Patents

Info

Publication number
JPH0252606B2
JPH0252606B2 JP59064666A JP6466684A JPH0252606B2 JP H0252606 B2 JPH0252606 B2 JP H0252606B2 JP 59064666 A JP59064666 A JP 59064666A JP 6466684 A JP6466684 A JP 6466684A JP H0252606 B2 JPH0252606 B2 JP H0252606B2
Authority
JP
Japan
Prior art keywords
mold
backing layer
binder
powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59064666A
Other languages
Japanese (ja)
Other versions
JPS60206609A (en
Inventor
Toyoji Fuma
Kazuyuki Nishikawa
Tadashi Makiguchi
Masanori Tomioka
Takehiro Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP6466684A priority Critical patent/JPS60206609A/en
Publication of JPS60206609A publication Critical patent/JPS60206609A/en
Publication of JPH0252606B2 publication Critical patent/JPH0252606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3814Porous moulds

Description

【発明の詳細な説明】 本発明は通気性成形型の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a breathable mold.

本願発明者達は先の特許出願において特願昭58
―62784号(特開昭60―6242号公報参照)、特願昭
58―71258号(特開昭60―6241号公報参照)、特願
昭58―71259号(特開昭60―46213号公報参照)及
び特願昭58―80943号(特開昭60―6243号公報参
照)等に開示している如く、金属粉とセラミツク
粉を骨材とし、これに硬化、焼成過程において蒸
発又は焼失する成分を含む粘結剤、さらに必要に
応じて鋼繊維をそれぞれ添加することにより得ら
れる複合焼成体から成り、その表面に少なくとも
金属酸化物を含む緻密な硬化層を有する通気性構
造の成形型を提案している。しかしこの成形型を
通気性、通水性を必要とする成形加工、例えば真
空成形用型、ブロー成形用型、注型用型などプラ
スチツク成形加工分野、また金属の鋳造用型、陶
磁器などのスリツプキヤステイング用型などに利
用する場合、通気性を調整する必要があるが、通
気性は金属粉、セラミツク粉の粒度分布、配合
比、或いは粘結剤の添加量により制御することが
必要である。しかし、これは複雑で高度の技術を
要し、たとえば陶磁器のキヤステイング用型にお
いては、型の部位により通気性、即ち通水性が異
なると、陶磁原料の型への着肉厚さが異なるとい
う不都合が生じ、型の部位による通気性を一定に
する必要がある。そのために、型形状に沿つて一
定厚さにしなければならないが、肉厚が薄い場
合、乾燥、焼成工程において歪やクラツクが発生
するなどの問題があつて、一定厚さのシエル状成
形型をつくることは困難であつた。又、型の部位
により通気性を変化させることはできないという
問題があつた。
The inventors of this application filed a patent application in 1983 in an earlier patent application.
- No. 62784 (see Japanese Patent Application Laid-Open No. 60-6242)
58-71258 (see JP-A-60-6241), JP-A-58-71259 (see JP-A-60-46213), and JP-A-58-80943 (see JP-A-60-6243) As disclosed in Japanese publications, etc., metal powder and ceramic powder are used as aggregates, and a binder containing components that evaporate or burn out during the hardening and firing process is added, as well as steel fibers as necessary. We have proposed a mold with an air-permeable structure, which is made of a composite fired body obtained by this process, and has a dense hardened layer containing at least a metal oxide on its surface. However, this mold can be used for molding processes that require air permeability and water permeability, such as vacuum molding molds, blow molding molds, casting molds, etc., as well as molds for metal casting, slippers for ceramics, etc. When used in molds for staining, etc., it is necessary to adjust the air permeability, and the air permeability needs to be controlled by the particle size distribution of metal powder and ceramic powder, the blending ratio, or the amount of binder added. However, this is complex and requires advanced technology. For example, in ceramic casting molds, if the air permeability, or water permeability, differs depending on the part of the mold, the thickness of the ceramic raw material deposited on the mold will differ. This causes some inconvenience, and it is necessary to make the air permeability constant depending on the part of the mold. For this purpose, the thickness must be constant along the shape of the mold, but if the wall thickness is thin, there are problems such as distortion and cracks occurring during the drying and firing process, so a shell-shaped mold with a constant thickness is used. It was difficult to make. Another problem was that the air permeability could not be changed depending on the part of the mold.

本発明はこれらの問題点に鑑みて成されたもの
であつて、その目的とするところは強度的に問題
がなく、通気性、熱伝導性等に優れているととも
に用途に応じた機能を備えた通気性成形型を製造
することにある。
The present invention has been made in view of these problems, and its purpose is to provide a structure that does not have any problems in terms of strength, has excellent breathability, thermal conductivity, etc., and has functions appropriate to the intended use. The purpose of the present invention is to manufacture a breathable mold.

以下に、本発明を実施例に基づき詳細に説明す
る。第1図に示す如く、1は中央部に凹部1aを
備えた多孔質状の複合焼成体で、この複合焼成体
1は金属粉とセラミツク粉からなり、型面を含む
外周部に緻密な硬化層2を有すると共に、この硬
化層2の内側に未焼成混合組織から成るバツキン
グ層3を有している。
The present invention will be explained in detail below based on examples. As shown in Fig. 1, reference numeral 1 denotes a porous composite fired body with a recess 1a in the center.This composite fired body 1 is made of metal powder and ceramic powder, and has a dense hardened body on the outer periphery including the mold surface. It has a layer 2, and a backing layer 3 made of an unfired mixed structure inside the hardened layer 2.

前記硬化層2はセラミツク粉に分散した金属酸
化物粒と焼成セラミク粒との接合組織からなつて
いる。この硬化層2の生成機構は必ずしも明確で
はないが、一般には、金属粉が酸化しセラミツク
粒子との界面で拡散接合的な接着が行われた結果
と考えられる。
The hardened layer 2 consists of a bonding structure of metal oxide particles dispersed in ceramic powder and fired ceramic particles. Although the formation mechanism of this hardened layer 2 is not necessarily clear, it is generally considered to be the result of oxidation of metal powder and diffusion bonding at the interface with ceramic particles.

そして、この硬化層2には粘結剤が乾燥工程お
よび酸化性雰囲気中での焼成工程で蒸発あるいは
焼失することにより微細(5〜10μmのごとし)
な気孔が形成され、この微細な気孔により多孔質
でありながら緻密で平滑な面性状を構成してい
る。一方、硬化層2の内側にあるバツキング層3
は十分に焼成のなされないまゝの金属粉とセラミ
ツク粉との混合組織からなつており、それら金属
粉あるいはセラミツク粉の界面にはさきの粘結剤
の蒸発或いは焼失により気孔が形成されている。
このバツキング層3の気孔は硬化層2の気孔と通
じており、従つて複合焼成体1は全体が多孔質の
通気構造となつている。
In this hardened layer 2, the binder is evaporated or burned away during the drying process and the firing process in an oxidizing atmosphere, resulting in fine particles (about 5 to 10 μm).
These fine pores form a porous yet dense and smooth surface. On the other hand, the backing layer 3 located inside the hardened layer 2
It consists of a mixed structure of metal powder and ceramic powder that have not been sufficiently fired, and pores are formed at the interface of these metal powders or ceramic powders due to evaporation or burning of the previous binder. .
The pores of this backing layer 3 communicate with the pores of the hardened layer 2, so that the entire composite fired body 1 has a porous ventilation structure.

このような多孔質状の複合焼成体1は骨材と粘
結剤を配合混練してスラリー状試料を得しめこの
スラリー状試料を流し込み成形する工程と、成形
体を乾燥ないし1次焼成する工程と、この工程を
経たものを酸化性雰囲気条件で焼成する工程によ
り得られる。
Such a porous composite fired body 1 is produced by mixing and kneading aggregate and a binder to obtain a slurry sample, pouring and molding the slurry sample, and drying or primary firing the molded body. The product obtained through this step is then fired in an oxidizing atmosphere.

まず、スラリー状試料を得る工程は金属粉とセ
ラミツク粉あるいはさらに鋼繊維を十分に混合撹
拌し、これに硬化過程で蒸発する成分を含む粘結
剤たとえばエチルシリケートなどのシリカゾルや
コロイダルシリカなどを添加して十分に混合撹拌
することからなる。次いで、前記スラリー状試料
を所望型形状に固化成形し成形体を得る。これ
は、たとえば型枠で囲まれた内部に模型或いは現
物をセツトし、この型枠内にさきのスラリー状試
料を流し込み、所要時間放置することなどにより
行うもので、この流し込みに際して、硬化剤を加
えたり、充填性を助長するため振動を加えたり、
スクイズすることなども効果的である。
First, the process of obtaining a slurry sample involves thoroughly mixing and stirring metal powder and ceramic powder or steel fibers, and then adding a binder containing components that evaporate during the curing process, such as silica sol such as ethyl silicate or colloidal silica. and thoroughly mix and stir. Next, the slurry sample is solidified and molded into a desired shape to obtain a molded body. This is done, for example, by setting a model or actual object inside a mold, pouring the slurry sample into the mold, and leaving it for the required time. Adding vibration to promote filling properties,
Squeezing is also effective.

詳述すると、「金属粉」としては、鋳鉄粉、電
解粉、純鉄粉などの鉄粉やニツケル粉、銅粉、な
どの非鉄金属粉が用いられる。このうち、鋳鉄粉
は焼成時に遊離カーボンの燃焼により気孔形成を
促進する利点がある。
Specifically, as the "metal powder", iron powder such as cast iron powder, electrolytic powder, pure iron powder, etc., and non-ferrous metal powder such as nickel powder, copper powder, etc. are used. Among these, cast iron powder has the advantage of promoting pore formation by burning free carbon during firing.

「セラミツク粉」としては、高温での変形率が
小さく、金属粉と接合しやすいものたとえばムラ
イト、焼成アルミナ、活性アルミナ、電融アルミ
ナ、クロマイト、シリマナイトなどで代表される
中性系のもの、溶融シリカ、ジルコニウム、溶融
ジルコンで代表される酸性系のものが一般に適当
であるが、マグネシア質で代表される塩基性のも
のや滑石なども用いることができる。
Ceramic powders include those that have a small deformation rate at high temperatures and are easily bonded to metal powders, such as neutral types such as mullite, calcined alumina, activated alumina, fused alumina, chromite, sillimanite, etc. Acidic materials such as silica, zirconium, and fused zircon are generally suitable, but basic materials such as magnesia and talc may also be used.

また、「鋼繊維」としては、一般にステンレス
系のものが適当といえる。ステンレス系の鋼繊維
は焼成工程で消失しないため、硬化層及びバツキ
ング層の両層に対する補強効果が高いからであ
る。これ以外の鋼繊維たとえば快削鋼などを用い
てもバツキング層の補強効果は得られ、亀裂防
止、セラミツク粉の脱落防止のメリツトは得られ
る。鋼繊維はそれ自体の強度が大きくかつ表面積
の大きいもの、たとえばビビリ振動切削法などで
生成したものが適当といえる。
Furthermore, as the "steel fiber", stainless steel fibers are generally suitable. This is because stainless steel fibers do not disappear during the firing process, so they have a high reinforcing effect on both the hardened layer and the backing layer. Even if other steel fibers such as free-cutting steel are used, the reinforcing effect of the backing layer can be obtained, and the advantages of preventing cracks and preventing ceramic powder from falling off can also be obtained. Suitable steel fibers are ones that have high strength and a large surface area, such as those produced by a chatter vibration cutting method.

前記金属粉とセラミツク粉と粘結剤の配合比は
概ね重量比で(1〜5):(1〜5):1が好まし
い。ここで、金属粉とセラミツク粉と粘結剤の配
合比の下限を規定したのは、使用可能な最低限の
型強度を得るのに必要だからである。
The mixing ratio of the metal powder, ceramic powder, and binder is preferably approximately (1-5):(1-5):1 by weight. Here, the lower limit of the mixing ratio of metal powder, ceramic powder, and binder is specified because it is necessary to obtain the minimum usable mold strength.

上限を規定したのは、骨材が多すぎると成形性
の面から粘結剤の被覆能を低下させ、強度の低下
や型表面の安定性劣化を生じさせるからである。
The upper limit was specified because too much aggregate would reduce the coating ability of the binder from the viewpoint of moldability, resulting in a decrease in strength and deterioration of the stability of the mold surface.

次に、前工程で得られた成形体を型枠から脱型
したのち、自然乾燥又は/及び1次焼成を行い、
さらに成形体は酸化性雰囲気条件で2次焼成す
る。酸化性雰囲気は空気でもよいし、酸素供給を
配慮したいわゆる酸素富化空気でもよい。焼成条
件は骨材及び粘結剤などの配合比、型寸法、目的
とする気孔率或いは生産の観点より異なるが、一
般的には焼成温度400〜1500℃、焼成時間1時間
以上が適当であるがこれらの温度、時間に限定さ
れるものではなく、焼成時間が長くなれば硬化層
は成長、増大する。従つて、硬化層を厚くしたい
場合には焼成時間を長くすればよく、逆に薄くし
たい場合には焼成時間を短くすればよい。この酸
化性雰囲気での2次焼成工程によりセラミツク粉
の焼成と成形体に分散されている金属粉の酸化焼
結が進行し、表面から内部に向かつて緻密な硬化
層2が漸進的に生成され、このとき同時に成形体
中に残留する粘結剤揮発分が燃焼除去されて多孔
質化が促進され、2次焼成の完了により、第1図
で示すような多孔質状の複合焼成体1が得られ
る。
Next, after removing the molded body obtained in the previous step from the mold, natural drying and/or primary firing is performed,
Further, the molded body is subjected to secondary firing under oxidizing atmosphere conditions. The oxidizing atmosphere may be air or may be so-called oxygen-enriched air in consideration of oxygen supply. Firing conditions vary depending on the blending ratio of aggregates and binders, mold dimensions, target porosity, and production aspects, but in general, a firing temperature of 400 to 1500°C and a firing time of 1 hour or more are appropriate. However, the temperature and time are not limited to these, and as the firing time becomes longer, the hardened layer will grow and increase in size. Therefore, if you want to make the hardened layer thicker, you just need to lengthen the firing time, and if you want to make it thinner, you can shorten the firing time. In this secondary firing step in an oxidizing atmosphere, firing of the ceramic powder and oxidation sintering of the metal powder dispersed in the molded body proceed, and a dense hardened layer 2 is gradually generated from the surface toward the inside. At the same time, the volatile components of the binder remaining in the molded body are burned off to promote porosity, and upon completion of the secondary firing, a porous composite fired body 1 as shown in FIG. can get.

次いで、第1図の複合焼成体1をA―A′位置
で切断して未焼成バツキング層3を露出するとと
もに型表面にシヨツト粒が当つても型表面が損傷
しないようにゴム板でマスキングしたあと、バツ
キング層3に向けてシヨツト粒等の投射材を投射
装置より投射して未焼成バツキング層3をきれい
に除去し、第2図に示す如く、背面に空洞部4a
を有しかつ外周部に硬化層2を備えた中空成形型
4を得た。この際、投射装置(図示せず)から投
射されるシヨツト粒によつて型がかけたり、クラ
ツクが発生することもなく均一厚さの硬化層2の
みを残してバツキング層3だけがきれいに除去さ
れた。
Next, the composite fired body 1 shown in Fig. 1 was cut at the A-A' position to expose the unfired backing layer 3, and it was masked with a rubber plate so that the mold surface would not be damaged even if shot particles hit the mold surface. After that, the unfired backing layer 3 is thoroughly removed by projecting a shot material such as shot grains toward the backing layer 3 from a projection device, and a cavity 4a is formed on the back side as shown in FIG.
A hollow mold 4 was obtained, which had a hardened layer 2 on its outer periphery. At this time, only the backing layer 3 is removed cleanly, leaving only the hardened layer 2 with a uniform thickness, without causing molding or cracking due to shot particles projected from a projection device (not shown). Ta.

なお、バツキング層3の除去手段は前記投射装
置の他にサンドブラスト装置、サンダー、グライ
ンダー、ドリル等、また硬化層2を削除する場合
はサンダー、グラインダー、カツター等で削り落
とすようにすればよい。
In addition to the above-mentioned projection device, the means for removing the backing layer 3 may be a sandblasting device, a sander, a grinder, a drill, etc., and when the hardened layer 2 is to be removed, it may be scraped off with a sander, grinder, cutter, etc.

次いで、中空成形型4の空洞部4aにバインダ
ーとして予め硬化触媒を含有したフラン系樹脂を
添加、混合した粒子状物質5をバツクアツプとし
て充填、硬化させて通気性成形型6を得た。な
お、粒子状物質5としては熱伝導性、強度、耐熱
性を必要とする場合は、アルミ合金、銅合金、鉄
系等の粒子径が100μ〜3mm程度の比較的小さい
ものでよく、また単に通気性を重視する場合は、
粒子径が1mm〜10mm程度の比較的大きいものが良
い。さらに型を軽くしたい場合には、塩化ビニー
ル樹脂、A・B・S樹脂、スチレン樹脂等のプラ
スチツク樹脂が良い。また、通気性、熱伝導性、
耐熱性、重量、価格等の広い要求を平均的に満足
するものとしては、酸化硅素、硅酸ジルコニウ
ム、酸化アルミ、ガラス等の無機系化合物を用い
ることもできる。
Next, a furan-based resin containing a curing catalyst as a binder was added to the cavity 4a of the hollow mold 4, and the mixed particulate matter 5 was filled as a backup and cured to obtain an air-permeable mold 6. In addition, if thermal conductivity, strength, and heat resistance are required as particulate matter 5, it may be made of aluminum alloy, copper alloy, iron-based material, etc. with a relatively small particle size of about 100 μ to 3 mm, or simply If breathability is important,
A relatively large particle size of about 1 mm to 10 mm is preferable. If you want to make the mold even lighter, plastic resins such as vinyl chloride resin, A/B/S resin, or styrene resin are suitable. It also has breathability, thermal conductivity,
Inorganic compounds such as silicon oxide, zirconium silicate, aluminum oxide, and glass can also be used as materials that averagely satisfy a wide range of requirements such as heat resistance, weight, and price.

また、粒子状物質5の硬化手段としては、前記
の他にバインダーとしてウレタン系樹脂を添加、
混合した粒子状物質5を充填したあと、アミン系
ガスを通気させて硬化する方法、或いは硅酸ナト
リウムをバインダーとして用い、充填後二酸化炭
素ガスを通気させて硬化させる方法、さらには熱
硬化性のフエノール樹脂をバインダーとして用
い、充填後、150〜180℃の温度で加熱、硬化させ
てもよい。次に、本発明の具体的な実施例を示
す。
In addition to the above, as a means for curing the particulate matter 5, adding a urethane resin as a binder,
After filling the mixed particulate matter 5, a method of curing by passing amine gas through the air, or a method of using sodium silicate as a binder and curing by bubbling carbon dioxide gas after filling, and a thermosetting method. A phenolic resin may be used as a binder, and after filling, it may be heated and cured at a temperature of 150 to 180°C. Next, specific examples of the present invention will be shown.

(実施例) 金属粉として鋳鉄粉(粒径44μアンダー)とセ
ラミツク粉として合成ムライト粉(粒径75μアン
ダー)を重量配合比で1:1に均一に混合し、さ
らに粘結剤として硬化触媒を含むエチルシリケー
トを鋳鉄粉と合成ムライト粉の合計重量に対して
25wt%添加してこれらを十分に混合、撹拌して
スラリー状試料を得る。ついで、このスラリー状
試料を模型をセツトした型枠に振動を与えながら
流し込み、所定時間静置して固化、成形したの
ち、固化した成形体を離型後、空気中に24時間放
置して自然乾燥する。次いで、焼成炉に装入し酸
化性雰囲気中で焼成温度900℃にて4時間2次焼
成を行い、複合焼成体を得た。
(Example) Cast iron powder (particle size under 44μ) as metal powder and synthetic mullite powder (particle size under 75μ) as ceramic powder were uniformly mixed at a weight ratio of 1:1, and a curing catalyst was further added as a binder. Containing ethyl silicate based on the total weight of cast iron powder and synthetic mullite powder
Add 25wt% and mix and stir thoroughly to obtain a slurry sample. Next, this slurry-like sample was poured into the mold with the model set while applying vibrations, left to stand for a predetermined period of time, solidified, and molded. After releasing the solidified molded product, it was left in the air for 24 hours to allow it to grow naturally. dry. Next, it was charged into a firing furnace and subjected to secondary firing at a firing temperature of 900° C. for 4 hours in an oxidizing atmosphere to obtain a composite fired body.

ついで、この複合焼成体の背面を切断して内部
の未焼成バツキング層を露出するとともに型表面
にシヨツト粒が当つても型表面が損傷しないよう
にゴム板等でマスキングしたあと、前記未焼成バ
ツキング層に向けて投射装置より粒径0.5mmのシ
ヨツト粒を投射速度70m/secでもつて投射密度
が100Kg/m2になるように投射して未焼成バツキ
ング層をきれいに除去して空洞部を形成するとと
もにこの空洞部にバインダーとして予め硬化触媒
を含有したフラン系樹脂を添加、混合した粒子径
が1.5mmのアルミ合金の粒子状物質7をバツクア
ツプとして充填、硬化させて通気性成形型8を得
た。次いで、この通気性成形型8を、第4図に示
す如く、一側に開口を有しかつ他側壁面に外部に
通じる通気孔9aを複数個備えた真空成形装置の
枠体9に型面を開口側に向けるとともに背面を通
気孔9a側にして嵌め込んだあと、通気性成形型
6の背面側より真空ポンプ(図示せず)で通気孔
9aを介して吸引すると、120℃に加熱された0.5
mmの塩化ビニールシートの樹脂製品が約6秒で吸
引、成形された。
Next, the back side of this composite fired body is cut to expose the internal unfired backing layer, and after masking with a rubber plate or the like so that the mold surface will not be damaged even if shot particles hit the mold surface, the unfired backing layer is removed. Shot grains with a diameter of 0.5 mm are projected onto the layer from a projection device at a projection speed of 70 m/sec so that the shot density is 100 Kg/m 2 to cleanly remove the unfired backing layer and form a cavity. At the same time, a furan-based resin containing a curing catalyst as a binder was added in advance to this cavity, and mixed aluminum alloy particulate matter 7 with a particle diameter of 1.5 mm was filled as a backup and hardened to obtain a breathable mold 8. . Next, as shown in FIG. 4, this breathable mold 8 is placed in a frame 9 of a vacuum forming apparatus having an opening on one side and a plurality of ventilation holes 9a leading to the outside on the other side wall. After fitting with the back side facing the opening side and the back side facing the ventilation hole 9a, suction is applied from the back side of the breathable mold 6 through the ventilation hole 9a with a vacuum pump (not shown), and the mold is heated to 120°C. 0.5
A resin product made of vinyl chloride sheet of mm was suctioned and molded in about 6 seconds.

(比較例) 前記実施例と同じ成分、条件より成る複合焼成
体の背面を前記実施例と同様に切断してバツキン
グ層3をそのまま残したままのものを、枠体9に
嵌め込み120℃に加熱された0.5mmの塩化ビニール
シートの樹脂製品を前記同様に成形すると、約11
秒かかつた。
(Comparative example) The back side of a composite fired body made of the same ingredients and conditions as in the above example was cut in the same manner as in the above example, and the backing layer 3 was left intact.The body was fitted into the frame 9 and heated to 120°C. When a resin product made of 0.5mm vinyl chloride sheet is molded in the same manner as above, approximately 11
It took seconds.

このように、本発明により製造した通気性成形
型8を使用した場合は、バツキング層3をそのま
ま残したままの状態で使用した場合に比べて成形
時間が短縮でき生産性が大巾に向上した。
As described above, when the air-permeable mold 8 manufactured according to the present invention was used, the molding time was shortened and productivity was greatly improved compared to when the backing layer 3 was left as it was. .

これはバツクアツプに金属粉及びセラミツク粉
末より粒度が粗く熱伝導性の良好なアルミ合金粒
子を用いたことにより型の通気性及び熱伝導性等
が良くなり、塩化ビニールシートと型表面との間
に閉じ込められた残留空気が通気性の良い成形型
8の粒子間の隙間より効率的に排出されて塩化ビ
ニールシートの型表面への吸引密着速度が早くな
るとともに熱伝導性が良くなつたことによつて型
表面温度が上昇しなくなり、成形後、冷却、離型
するまでの時間が短縮されたためと考えられる。
This is due to the use of aluminum alloy particles, which are coarser in size and have better thermal conductivity than metal powder or ceramic powder, in the back-up, which improves the air permeability and thermal conductivity of the mold, and the gap between the vinyl chloride sheet and the mold surface. The trapped residual air is efficiently discharged through the gaps between the particles of the mold 8, which has good air permeability, and the speed at which the vinyl chloride sheet is attracted to the mold surface becomes faster, and its thermal conductivity improves. This is thought to be because the surface temperature of the mold no longer rises, and the time required for cooling and releasing the mold after molding is shortened.

また、第5図は凸型形状の複合焼成体1にし
て、このような形状の型を使用して真空成形する
場合、隅部Aは合成樹脂シートが吸引密着するま
でに時間がかかるため、高い通気性を必要とし、
また側面部Bは成形初期においてシートが密着し
てしまうと延伸が阻害され、樹脂製品に肉厚変動
が生じやすくなるため、通気性はそれほど必要と
しない。このような場合にはバツキング層3′を
除去する際に、隅部A附近の硬化層2′を薄くす
るように削り落とし、また側面部B附近に対応す
る部位のバツキング層3′は意識的に残すように
することが必要である。
In addition, FIG. 5 shows a composite fired body 1 having a convex shape, and when vacuum forming is performed using a mold having such a shape, it takes time for the synthetic resin sheet to adhere to the corner A by suction. Requires high breathability,
In addition, the side surface portion B does not require much air permeability, because if the sheets come into close contact with each other in the initial stage of molding, stretching will be inhibited and the thickness of the resin product will likely fluctuate. In such a case, when removing the backing layer 3', the hardened layer 2' near the corner A is scraped off to make it thinner, and the backing layer 3' at the area corresponding to the vicinity of the side surface B is intentionally removed. It is necessary to leave it in the

尚、本発明により製造される。通気性成形型は
前記実施例の真空成形以外にブロー成形用型、射
出成形用型などの樹脂成形用型、さらにはアルミ
ニウム合金、亜鉛合金等の低融合金の鋳造用型、
また窯業成形におけるプレス成形、ローラーマシ
ン成形、泥漿鋳込成形などの型としても用いるこ
とができる。
Incidentally, it is manufactured according to the present invention. Breathable molds include, in addition to the vacuum forming in the above embodiments, resin molding molds such as blow molding molds and injection molding molds, and molds for casting low alloy metals such as aluminum alloys and zinc alloys.
It can also be used as a mold for press molding, roller machine molding, slurry casting molding, etc. in ceramic molding.

以上の説明によつて明らかなように、本発明に
より製造される。通気性成形型は型強度を損うこ
となしに、型全体にわたつて、或いは必要に応じ
て各部位の通気性を制御できるとともに粒子状物
質に金属等を用いることにより熱伝導性が良くな
り、さらには型を軽くするためにプラスチツク樹
脂の粒子状物質を用いれば良く、このようにそれ
ぞれの用途に応じて種々な粒子状物質を使用する
ことによつて型機能を向上させ、その結果良品の
樹脂製品の成形が期待できるとともに生産性が大
巾に向上するなどの効果を有し、この種の業界に
寄与する効果は著大である。
As is clear from the above description, it is manufactured according to the present invention. Air-permeable molds allow you to control the air permeability throughout the mold or in each part as needed without compromising mold strength, and by using metal etc. as particulate matter, thermal conductivity is improved. Furthermore, particulate matter from plastic resin can be used to make the mold lighter, and by using various particulate matter according to each purpose, the function of the mold can be improved, resulting in better quality products. It is expected that the molding of resin products will be possible, and productivity will be greatly improved, and the effect of contributing to this type of industry will be significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の製作工程を示すもの
にして第1図は複合焼成体の断面図、第2図は第
1図における複合焼成体の背面を切断しバツキン
グ層を除去して成る中空成形型の断面図、第3図
は中空成形型の背面空洞部に粒子状物質を充填し
て成る通気性成形型の断面図、第4図は通気性成
形型を真空成形装置の枠体に嵌め込んだ状態を示
す断面図、第5図は複合焼成体の他の実施例を示
す断面図である。 1,1′:複合焼成体、2,2′:硬化層、3,
3′:未焼成バツキング層、4:中空成形型、5,
7:粒子状物質、6,8:通気性成形型。
Figures 1 to 3 show the manufacturing process of the present invention. Figure 1 is a cross-sectional view of the composite fired body, and Figure 2 is a cross-sectional view of the composite fired body in Figure 1 after cutting the back side and removing the backing layer. Figure 3 is a cross-sectional view of a breathable mold in which the back cavity of the hollow mold is filled with particulate matter. FIG. 5 is a sectional view showing another embodiment of the composite fired body. 1, 1': Composite fired body, 2, 2': Hardened layer, 3,
3': unfired backing layer, 4: hollow mold, 5,
7: Particulate matter, 6, 8: Breathable mold.

Claims (1)

【特許請求の範囲】 1 金属粉とセラミツク粉を骨材とし、これに蒸
発又は焼失する成分を含む粘結材を混合した試料
を成形焼成して外周部において金属酸化物を含有
する緻密な硬化層と未焼成バツキング層から成る
複合焼成体を得る工程と、この複合焼成体の一部
を切断した後外周部における金属酸化物を含有す
る緻密な硬化層のみを残して内部の未焼成バツキ
ング層を除去して空洞部を形成する工程と、該空
洞部にバインダーを添加混合した粒子状物質を充
填すると共に強制硬化させてバツクアツプとする
工程と、から成ることを特徴とする通気性成形型
の製造方法。 2 前記バツキング層を除去して空洞部を形成す
るにあたり、バツキング層に向けてシヨツト等の
投射材を投射装置を用いて投射することを特徴と
する特許請求の範囲第1項記載の通気性成形型の
製造方法。
[Scope of Claims] 1. A sample made of metal powder and ceramic powder as aggregate, mixed with a caking agent containing components that evaporate or burn out, is molded and fired to form a dense hardened material containing metal oxides in the outer periphery. A process of obtaining a composite fired body consisting of a layer and an unfired backing layer, and a step of cutting a part of this composite fired body, leaving only a dense hardened layer containing metal oxide at the outer periphery and cutting the inner unfired backing layer. An air-permeable mold comprising the steps of: forming a cavity by removing the binder, and filling the cavity with particulate material mixed with a binder and forcibly hardening it to make it back up. Production method. 2. The breathable molding according to claim 1, characterized in that when removing the backing layer to form the cavity, a projection material such as a shot is projected onto the backing layer using a projection device. Mold manufacturing method.
JP6466684A 1984-03-30 1984-03-30 Gas-permeable mold Granted JPS60206609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6466684A JPS60206609A (en) 1984-03-30 1984-03-30 Gas-permeable mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6466684A JPS60206609A (en) 1984-03-30 1984-03-30 Gas-permeable mold

Publications (2)

Publication Number Publication Date
JPS60206609A JPS60206609A (en) 1985-10-18
JPH0252606B2 true JPH0252606B2 (en) 1990-11-14

Family

ID=13264747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6466684A Granted JPS60206609A (en) 1984-03-30 1984-03-30 Gas-permeable mold

Country Status (1)

Country Link
JP (1) JPS60206609A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335224A1 (en) * 2003-07-30 2005-03-24 Universität Bremen Method for production of a molded body from ceramic material using metal powder and a colloidal sol useful in space shuttle-, microsystem-, fireproofing-, and/or foundry-, and/or biotechnology technology, e.g. chromatography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365416A (en) * 1986-09-05 1988-03-24 Asahi Optical Co Ltd Wide angle reading lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365416A (en) * 1986-09-05 1988-03-24 Asahi Optical Co Ltd Wide angle reading lens

Also Published As

Publication number Publication date
JPS60206609A (en) 1985-10-18

Similar Documents

Publication Publication Date Title
KR910000953B1 (en) Composite and durable forming model with permability
JPH026620B2 (en)
JP3240023B2 (en) Manufacturing method of durable air-permeable type
JP2851293B2 (en) Heterogeneous porous mold for mold production from foundry sand and method for producing the same
JPH0252606B2 (en)
US2873493A (en) Shell molding
US3692086A (en) Method of making a precision casting layered mold
JPH0663684A (en) Production of ceramic core for casting
US2851752A (en) High strength investment casting mold
JPH0252605B2 (en)
JPH08332547A (en) Casting method and mold and its production
JPH0371973B2 (en)
JPS60224507A (en) Air-permeable molding die
JPS63140740A (en) Mold for casting active metal of high melting point
US2948034A (en) Casting mold and method of casting carbon-containing alloys
JPS6153007A (en) Method of heating-molding ceramics
JPH0210118B2 (en)
JP2654999B2 (en) Precision suction mold
SU1632366A3 (en) Wear-resistant split moulding pattern
US3815658A (en) Process for making a metallurgically slow reacting mold
JPS60191630A (en) Production of air fermeable durable mold
JP3761414B2 (en) Casting mold and manufacturing method thereof
JPH05212487A (en) Production of casting mold
CN106001426A (en) Link plate casting technique
JPS60166405A (en) Air-permeable durable mold