JPS60224125A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60224125A
JPS60224125A JP7983584A JP7983584A JPS60224125A JP S60224125 A JPS60224125 A JP S60224125A JP 7983584 A JP7983584 A JP 7983584A JP 7983584 A JP7983584 A JP 7983584A JP S60224125 A JPS60224125 A JP S60224125A
Authority
JP
Japan
Prior art keywords
incident angle
vapor
magnetic
recording medium
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7983584A
Other languages
Japanese (ja)
Other versions
JPH061550B2 (en
Inventor
Yoshihiro Arai
芳博 荒井
Ryuji Shirahata
龍司 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7983584A priority Critical patent/JPH061550B2/en
Priority to US06/725,198 priority patent/US4622271A/en
Publication of JPS60224125A publication Critical patent/JPS60224125A/en
Publication of JPH061550B2 publication Critical patent/JPH061550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • C23C14/226Oblique incidence of vaporised material on substrate in order to form films with columnar structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the titled magnetic recording medium having excellent weather resistance by vapor-depositing a magnetic metallic material on the surface of a moving substrate while changing the incident angle continuously from a high to a low incident angle, and vapor-depositing a nonmagnetic metallic material on the vapor-deposited layer while changing the incident angle continuously from a low to a high incident angle to form a vapor-deposited film. CONSTITUTION:A vapor-depositing material 23 consisting of a metal such as Ni, Co, Fe, etc. or the alloy of said metals is evaporated from a crucible 25 and vapor-deposited on a substrate 21 (1 of another figure) to form an inclined columnar magnetic layer 2 while transporting the strip-shaped substrate 21 of a polyester film, etc. along a cooling can 22 in the direction as shown by the arrow A, and changing the incident angle of the vapor flow continuously from a high to a low incident angle with deposition preventive plates 27 and 28. Then a nonmagnetic metal 24 selected from Cr, Ti, Sn, Cu, and Al is evaporated from a crucible 26 and vapor-deposited to form a nonmagnetic metallic layer 3 while winding reversely the substrate 21 in the direction as shown by the arrow B and again transporting the substrate in the direction as shown by the arrow A, and changing the incident angle continuously from a low to a high incident angle with deposition preventive plates 28 and 29. After repeating said traveling, the recording medium having excellent weather resistance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非磁性支持体上に磁気記録層として斜方入射蒸
着法による強磁性金属薄膜を設けてなる磁気記録媒体に
関し、とくに繰返し走行後の耐候性が改良され九磁気記
録媒体に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium in which a ferromagnetic metal thin film is provided as a magnetic recording layer on a non-magnetic support by oblique incidence evaporation. Regarding nine magnetic recording media with improved weather resistance.

〔従来技術〕[Prior art]

従来よシ磁気記録媒体としては、非磁性支持体上にr−
Fe203.CoをドープしたγFe2O3hFe30
4.Coをドープしたp e304 sγ−Fe203
とFe3O4のはルトライド化合物s Cr O2等の
磁性粉末あるいは強磁性合金粉末等を粉末磁性材料を塩
化ビニル−酢酸ビニル共重合体、スチレン−ブタジェン
共重合体、エポキシ樹脂、ポリウレタン樹脂等の有機バ
インダー中に分散せしめたものを塗布し乾燥させる塗布
型のものが広く使用されてきている。近年高密度記録へ
の要求の高まりと共に真空蒸着、スパッタリング、イオ
ンブレーティング等のペーパーデポシション法あるいは
電気メッキ、無電解メッキ等のメッキ法により形成され
る強磁性金属薄膜を磁気記録層とする。バインダーを使
用しない、いわゆる非バインダー型磁気記録媒体が注目
を浴びておシ実用化への努力が種々性なわれている。
Conventionally, as a magnetic recording medium, r-
Fe203. Co-doped γFe2O3hFe30
4. Co-doped p e304 sγ-Fe203
and Fe3O4 are rutolide compounds, magnetic powders such as CrO2, or ferromagnetic alloy powders, etc. are mixed with powder magnetic materials in organic binders such as vinyl chloride-vinyl acetate copolymer, styrene-butadiene copolymer, epoxy resin, polyurethane resin, etc. Paint-on type products have been widely used, in which a dispersed material is applied and dried. In recent years, with the increasing demand for high-density recording, a magnetic recording layer is a ferromagnetic metal thin film formed by a paper deposition method such as vacuum evaporation, sputtering, or ion blating, or a plating method such as electroplating or electroless plating. BACKGROUND ART So-called binder-free magnetic recording media that do not use a binder have attracted attention, and various efforts are being made to put them into practical use.

従来の塗布型の磁気記録媒体では主として強磁性金属よ
り飽和磁化の小さい金属酸化物を磁性材料として使用し
ているため、高密度記録に必要な薄形化が信号出力の低
下をもたらすため限界にきており、かつその製造工程も
複雑で、溶剤回収あるいは公害防止のための大きな附帯
設備を要するという欠点を有している。非バインダー型
の磁気記録媒体では上記酸化物よυ大きな飽和磁化を有
する強磁性金属をバインダーのごとき非磁性物質を含有
しない状態で薄膜として形成せしめるため。
Conventional coating-type magnetic recording media mainly use metal oxides, which have lower saturation magnetization than ferromagnetic metals, as magnetic materials, so the thinning required for high-density recording leads to a reduction in signal output, which has reached its limit. Moreover, the manufacturing process is complicated, and it has the drawback of requiring large auxiliary equipment for solvent recovery and pollution prevention. In a non-binder type magnetic recording medium, a ferromagnetic metal having a saturation magnetization υ larger than that of the above oxide is formed as a thin film without containing a non-magnetic substance such as a binder.

高密度記録化のために超薄形にできるという利点を有し
、しかもその製造工程はより簡略化される。
It has the advantage that it can be made ultra-thin for high-density recording, and the manufacturing process is further simplified.

高密度記録用の磁気記録媒体に要求される条件の一つと
して、高抗磁力化、薄層化が理論的にも実験的にも提唱
されており、塗布温の磁気記録媒体よりも一桁小さい薄
層化が容易で、飽和磁束密度も大きい非バインダー型磁
気記録媒体への期待は大きい。
As one of the conditions required for magnetic recording media for high-density recording, high coercive force and thinner layers have been proposed both theoretically and experimentally, and are an order of magnitude higher than magnetic recording media at coating temperatures. There are great expectations for non-binder type magnetic recording media that can be easily made into small and thin layers and have a high saturation magnetic flux density.

とくに真空蒸着による方法はメッキの場合のような排液
処理を必要とせず製造工程も簡単で膜の析出速度も大き
くできるため非常にメリットが大きい。真空蒸着によっ
て磁気記録媒体に望ましい抗磁力および角型比を有する
磁性膜を製造する方法としては、米国特許jj44J4
J2号、同334AJjJJ号等に述べられている斜め
蒸着法が知られている。
In particular, the method using vacuum evaporation has great advantages because it does not require drainage treatment as is the case with plating, the manufacturing process is simple, and the deposition rate of the film can be increased. A method of manufacturing a magnetic film having coercive force and squareness desirable for magnetic recording media by vacuum deposition is disclosed in U.S. Patent JJ44J4.
The oblique vapor deposition method described in No. J2, No. 334AJjJJ, etc. is known.

さらに強磁性金属薄膜から成る磁気記録媒体にかかわる
大きな問題として腐蝕及び摩耗に対する強度、走行安定
性がある。磁気記録媒体は磁気信号の記録、再生及び消
去の過程において磁気ヘッドと高速相対運動のもとにお
かれるが、その際走行がスムーズにしか本安定に行なわ
れねばならぬし、同時にヘッドとの接触による摩耗もし
くは破壊が起ってはならない。又磁性記録媒体の保存中
に腐蝕等による経時変化によって記録された信号の減少
あるいは消失があっては々らないことも要求される。耐
久性、耐候性を向上させる方法として保護層を設けるこ
とが検討されている。
Furthermore, major problems concerning magnetic recording media made of ferromagnetic metal thin films include strength against corrosion and abrasion, and running stability. The magnetic recording medium is subjected to high-speed relative motion with the magnetic head during the recording, reproducing, and erasing processes of magnetic signals, but in this case, the running must be smooth and stable, and at the same time, the movement with the head must be stable. No wear or damage due to contact shall occur. It is also required that the recorded signals do not frequently decrease or disappear due to changes over time due to corrosion or the like during storage of the magnetic recording medium. Providing a protective layer is being considered as a method of improving durability and weather resistance.

保護層を設けて金属薄膜型磁気記録媒体の特性を改良す
る方法としてたとえば有機物層を設けることカ米国特許
!、4444.1j6号、同a、。
As a method for improving the characteristics of metal thin film magnetic recording media by providing a protective layer, for example, a US patent has been published on providing an organic layer! , 4444.1j No. 6, ibid. a.

49.360号、同u、/j2,4AI7号、同ダ。No. 49.360, same u, /j2,4 AI No. 7, same da.

/12.litり号、同μ、333.21rj号、西独
国特許公開λ、タコタ、1177号、同J、02グ、り
71号にょシ知られておシ、又Rh等の金属層を設ける
ことが米国特許J、j/A、140号、同≠、2μ3.
0071号により知られている。
/12. Lit No., μ, 333.21rj, West German Patent Publication λ, Takota, No. 1177, J, 02g, No. 71 are known, and it is also possible to provide a metal layer such as Rh. U.S. Patent J, J/A, No. 140, ≠, 2μ3.
It is known from No. 0071.

さらに耐久性、耐候性を改良するために%Crを適度な
真空中にて強磁性金属薄膜表面上に蒸着せしめ%Crと
crの酸化物の混合物層を形成せしめる方法(特公昭弘
ター≠393号)あるいはCr層およびSiとSi酸化
物層の積層保護層を設ける方法(特公昭1l−3741
j号)が知られている。しかしながら従来の保護膜では
耐錆性が十分とは言えず実用上はさらに改善を必要とし
ていた。とくに磁気テープとしてVTR等にて繰返し走
行させた後での磁気テープの耐候性については大きな欠
点を有していた。
Furthermore, in order to improve durability and weather resistance, %Cr is vapor deposited on the surface of a ferromagnetic metal thin film in a moderate vacuum to form a mixture layer of %Cr and Cr oxide (Tokuko Akihirota ≠ 393). No. 1) or a method of providing a laminated protective layer of a Cr layer and Si and Si oxide layers (Japanese Patent Publication No. 11-3741)
j) is known. However, the rust resistance of conventional protective films was not sufficient, and further improvements were required for practical use. In particular, the weather resistance of the magnetic tape after being repeatedly run on a VTR or the like has been a major drawback.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、すぐれた耐候性、とくにVTR等デツ
キでの繰返し走行後の耐候性にすぐれる保護膜を有する
磁気記録媒体を提供することにある。
An object of the present invention is to provide a magnetic recording medium having a protective film that has excellent weather resistance, especially after repeated running on a deck such as a VTR.

〔発明の構成〕[Structure of the invention]

本発明は、蒸発源から蒸発せしめられた金属材料の蒸気
流を移動する基体上に蒸着せしめてなる磁気記録媒体で
あって、該移動基体に対する磁性金属材料の蒸気流の入
射角を高入射角から低入射角へと連続的に変化させるこ
とにょシ彎曲した傾斜柱状構造をなす磁性蒸着膜上に、
該移動基体に対する非磁性金属材料の蒸気流の入射角を
低入射角から高入射角へと連続的に変化させ形成される
非磁性金属蒸着膜を設けたことを特徴とする磁気記録媒
体に関する。さらに非磁性金属材料としてCrs T 
is Sns (−u% klから選ばれる少なくとも
7種を使用することを特徴とする上記磁気記録媒体に関
する。
The present invention provides a magnetic recording medium in which a vapor flow of a magnetic metal material evaporated from an evaporation source is deposited on a moving substrate, wherein the incident angle of the vapor flow of a magnetic metal material with respect to the moving substrate is set to a high incident angle. On the magnetic vapor deposited film, which has a curved inclined columnar structure, the incident angle is changed continuously from low to low.
The present invention relates to a magnetic recording medium characterized by being provided with a non-magnetic metal vapor deposited film formed by continuously changing the incident angle of a vapor flow of a non-magnetic metal material onto the moving base from a low incident angle to a high incident angle. Furthermore, CrsT is used as a non-magnetic metal material.
is Sns (-u% kl)

さらに非磁性金属材料としてCr%TtsSn。Furthermore, Cr%TtsSn is used as a non-magnetic metal material.

Cu、AIから選ばれた少なくとも一つを用いてなる上
述の磁気記録媒体である。
The magnetic recording medium described above uses at least one selected from Cu and AI.

本発明において斜方入射蒸着法とは基体表面の法線に対
し膜形成金属材料の蒸気流をある入射角θで入射させ基
体表面上に蒸着薄膜を析出させる方法である。本発明に
おいては斜方入射蒸着法によシ磁性薄膜を形成せしめる
際、入射角θmaxにて斜方入射蒸着を開始し、基体の
移動と共に入射角θを連続的に減少させるように変化さ
せて入射角θmin にて磁性薄膜の析出を停止させる
ものである。こうして形成された磁性薄膜上に、さらに
入射角θmin’から始まって入射角θを連続的に増加
させ入射角θmax’まで変化させて非磁性金属材料、
とくにCrs T l b S nh Cu5Alより
選ばれる少なくとも7種の非磁性金属材料を保護膜とし
て形成させるものである。本発明において入射角θは2
!0C〜りOoが好ましく。
In the present invention, the oblique incidence vapor deposition method is a method in which a vapor flow of a film-forming metal material is made incident at a certain incident angle θ relative to the normal to the substrate surface to deposit a vapor-deposited thin film on the substrate surface. In the present invention, when forming a magnetic thin film by oblique incidence deposition, oblique incidence deposition is started at an incident angle θmax, and the incident angle θ is changed so as to continuously decrease as the substrate moves. The deposition of the magnetic thin film is stopped at the incident angle θmin. On the thus formed magnetic thin film, a non-magnetic metal material is further formed by continuously increasing the incident angle θ starting from the incident angle θmin' and changing it up to the incident angle θmax'.
In particular, at least seven types of nonmagnetic metal materials selected from Crs T l b S nh Cu5Al are formed as a protective film. In the present invention, the incident angle θ is 2
! 0C to 00 is preferable.

とくにθrn a X s θmax’はjO0〜りO
o。
In particular, θrn a X s θmax' is jO0~riO
o.

θrn 1 n h 0m i n ’はコj0〜7!
0が好ましい。
θrn 1 n h 0m i n ' is koj0~7!
0 is preferred.

第1図は本発明による磁気記録媒体を示している。支持
体l上に磁性金属蒸着膜2が設けられており、さらにそ
の上に非磁性金属蒸着膜3が形成されている。磁性金属
蒸着膜コの作成にあたっては支持体lを矢印Aに搬送さ
せつつ支持体1面への入射角をθmaxからθminへ
と連続的に変化させることによシ彎曲した傾斜柱状構造
を有する磁性膜が得られる。磁性金属蒸着膜コの膜厚は
磁気記録媒体として充分な出力を与え得る厚さおよび高
密度記録の充分行える薄さを必要とすることから約0 
、02 g@からj、On?71.好ましくは0゜0!
ti@からコ、OBg1である。非磁性金属蒸着膜3の
形成にあたっては、支持体lを搬送させつつ支持体/面
への蒸気流の入射角がθmin’がらθmax’へと連
続的に変化するようにしてCr1Ti、Sn%CU%A
7から選ばれる少なくとも7種の非磁性金属材料を蒸着
膜として形成せしめる。非磁性金属蒸着膜3の厚さは充
分な保護作用の得られること、磁性金属蒸着膜2面と磁
気ヘッドとの間隙によるスペーシングロスにより出力の
低下しないことなどの条件により約0.003〜0、/
By1.好ましくは0 、001−0 、02ttmの
範囲である。
FIG. 1 shows a magnetic recording medium according to the invention. A magnetic metal vapor deposited film 2 is provided on a support l, and a nonmagnetic metal vapor deposited film 3 is further formed thereon. In creating the magnetic metal vapor deposited film, the support L is conveyed in the direction of arrow A while the incident angle on the surface of the support is continuously changed from θmax to θmin. A membrane is obtained. The thickness of the magnetic metal vapor-deposited film is approximately 0.0 mm because it needs to be thick enough to provide sufficient output as a magnetic recording medium and thin enough to perform high-density recording.
, 02 g@ to j, On? 71. Preferably 0°0!
From ti@, this is OBg1. In forming the non-magnetic metal vapor deposited film 3, the incident angle of the vapor flow to the support/surface is continuously changed from θmin' to θmax' while the support l is being transported. %A
At least 7 types of nonmagnetic metal materials selected from 7 are formed as a vapor deposited film. The thickness of the non-magnetic metal vapor deposited film 3 is approximately 0.003~0.03 mm depending on conditions such as obtaining a sufficient protective effect and not reducing the output due to spacing loss due to the gap between the magnetic metal vapor deposit film 2 surface and the magnetic head. 0, /
By1. Preferably it is in the range of 0,001-0,02ttm.

本発明に用いられる磁性金属材料としては。The magnetic metal materials used in the present invention include:

Fee Cab Ni等の金属、あるいはF e (−
o 5Fe−Ni、C:o−Nib Fe−co−Ni
bFe−Rhs Fe−Cu、Co−cu%co−Au
s cOy、co Lah COPrs C0−Gd、
Co−8m5 Co−P ts N i −Cu&Mn
 −B i 、 Mn−8b、 Mn−A/、 F e
 −C7、Co−Cr5 Ni−Cr、Fe−Co−C
: rh N i −Co−Crs F e−Co −
N i −cr等の強磁性合金である。特に好ましいの
はcoあるいはCoを70重量%以上含有するような合
金である。磁性金属蒸着薄膜形成を酸素のよう々反応性
ガスを含む雰囲気中で行なってもいい。
Fee Cab Metal such as Ni or Fe (-
o 5Fe-Ni, C: o-Nib Fe-co-Ni
bFe-Rhs Fe-Cu, Co-cu%co-Au
s cOy, co Lah COPrs C0-Gd,
Co-8m5 Co-Pts Ni-Cu&Mn
-B i , Mn-8b, Mn-A/, Fe
-C7, Co-Cr5 Ni-Cr, Fe-Co-C
: rhNi-Co-CrsFe-Co-
It is a ferromagnetic alloy such as Ni-cr. Particularly preferred is co or an alloy containing 70% by weight or more of cobalt. The magnetic metal vapor deposition thin film formation may be carried out in an atmosphere containing a reactive gas such as oxygen.

本発明における蒸着とは、上記米国特許第334L、2
&3.2号の明細書等に述べられている通常の真空蒸着
の他、電界、磁界あるいは電子ビーム照射等により蒸気
流のイオン化、加速化等を行って蒸発分子の平均自由行
程の大きい雰囲気にて支持基体上に薄膜を形成させる方
法をも含むものであって1例えば特開昭j/−/4Lり
oor号明細書に示されているような電界蒸着法、特公
昭aS−tiz2z号、特公昭ga−2oara号、特
公昭ダ7−、24!72号、特公昭4cタ一μjμ32
号、特開昭lターJJIり0号、特開昭フタ−3143
号、特開昭≠2−J′3!号公報に示されているような
イオン化蒸着法も本発明に用いられる。
Vapor deposition in the present invention refers to the above-mentioned U.S. Pat. No. 334L, 2
In addition to the normal vacuum evaporation described in the specifications of &3.2, the vapor flow is ionized and accelerated by electric fields, magnetic fields, electron beam irradiation, etc. to create an atmosphere with a large mean free path of the evaporated molecules. It also includes a method of forming a thin film on a supporting substrate using a method of forming a thin film on a supporting substrate. Special public Sho ga-2oara issue, Special public Sho da 7-, 24!72, Special public Sho 4c Ta 1μjμ32
No., JP-A-Sho Liter JJI-0 No., JP-A-Sho Liter-3143
No., Tokukai Sho≠2-J'3! An ionized vapor deposition method such as that shown in the above publication may also be used in the present invention.

本発明に用いられる基体としてはポリエチレンテレフタ
レート、ポリイミド、ポリアミド、ポリ塩化ビニル、三
酢酸セルロース、ポリカポネート。
Substrates used in the present invention include polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate, and polycarbonate.

ポリエチレンナフタレートのようなプラスチックベース
が好ましい。
Plastic bases such as polyethylene naphthalate are preferred.

本発明の磁気記録媒体においては、必要に応じ潤滑剤層
あるいは支持体裏面にいわゆるパック層を設けてもよい
In the magnetic recording medium of the present invention, a so-called pack layer may be provided on the lubricant layer or the back surface of the support, if necessary.

また、磁性金属蒸着膜と支持体との間に有機あるいは無
機物からなる層を設けてもよめ。
Further, a layer made of an organic or inorganic substance may be provided between the magnetic metal vapor deposited film and the support.

〔実施例〕〔Example〕

以下に実施例によシ本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

本発明がこれらに限定されるものではないことはいうま
でもない。
It goes without saying that the present invention is not limited to these.

実施例1 第2図にその要部を示した巻取シ式蒸着装置を用いて、
/、l、jμm厚のポリエチレンテレフタレートフィル
ム上に斜方入射蒸着法によジコバルト蒸着磁性薄膜を形
成させて磁気テープを作製した。第2図において帯状支
持体21はクーリングキャンココに沿って搬送され、そ
の表面上に斜方入射蒸着法により磁性蒸着膜および非磁
性蒸着膜が形成される。蒸着材料23.λμはそれぞれ
ルッi2z、2gにチャージされ適当な加熱手段により
加熱蒸発される。支持体2/への蒸気流の入射角度は防
着板27,21.λりによって制御される。本実施例に
おいてはポリエチレンテレフタレートフィルムを矢印A
の方向に搬送しつつルツボコよよりCoを蒸発させ、入
射角θmaxをり00%0m i nをjjoとして蒸
着磁性膜を形成した。
Example 1 Using a winding type vapor deposition apparatus whose main parts are shown in Fig. 2,
A magnetic tape was prepared by forming a dicobalt-deposited magnetic thin film on a polyethylene terephthalate film having a thickness of /, l, j μm by an oblique incidence deposition method. In FIG. 2, the belt-shaped support 21 is conveyed along a cooling channel, and a magnetic deposited film and a non-magnetic deposited film are formed on its surface by oblique incidence deposition. Vapor deposition material 23. λμ is charged to l2z and 2g, respectively, and heated and evaporated by suitable heating means. The angle of incidence of the vapor flow onto the support 2/ is determined by the deposition prevention plates 27, 21. It is controlled by λ. In this example, the polyethylene terephthalate film is
Co was evaporated from the crucible while being transported in the direction of , and a vapor-deposited magnetic film was formed by setting the incident angle θmax to 00% 0 min as jjo.

θmaxの設定は防着板27.θminの設定は防着板
atにて行なわれる。ついでポリエチレンテレフタレー
トフィルムを矢印Bの方向に沿って搬送させつつ、ルツ
ボコjよりCrあるいはTi%あるいはSnを蒸発させ
非磁性蒸着膜をそれぞれ形成した。防着板コア、コlに
ょシ設定されるθrna X ’ s θmin’はそ
れぞれりo o%go °とした。磁性蒸着膜の厚さは
/ 000λ、非磁性蒸着膜の厚さは/JOAとした。
The setting of θmax is done using the adhesion prevention plate 27. The setting of θmin is performed on the adhesion prevention plate at. Next, while the polyethylene terephthalate film was conveyed in the direction of arrow B, Cr, Ti%, or Sn was evaporated from the crucible to form a nonmagnetic vapor deposited film. θrna X's θmin' set in the adhesion-proof plate core and the core were respectively set to 0%go°. The thickness of the magnetic deposited film was /000λ, and the thickness of the nonmagnetic deposited film was /JOA.

比較例1 実施例1と同様にしてコバルト蒸着磁性薄膜をポリエチ
レンテレフタレートフィルム上に形成した後従来の真空
蒸着法によりCrあるいはTinあるいはSnを実施例
1と同じ厚さとなるよう形成させた。すなわち第一図に
おいて防着板、2tを除去し、クーリングキャン2−2
の真下に設置されfc−ルッゼ30より矢印Aに沿って
搬送されるポリエチレンテレフタレートフィルムの蒸着
磁性膜上にcrあるいはTitあるいはSnの蒸着膜を
それぞれ形成させた。
Comparative Example 1 A cobalt-deposited magnetic thin film was formed on a polyethylene terephthalate film in the same manner as in Example 1, and then Cr, Tin, or Sn was formed to the same thickness as in Example 1 by a conventional vacuum deposition method. That is, in Figure 1, the adhesion prevention plate 2t is removed and the cooling can 2-2 is removed.
Cr, Tit, or Sn vapor-deposited films were respectively formed on the vapor-deposited magnetic film of a polyethylene terephthalate film that was placed directly below the FC-Russe 30 and conveyed along arrow A from the FC-Rusze 30.

こうして得られた磁気テープの繰返し走行後の耐候性を
測定した。耐候性はテープをVH8型VTRにて!O回
走行後%to0cりO%相対温度下に/週間保存後テー
プ表面の錆の発生状況およびセロテープ剥離テストによ
る蒸着膜の密着性をそれぞれj段階評価によりテストし
た。測定結果は下記のとおりである。
The weather resistance of the thus obtained magnetic tape after repeated running was measured. For weather resistance, use tape on VH8 type VTR! After running 0 times and storing the tape at a relative temperature of % to 0 c for a week, the occurrence of rust on the tape surface and the adhesion of the deposited film by cellophane tape peeling test were evaluated using J-grade evaluation. The measurement results are as follows.

表7 * j段階評価:(jが最良) 実施例2 7g2図の巻取シ式蒸着装置を用いてり、 j tiy
H厚のポリエチレンテレフタレートフィルム上に斜方入
射蒸着法によりCoN1(Niコj重量係重量感性蒸着
薄膜を厚さ/300λとなるよう形成させた。ポリエチ
レンテレフタレートフィルムを矢印Aの方向に搬送させ
っつo2ガスを含む雰囲気中入射角θmaxを、rA’
、 0m1n14’0 ’として連続的に変化させ磁性
蒸着膜をそれぞれ形成した。
Table 7 *J grade evaluation: (j is the best) Example 2 A winding type vapor deposition apparatus shown in Fig. 7g2 was used, and j tiy
A CoN1 (Ni) weight-sensitive vapor-deposited thin film was formed on a polyethylene terephthalate film with a thickness of H by an oblique incidence vapor deposition method to a thickness of /300λ.The polyethylene terephthalate film was transported in the direction of arrow A. The incident angle θmax in an atmosphere containing o2 gas is rA'
, 0m1n14'0', respectively, to form magnetic vapor deposited films.

次にルッtg2tから非磁性材料を蒸発させ蒸着磁性膜
上に非磁性蒸着膜を厚さλOQAとなるよう形成させた
。非磁性材料としてはCr5Cu。
Next, the nonmagnetic material was evaporated from Lutg2t to form a nonmagnetic vapor deposited film having a thickness of λOQA on the vapor deposited magnetic film. The non-magnetic material is Cr5Cu.

A7をそれぞれ使用し、防着板λりおよび2tによりそ
れぞれ設定される入射角θmax’およびθmin’は
to 0.to 0とLfc。
A7 is used, and the incident angles θmax' and θmin' set by the anti-deposition plate λ and 2t are to 0. to 0 and Lfc.

比較例2 実施例2と同様にしてCoNi蒸着磁性薄膜をポリエチ
レンテレフタレートフィルム上に形成した後比較例1と
同様に従来の真空蒸着法にょシCr、あるいはCu、あ
るいはAJを厚さ200Aとなるよう形成せしめた。
Comparative Example 2 A CoNi evaporated magnetic thin film was formed on a polyethylene terephthalate film in the same manner as in Example 2, and then Cr, Cu, or AJ was deposited to a thickness of 200A using the conventional vacuum evaporation method in the same manner as in Comparative Example 1. formed.

こうして得られた磁気テープの繰返し走行後の耐候性を
実施例1および比較例1と同様な方法にて測定したとこ
ろ表−のごとくあった。
The weather resistance of the thus obtained magnetic tape after repeated running was measured in the same manner as in Example 1 and Comparative Example 1, and the results were as shown in Table 1.

表− 〔発明の効果〕 このように本発明による磁気記録媒体は繰返し走行後の
耐候性の改良された金属薄膜型磁気記録媒体で1本タイ
プの磁気記録媒体の実用上のメリットは大である。
Table - [Effects of the Invention] As described above, the magnetic recording medium according to the present invention is a metal thin film type magnetic recording medium with improved weather resistance after repeated running, and has great practical advantages as a single type magnetic recording medium. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気記録媒体の構成例を示してい
る。 l・・・支持体、2・・・磁性金属蒸着膜、3・・・非
磁性金属薄膜 第2図は本発明の磁気記録媒体を製造するための装置略
図を示す。 コト・・帯状支持体、2.2・・・クーリングキャン。 コJ、 24A・・・蒸着材料。 コj、コロ、30・・・ルツボ。 27.21.コタ・・・防着板
FIG. 1 shows an example of the structure of a magnetic recording medium according to the present invention. 1...Support, 2...Magnetic metal vapor deposited film, 3...Nonmagnetic metal thin film FIG. 2 shows a schematic diagram of an apparatus for producing the magnetic recording medium of the present invention. Thing...Strip support, 2.2...Cooling can. CoJ, 24A... Vapor deposition material. Koj, Koro, 30... Crucible. 27.21. Kota... Anti-adhesion plate

Claims (1)

【特許請求の範囲】 1)蒸発源から蒸発せしめられた金属材料の蒸気流を移
動する基体に蒸着せしめてなる磁気記録媒体において、
前記移動基体に対する磁性金属材料の蒸気流の入射角を
高入射角から低入射角へと連続的に変化させることによ
シ彎曲した傾斜柱状構造を成す磁性金属蒸着膜上に%該
移動基体に対する非磁性金属材料の蒸気流の入射角を低
入射角から高入射角への連続的に変化させ形成される非
磁性金属蒸着膜を設けていることを特徴とする磁気記録
媒体。 2)非磁性金属材料としてCr s T l s S 
n5Cu、AA!から選ばれる少なくとも7種を使用す
ることを特徴とする特許請求範囲第1項記載の磁気記録
媒体。
[Claims] 1) A magnetic recording medium in which a vapor flow of a metal material evaporated from an evaporation source is deposited on a moving substrate,
By continuously changing the incident angle of the vapor flow of the magnetic metal material relative to the moving substrate from a high incident angle to a low incident angle, a magnetic metal vapor deposited film having a curved inclined columnar structure is coated with % relative to the moving substrate. 1. A magnetic recording medium comprising a non-magnetic metal vapor deposited film formed by continuously changing the incident angle of a vapor flow of a non-magnetic metal material from a low incident angle to a high incident angle. 2) Cr s T l s S as a non-magnetic metal material
n5Cu, AA! The magnetic recording medium according to claim 1, characterized in that at least seven types selected from the following are used.
JP7983584A 1984-04-20 1984-04-20 Method of manufacturing magnetic recording medium Expired - Fee Related JPH061550B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7983584A JPH061550B2 (en) 1984-04-20 1984-04-20 Method of manufacturing magnetic recording medium
US06/725,198 US4622271A (en) 1984-04-20 1985-04-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7983584A JPH061550B2 (en) 1984-04-20 1984-04-20 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60224125A true JPS60224125A (en) 1985-11-08
JPH061550B2 JPH061550B2 (en) 1994-01-05

Family

ID=13701266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7983584A Expired - Fee Related JPH061550B2 (en) 1984-04-20 1984-04-20 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH061550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724254A1 (en) * 1995-01-25 1996-07-31 Kao Corporation Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724254A1 (en) * 1995-01-25 1996-07-31 Kao Corporation Magnetic recording medium

Also Published As

Publication number Publication date
JPH061550B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPS62121929A (en) Production of magnetic recording medium
US4673610A (en) Magnetic recording medium having iron nitride recording layer
US4601912A (en) Method of preparing a magnetic recording medium
US4622271A (en) Magnetic recording medium
US4643915A (en) Process for producing magnetic recording medium
JPS60224125A (en) Magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
JPH0546013B2 (en)
JPS61258333A (en) Production of magnetic recording medium
JPH0685216B2 (en) Method of manufacturing magnetic recording medium
JPH0221046B2 (en)
US4526131A (en) Magnetic recording medium manufacturing apparatus
JPH0479065B2 (en)
JPS60224124A (en) Magnetic recording medium
JPH0381202B2 (en)
JPS6045271B2 (en) Vacuum deposition equipment
JPH04335206A (en) Magnetic recording medium
JPS61113134A (en) Production of magnetic recording medium
JPS62162222A (en) Vertical magnetic recording medium and its production
JPS6043915B2 (en) Vacuum deposition method
JPH0341897B2 (en)
JPH01319119A (en) Magnetic recording medium
JPH0461413B2 (en)
JPH0142046B2 (en)
JPH0341898B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees