JPS60224124A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60224124A
JPS60224124A JP7983384A JP7983384A JPS60224124A JP S60224124 A JPS60224124 A JP S60224124A JP 7983384 A JP7983384 A JP 7983384A JP 7983384 A JP7983384 A JP 7983384A JP S60224124 A JPS60224124 A JP S60224124A
Authority
JP
Japan
Prior art keywords
incident angle
magnetic
vapor
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7983384A
Other languages
Japanese (ja)
Inventor
Yoshihiro Arai
芳博 荒井
Ryuji Shirahata
龍司 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7983384A priority Critical patent/JPS60224124A/en
Priority to US06/725,198 priority patent/US4622271A/en
Publication of JPS60224124A publication Critical patent/JPS60224124A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • C23C14/226Oblique incidence of vaporised material on substrate in order to form films with columnar structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the titled recording medium having excellent rust resistance, etc. by vapor-depositing a magnetic metallic material on the surface of a moving substrate in the form of a bent inclined column while changing the incident angle continuously from a high to a low incident angle, and vapor-depositing a nonmagnetic material on said vapor-deposited film while changing the incident angle continuously from a high to a low incident angle. CONSTITUTION:A metal such as Fe, Co, Ni, or an alloy of said metals is vapor-deposited from a crucible 23 on a nonmagnetic strip-shaped substrate 21 of polyester, etc. to form an inclined columnar magnetic layer 2 on the substrate 1(21) while transporting the substrate 21 along a cooling can 22 in the direction as shown by the arrow A, changing the incident angle continuously from a high incident angle such as 90 deg. to a low incident angle of 25 deg., and controlling the vapor flow with deposition preventive plates 27 and 28. Then >=1 kind of nonmagnetic metallic material selected from Cr, Ti, Sn, Cu, and Al from a crucible 25 is vapor-deposited on the layer 2 to form a film 3 while reversely winding and transporting the substrate 21 in the direction as shown by the arrow B and again transporting the substrate in the direction as shown by the arrow A, and changing the vapor flow continuously from a high to a low incident angle with deposition preventive plates 28 and 29. The magnetic recording medium having excellent rust resistance and less curls is obtained in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非磁性支持体上に磁気記録層として斜方入射蒸
着法による強磁性金属薄膜を設けてなる磁気記録媒体に
関し、とくに耐錆性にすぐれるとともにカールの少ない
金属薄膜型磁気記録媒体に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium comprising a ferromagnetic metal thin film formed by oblique incidence deposition as a magnetic recording layer on a non-magnetic support. The present invention relates to a metal thin film magnetic recording medium that has excellent properties and less curl.

〔従来技術〕[Prior art]

従来よシ磁気記録媒体としては、非磁性支持体上にr−
Fe2071*Coをドープした1−Fe2O3*Fe
3O4* CoをドープしたFea04* r−Fea
rsとFe3O4のベルトライド化合物* CrO2等
の磁性粉末あるいは強磁性合金粉末等を粉末磁性材料を
塩化ビニル−酢酸ビニル共重合体、スチレン−ブタジェ
ン共重合体、エポキシ樹脂、ポリウレタン樹脂等の有機
バインダー中に分散せしめたものを塗布し乾燥させる塗
布型のものが広く使用されてきている。近年高密度記録
への要求の高まりと共に真空蒸着、スパッタリング、イ
オンブレーティング等のペーパーデポジション法あるい
は電気メッキ、無電解メッキ等のメッキ法によし形成さ
れる強磁性金属薄膜を磁気記録層とする。バインダーを
使用しない、いわゆる非バインダー型磁気記録媒体が注
目を浴びており実用化への努力が種種行なわれている。
Conventionally, as a magnetic recording medium, r-
1-Fe2O3*Fe doped with Fe2071*Co
3O4* Co-doped Fea04* r-Fea
Bertolide compound of rs and Fe3O4 * Magnetic powder such as CrO2 or ferromagnetic alloy powder is mixed with a powdered magnetic material in an organic binder such as vinyl chloride-vinyl acetate copolymer, styrene-butadiene copolymer, epoxy resin, polyurethane resin, etc. Paint-on type products have been widely used, in which a dispersed material is applied and dried. In recent years, with the increasing demand for high-density recording, the magnetic recording layer is a ferromagnetic metal thin film formed by paper deposition methods such as vacuum evaporation, sputtering, and ion blating, or plating methods such as electroplating and electroless plating. . So-called binder-free magnetic recording media that do not use a binder are attracting attention, and various efforts are being made to put them into practical use.

従来の塗布型の磁気記録媒体では主として強磁性金属よ
シ飽和磁化の小さい金属酸化物を磁性材料として使用し
ている交め、高密度記録に必要な薄層化が信号出力の低
下をもたらすため限界にきており・かつその製造工程も
複雑で、溶剤回収あるいは公害防止のための大きな附帯
設備を要するという欠点を有している。非バインダー型
の磁気記録媒体では上記酸化物よシ大き表飽和磁化を有
する強磁性金属をバインダーのごとき非磁性物質を含有
しない状態で薄膜として形成せしめるため。
Conventional coating-type magnetic recording media mainly use ferromagnetic metals or metal oxides with low saturation magnetization as magnetic materials, and the thinner layers required for high-density recording result in a reduction in signal output. It has reached its limits, and its manufacturing process is complicated, and it has the drawback of requiring large auxiliary equipment for solvent recovery and pollution prevention. In a non-binder type magnetic recording medium, a ferromagnetic metal having a surface saturation magnetization larger than that of the above oxide is formed as a thin film without containing a non-magnetic substance such as a binder.

高密度記録化のために超薄形にできるという利点を有し
、しか本その製造工程はよシ簡略化される。
It has the advantage that it can be made ultra-thin for high-density recording, and the manufacturing process is greatly simplified.

高密度記録用の磁気記録媒体に要求される条件の一つと
して、高抗磁力化、薄層化が理論的にも実験的にも提唱
されておシ、塗布型の磁気記録媒体よりも一桁小さい薄
層化が容易で、飽和磁束密度も大きい非バインダー型磁
気記録媒体への期待は大きい。
As one of the conditions required for magnetic recording media for high-density recording, high coercive force and thinner layers have been proposed both theoretically and experimentally. There are great expectations for non-binder type magnetic recording media that can easily be made thinner by an order of magnitude and have a high saturation magnetic flux density.

と〈K真空蒸着による方法はメッキの場合のような排液
処理を必要とせず製造工程も簡単で膜の析出速度4大き
くできるため非常忙メリットが大きい。真空蒸着によっ
て磁気記録媒体に望ましい抗磁力および角屋比を有する
磁性膜を製造゛する方法としては、米国特許33μ2t
3コ号、同334’JAjJ号等に述べられている斜方
入射蒸着法が知られている。
The method using K vacuum evaporation does not require drainage treatment as in the case of plating, the manufacturing process is simple, and the deposition rate of the film can be increased. A method for manufacturing a magnetic film having coercive force and Kadoya ratio desirable for magnetic recording media by vacuum deposition is disclosed in U.S. Patent No. 33μ2t.
The oblique incidence vapor deposition method described in No. 3 Co., No. 334'JAjJ, etc. is known.

さらに強磁性金属薄膜から成る磁気記録媒体にかかわる
大きな問題として腐蝕及び摩耗に対する強度、走行安定
性がある。磁気記録媒体は磁気信号の記録、再生及び消
去の過程において磁気ヘッドと高速相対運動のもとにお
かれるが、その際走行がスムーズにしかも安定に行なわ
れねばならぬし、同時にヘッドとの接触による摩耗もし
くは破壊が起ってはならない。又磁性記録媒体の保存中
に腐蝕等による経時変化によって記録された信号の減少
あるいは消失があってはならないことも要求される。耐
久性、耐候性を向上させる方法として保護層を設けるこ
とが検討されている。
Furthermore, major problems concerning magnetic recording media made of ferromagnetic metal thin films include strength against corrosion and abrasion, and running stability. During the process of recording, reproducing, and erasing magnetic signals, the magnetic recording medium is subjected to high-speed relative motion with the magnetic head, but at this time, the movement must be smooth and stable, and at the same time, contact with the head must be maintained. There shall be no wear or damage due to It is also required that recorded signals should not be reduced or lost due to changes over time due to corrosion or the like while the magnetic recording medium is being stored. Providing a protective layer is being considered as a method of improving durability and weather resistance.

保護層を設けて金属薄膜型磁気記録媒体の特性を改良す
る方法としてたとえば有機物層を設けることが米国特許
、t、4ttA、lta号、同≠、Otり、El、0号
、同ぴ、/12,4417号、同ダ。
As a method of improving the characteristics of a metal thin film type magnetic recording medium by providing a protective layer, for example, providing an organic layer is disclosed in U.S. Pat. No. 12,4417, same da.

/j2.グtり号、同グ、JJJ、りj夕号、西独国特
許公開λ、りλり、14/−7号、同3,02≠、りt
t号によシ知られておシ、又Rh等の金属層を設けるこ
とが米国特許3.sit、tt。
/j2. No. 14/-7, No. 3, 02≠, rit
It is known from U.S. Pat. sit, tt.

号、同≠9.2ψg、001号によシ知られている。It is known from No. 001, same≠9.2ψg.

さらに耐久性、耐候性を改良するために、Crを適度な
真空中にて強磁性金属薄膜表面上に蒸着せしめ、Crと
Cr酸化物の混合物層を形成せしめる方法(特公昭μよ
一μ393号)あるいはCr層およびSiとSi酸化物
層の積層保護層を設ける方法(特公昭11−471,1
1号)が知られている。しかしながら従来の保護膜では
耐錆性が十分とは言えず実用上はさらに改善を必要とし
ていた。
In order to further improve durability and weather resistance, a method was proposed in which Cr was vapor-deposited on the surface of a ferromagnetic metal thin film in a moderate vacuum to form a layer of a mixture of Cr and Cr oxide (Special Publication No. 393). ) or a method of providing a laminated protective layer of a Cr layer and Si and Si oxide layers (Japanese Patent Publication No. 11-471, 1
No. 1) is known. However, the rust resistance of conventional protective films was not sufficient, and further improvements were required for practical use.

さらに可撓性支持体上に斜方入射蒸着法により強磁性金
属薄膜を形成せしめた場合金属薄膜の内部応力のため強
磁性金属薄膜を凹面とするようにカールが発生しh C
r等の保護膜を設けても上記問題点が解決されてはいな
い。
Furthermore, when a ferromagnetic metal thin film is formed on a flexible support by oblique incidence deposition, curling occurs in the ferromagnetic metal thin film to make it concave due to the internal stress of the metal thin film.
Even if a protective film such as r is provided, the above problems are not solved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐錆性にすぐれる保護層有し。 An object of the present invention is to provide a protective layer with excellent rust resistance.

かつカールの小さい金属薄膜型磁気記録媒体を提供する
ことにある。
Another object of the present invention is to provide a metal thin film type magnetic recording medium that also exhibits small curl.

〔発明の構成〕[Structure of the invention]

本発明は、蒸発源から蒸発せしめられた金属材料の蒸気
流を移動する基体上に蒸着せしめてなる磁気記録媒体に
おいて、該移動基体に対す今磁性金属材料の蒸気流の入
射角を高入射角から低入射角へと連続的に変化させるこ
とによ)彎曲した傾斜柱状構造をなす磁性蒸着膜上に、
該移動基体に対する非磁性金属材料の蒸気流の入射角を
高入射角から低入射角へと連続的に変化させ形成される
非磁性金属蒸着膜を設けたことを特徴とする磁気記録媒
体に関する。さらに非磁性金属材料としてCr s T
 ih S n s Cu h A llから選ばれる
少なくとも1種を使用することを特徴とする上記磁気記
録媒体に関する。
The present invention provides a magnetic recording medium in which a vapor flow of a magnetic metal material evaporated from an evaporation source is deposited on a moving substrate, in which the incident angle of the vapor flow of a magnetic metal material with respect to the moving substrate is set to a high incident angle. By continuously changing the incident angle from low to low,
The present invention relates to a magnetic recording medium characterized by being provided with a non-magnetic metal vapor deposited film formed by continuously changing the incident angle of a vapor flow of a non-magnetic metal material to the moving base from a high incident angle to a low incident angle. Furthermore, Cr s T as a non-magnetic metal material
The present invention relates to the above magnetic recording medium, characterized in that it uses at least one selected from the group consisting of ih Sn s Cu h All.

本発明において斜方入射蒸着法とは、基体表面の法線に
対し膜形成金属材料の蒸気流をある入射角θで入射させ
基体表面上に蒸着薄膜を析出させる方法である。本発明
においては、斜方入射蒸着法によシ磁性薄膜を形成せし
める際、入射角θmaxにて斜方入射蒸着を開始し、基
体の移動と共に入射角θminにて磁性薄膜の析出を停
止させるものである。こうして形成された磁性薄膜上に
さらに同様にして入射角θmax’から始まって入射角
θを連続的に減少させ入射角θm i n ’に変化さ
せて非磁性金属材料、とくにCrs Tts Sns 
’u、A/よシ選ばれた少なくとも1種の非磁性金属材
料を保護膜として形成させるものである。
In the present invention, the oblique incidence vapor deposition method is a method in which a vapor flow of a film-forming metal material is made incident at a certain incident angle θ relative to the normal line of the substrate surface to deposit a vapor-deposited thin film on the substrate surface. In the present invention, when forming a magnetic thin film by oblique incidence deposition, oblique incidence deposition is started at an incident angle θmax, and as the substrate moves, the deposition of the magnetic thin film is stopped at an incident angle θmin. It is. On the thus formed magnetic thin film, a non-magnetic metal material, especially Crs Tts Sns, is applied to the magnetic thin film formed in this manner by continuously decreasing the incident angle θ starting from the incident angle θmax' and changing it to the incident angle θmin'.
At least one selected non-magnetic metal material is formed as a protective film.

本発明において入射角θはコj ’C〜りOoが好まし
く、とくにθmaX% θmax’はj00〜りOo、
0m1ns 0m i n ’はj j 0−71 o
が好ましいO 第1図は本発明による磁気記録媒体を示している。支持
体/上に磁性金属蒸着膜コが設けられてお9.さらにそ
の上に非磁性金属蒸着膜3が形成されている。磁性金属
蒸着膜λの作成にあたっては支持体lを矢印AK搬送さ
せつつ支持体1面への入射角をθmaxから0m i 
nへと連続的に変化させることによシ彎曲した傾斜柱状
構造を有する磁性膜が得られる。磁性金属蒸着膜コの膜
厚は磁気記録媒体として充分な出力を与え得る厚さおよ
び高密度記録の充分行える薄さを必要とすることから約
0.02amからj −’ l’ 7FL s好ましく
は09038mからコ、0ti1rLである。非磁性金
属蒸着膜3の形成にあたっては、支持体lを搬送させつ
つ支持体1面への蒸気流の入射角がθmax’からθm
in’へと連続的に変化するようにしてCr。
In the present invention, the incident angle θ is preferably from j'C to Oo, particularly θmax' is from j00 to Oo,
0m1ns 0m i n' is j j 0-71 o
O FIG. 1 shows a magnetic recording medium according to the present invention. 9. A magnetic metal vapor deposited film is provided on the support. Furthermore, a non-magnetic metal vapor deposited film 3 is formed thereon. When creating the magnetic metal vapor deposited film λ, the angle of incidence on the surface of the support 1 is changed from θmax to 0m i while transporting the support 1 with the arrow AK.
A magnetic film having a curved inclined columnar structure can be obtained by continuously changing the value to n. The thickness of the magnetic metal vapor deposited film is preferably from about 0.02 am to j −'l' 7 FL s because it needs to be thick enough to provide sufficient output as a magnetic recording medium and thin enough to perform high-density recording. From 09038m, it is 0ti1rL. In forming the non-magnetic metal vapor deposited film 3, the incident angle of the vapor flow on the surface of the support 1 is changed from θmax' to θm while the support 1 is being conveyed.
Cr so as to change continuously to in'.

Ti、Sn%Cu%lから選ばれた少なくとも1種の非
磁性金属材料を蒸着膜として形成せしめる。非磁性金属
蒸着膜3の厚さは充分な保護作用の得られること、磁性
金属蒸着膜2面と磁気ヘッドとの間隙に、よるスは−シ
ングロスにより出力の低下しないことなどの条件により
約0.001〜o、ibTIL11好ましくは0 、0
03’ NO、02b@の範囲である。
At least one nonmagnetic metal material selected from Ti, Sn%Cu%l is formed as a deposited film. The thickness of the non-magnetic metal vapor deposited film 3 is set to approximately 0 depending on the conditions such as obtaining a sufficient protective effect and ensuring that the gap between the magnetic metal vapor deposit film 2 surface and the magnetic head does not decrease the output due to -sing loss. .001~o, ibTIL11 preferably 0,0
The range is 03' NO, 02b@.

本発明に用いられる磁性金属材料としては*Fe*(−
as N J等の金属、あるいはFe−Co、Fe−N
 ib Co −N is F e−Co−N i、F
 e −Rh勤Fe c、、、Co Cub Co A
u*Co −Yh Co−L as Co−P r% 
Co−Gd5Co−8m5 Co−P ts N i−
Cu、Mn−B1゜Mn−8blMn−AA!b F 
e−Cr* Co −Crb N1−cr、Fe−Co
−Cr5 N1−Co−cr、Fe−co−Ni−Cr
等の強磁性合金である。特に好ましいのはCOあるいは
COを70重量%以上含有するような合金である。磁性
金属蒸着膜形成を酸素のような反応性ガスを含む雰囲気
中で行なって吃いい。
The magnetic metal material used in the present invention is *Fe*(-
metal such as as N J, or Fe-Co, Fe-N
ib Co-N is F e-Co-N i, F
e -Rh duty Fe c,,, Co Cub Co A
u*Co -Yh Co-L as Co-P r%
Co-Gd5Co-8m5 Co-P ts Ni-
Cu, Mn-B1°Mn-8blMn-AA! b F
e-Cr* Co-Crb N1-cr, Fe-Co
-Cr5 N1-Co-cr, Fe-co-Ni-Cr
It is a ferromagnetic alloy such as Particularly preferred is CO or an alloy containing 70% by weight or more of CO. The magnetic metal vapor deposition film is formed in an atmosphere containing a reactive gas such as oxygen.

本発明における蒸着とは、上記米国特許第33≠、2A
J、2号の明細書等に述べられている通常の真空蒸着の
他、電界、磁界あるいは電子ビーム照射等により蒸気流
のイオン化、加速化等を行って蒸発分子の平均自由行程
の大きい雰囲気にて支持基体上に薄膜を形成させる方法
をも含むものであって1例えば特開昭zi−iuyoo
r号明細書に示されているような電界蒸着法、特公昭参
3−//jコj号、特公昭ダt−一〇参j参号、特公昭
≠7−2tj7り号、特公昭≠ター4tJuJf号、特
開昭参ター3312O号、特開昭lター3143号、特
開昭≠ターj3j号公報に示されているようなイオン化
蒸着法も本発明に用いられる。
Vapor deposition in the present invention refers to the above-mentioned U.S. Patent No. 33≠, 2A
In addition to the usual vacuum evaporation described in the specifications of J. No. 2, vapor flow is ionized and accelerated by electric fields, magnetic fields, electron beam irradiation, etc. to create an atmosphere with a large mean free path of evaporated molecules. The method also includes a method of forming a thin film on a supporting substrate by using
Field vapor deposition method as shown in the specification of No. R, Tokko Shosan 3-//j Koj No., Tokko Shoda T-10 Sanj No., Tokko Sho≠7-2tj7ri No., Tokko Sho Ionized vapor deposition methods such as those disclosed in Japanese Patent Application Laid-open No. 4tJuJf, Japanese Patent Application Laid-Open No. 3312O, Japanese Patent Application Laid-Open No. 3143, and Japanese Patent Application Laid-Open No. J3J can also be used in the present invention.

本発明に用騒られる基体としてはポリエチレンテレフタ
レート、ポリイミド、ポリアミド、ポリ塩化ビニル、三
酢酸セルロース、ポリカメネート、ポリエチレンナフタ
レートのようなプラスチックベースが好ましい。
Preferred substrates for use in the present invention are plastic bases such as polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate, polycamenate, and polyethylene naphthalate.

本発明の磁気記録媒体においては、必要に応じ潤滑剤層
あるいは支持体裏面にいわゆるバック層を設けて本よい
In the magnetic recording medium of the present invention, a lubricant layer or a so-called back layer may be provided on the back surface of the support, if necessary.

また、磁性金属蒸着膜と支持体との間に有機あるいは無
機物からなる層を設けてもよい。
Further, a layer made of an organic or inorganic substance may be provided between the magnetic metal vapor deposited film and the support.

〔実施例〕〔Example〕

以下に実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

本発明がこれらに限定されるものでないことはいうまで
もない。
It goes without saying that the present invention is not limited to these.

実施例1 第一図にその要部を示した巻取υ式蒸着装置を用いて、
/J、jttgl厚のポリエチレンテレフタレートフィ
ルム上に斜方入射蒸着法によジコバルト蒸着磁性薄膜を
形成させて磁気テープを作製した。第、2図において帯
状支持体−/Fiクーリングキャンー22に沿って搬送
され、その表面上に斜方入射蒸着法によ)磁性蒸着膜お
よび非磁性蒸着膜が形成される。蒸着材料23%λμは
それぞれルツボ21.itにチャージされ適当な加熱手
段により加熱蒸発される。支持体コlへの蒸気流の入射
角度は防着板λ7,2ざ、λりによって制御される。本
実施例においてはポリエチレンテレフタレートフィルム
を矢印Aの方向に搬送しつつルッ6ssよシCoを蒸発
させ、入射角θmaxをりOc%θm i nを!!0
として磁性蒸着膜を形成した。
Example 1 Using a winding υ type vapor deposition apparatus whose main parts are shown in Figure 1,
A magnetic tape was prepared by forming a dicobalt-deposited magnetic thin film on a polyethylene terephthalate film having a thickness of /J, jttgl by an oblique incidence deposition method. In FIG. 2, the strip-shaped support is conveyed along the Fi cooling can 22, and a magnetic deposited film and a nonmagnetic deposited film are formed on the surface thereof by oblique incidence deposition method. The vapor deposition materials 23% λμ were each placed in a crucible 21. It is charged and heated and evaporated by a suitable heating means. The angle of incidence of the vapor flow onto the support 1 is controlled by the deposition prevention plates λ7, 2 and λ. In this example, while transporting the polyethylene terephthalate film in the direction of arrow A, Co is evaporated from 6ss until the incident angle θmax and Oc%θmin! ! 0
A magnetic evaporated film was formed.

θmaxの設定は防着板27.θminの設定は防着板
21にて行なわれる。ついでポリエチレンテレフタレー
トフィルムを矢印Bの方向に沿って搬送させて巻戻した
後、再び矢印Aの方向に沿って搬送させつつ、ルツボλ
!よりCrあるいはTi。
The setting of θmax is done using the adhesion prevention plate 27. The setting of θmin is performed using the adhesion prevention plate 21. Next, the polyethylene terephthalate film is conveyed along the direction of arrow B and rewound, and then conveyed again along the direction of arrow A and placed in the crucible λ.
! Cr or Ti.

あるいはSnを蒸発させ非磁性蒸着膜をそれぞれ形成し
た。防着板コア、21rにより設定されるθmax’ 
、0m i nはそれぞれりo 0.ao 0とした。
Alternatively, Sn was evaporated to form a nonmagnetic deposited film. θmax' set by the anti-adhesion plate core, 21r
, 0min are each ri o 0. ao was set to 0.

磁性蒸着膜の厚さは1oooh、非磁性蒸着膜の厚さは
1JoAとした。
The thickness of the magnetic deposited film was 1oooh, and the thickness of the nonmagnetic deposited film was 1 JoA.

比較例1 実施例1と同様にしてコバルト蒸着磁性薄膜をポリエチ
レンテレフタレートフィルム上ニ形成シた後従来の真空
蒸着法によりCrあるいはTi。
Comparative Example 1 A cobalt-deposited magnetic thin film was formed on a polyethylene terephthalate film in the same manner as in Example 1, and then Cr or Ti was deposited by a conventional vacuum deposition method.

あるいはSnを実施例1と同じ厚さとなるようそれぞれ
形成させた。すなわち第2図において防着板コrを除去
し、クーリングキャン2コの真下に設置されたルッyg
3oより矢印人に沿って搬送されるポリエチレンテレフ
タレートフィルムの磁性蒸着膜上にcrあるいはTi、
あるいはSnの蒸着膜をそれぞれ形成させた・。
Alternatively, Sn was formed to have the same thickness as in Example 1. In other words, in Fig. 2, the anti-adhesive plate r was removed and the lug installed directly under the cooling can 2 was removed.
Cr or Ti,
Alternatively, a vapor deposited film of Sn was formed respectively.

こうして得られた磁気テープの耐錆性およびカールを測
定した。耐錆性は発露屋ウェザーテスター(山崎精機研
究所製E−/dWG形)に2q時間保存後の錆の発生状
況にをj段階評価よりテストした。カールについては磁
気テープの幅方向のカールの曲率半径をγとした時のカ
ール値−t−Sγ 出した。測定結果は下記表7のとお)である。
The rust resistance and curl of the magnetic tape thus obtained were measured. Rust resistance was tested using a Hatsuroya weather tester (Model E-/dWG manufactured by Yamazaki Seiki Research Institute) based on J-grade evaluation of rust occurrence after storage for 2q hours. Regarding the curl, the curl value -t-Sγ was calculated, where γ is the radius of curvature of the curl in the width direction of the magnetic tape. The measurement results are shown in Table 7 below.

表1 * よ段階評価:!が最良 実施例2 第2図の巻取り式蒸着装置を用いてり、jltTIL厚
のポリエチレンテレフタレートフィルム上に斜方入射蒸
着法によりCoN1(NiJ、を重量係)の磁性蒸着薄
膜を厚さ/300にとなるよう形成させた。ポリエチレ
ンテレフタレートフィルムを矢印Aの方向に搬送させつ
つ02ガスを含む雰囲気中入射角omaxをrj’、 
θminをlOoとして磁性蒸着膜をそれぞれ形成した
。次にポリエチレンテレフタレートフィルムを矢印Bの
方向に搬送させつつ、ルッポコtから非磁性材料を蒸発
させ磁性蒸着膜上に厚さ200Aとなるよう形成させた
。非磁性材料としてはCr* Cu%A7をそれぞれ使
用し、防着板コタおよびitによシそれ 〜ぞれ設定さ
れる入射角θmax’および0m i n ’はり00
% to 0とした。
Table 1 * Grade rating:! Best Embodiment 2 Using the winding type vapor deposition apparatus shown in Fig. 2, a magnetically vapor-deposited thin film of CoN1 (NiJ, weight ratio) was deposited on a polyethylene terephthalate film having a thickness of JLTTIL to a thickness of /300 by an oblique incidence vapor deposition method. It was formed to become. While transporting the polyethylene terephthalate film in the direction of arrow A, the incident angle omax in an atmosphere containing 02 gas is set to rj',
Magnetic deposited films were formed with θmin set to lOo. Next, while transporting the polyethylene terephthalate film in the direction of arrow B, the non-magnetic material was evaporated from the lupus to form it on the magnetic deposited film to a thickness of 200 Å. Cr*Cu%A7 was used as the non-magnetic material, and the incident angle θmax' and 0min' beam 00 were set for the anti-adhesion plate and it respectively.
It was set as % to 0.

比較例2 実施例2と同様にしてCoN1(蒸着磁性薄膜をポリエ
チレンテレフタレートフィルム上に形成した後比較例1
と同様に従来の真空蒸着法によシCrsあるいはCu、
あるいはA/を厚さ、2OOAとなるよう形成せしめた
Comparative Example 2 After forming a CoN1 (vapor-deposited magnetic thin film on a polyethylene terephthalate film) in the same manner as in Example 2, Comparative Example 1
Similarly, Crs or Cu,
Alternatively, A/ was formed to have a thickness of 2OOA.

こうして得られた磁気テープの耐錆性およびカールを実
施例1および比較例1と同様な方法にて測定したところ
表2のごとくであった。
The rust resistance and curl of the magnetic tape thus obtained were measured in the same manner as in Example 1 and Comparative Example 1, and the results were as shown in Table 2.

表1 〔発明の効果〕 このように本発明による磁気記録媒体は耐錆性にすぐれ
るとともにカールの少ない金属薄膜型磁気記録媒体であ
り1本タイプの磁気記録媒体の実用上そのメリットは大
きい。
Table 1 [Effects of the Invention] As described above, the magnetic recording medium according to the present invention is a metal thin film type magnetic recording medium that has excellent rust resistance and less curling, and has great practical advantages as a single type magnetic recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気記録媒体の構成例を示してい
る。 ハ・・支持体、2・・・磁性金属蒸着膜。 3・・・非磁性金属蒸着膜、 第一図は本発明の磁気記録媒体を製造するための装置略
図を示す。 、2/・・・帯状支持体、22・・・クーリングキャン
1.23,2μ・・・蒸着材料。 21.26.30・・・ルツボ。 −27,−2F、 25’−・・防着板特許出願人 富
士写真フィルム株式会社第 1 し @ 2 声/−一\ 〒、r、− ’、、− 2917四Aηh
FIG. 1 shows an example of the structure of a magnetic recording medium according to the present invention. C. Support, 2. Magnetic metal vapor deposited film. 3...Nonmagnetic metal vapor deposited film. Figure 1 shows a schematic diagram of an apparatus for manufacturing the magnetic recording medium of the present invention. , 2/... band-shaped support, 22... cooling can 1.23, 2μ... vapor deposition material. 21.26.30... Crucible. -27, -2F, 25' - Anti-adhesive plate patent applicant Fuji Photo Film Co., Ltd.

Claims (1)

【特許請求の範囲】 1)蒸発源から蒸発せしめられた金属材料の蒸気流を移
動する基体に蒸着せしめて表る磁気記録媒体において、
前記移動基体忙対する磁性金属材料の蒸気流の入射角を
高入射角から低入射角へと連続的に変化させることによ
シ彎曲し九傾斜柱状構造をなす磁性金属蒸着膜上に、該
移動基体に対する非磁性金属材料の蒸気流の入射角を高
入射角から低入射角へと連続的に変化させ形成される非
磁性金属蒸着膜を設けていることを特徴とする磁気記録
媒体。 2)非磁性金属材料としてCr* T 1 * S n
 *Cu%Aノから選ばれる少なくとも1種を使用する
ことを特徴とする特許請求範囲第1項記載の磁気記録媒
体。
[Claims] 1) A magnetic recording medium in which a vapor flow of a metal material evaporated from an evaporation source is deposited on a moving substrate,
By continuously changing the incident angle of the vapor flow of the magnetic metal material on the moving substrate from a high incident angle to a low incident angle, the moving substrate is moved onto a magnetic metal vapor deposited film having a curved nine-inclined columnar structure. 1. A magnetic recording medium comprising a non-magnetic metal vapor deposited film formed by continuously changing the incident angle of a vapor flow of a non-magnetic metal material onto a substrate from a high incident angle to a low incident angle. 2) Cr*T1*Sn as non-magnetic metal material
The magnetic recording medium according to claim 1, characterized in that at least one selected from *Cu%A is used.
JP7983384A 1984-04-20 1984-04-20 Magnetic recording medium Pending JPS60224124A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7983384A JPS60224124A (en) 1984-04-20 1984-04-20 Magnetic recording medium
US06/725,198 US4622271A (en) 1984-04-20 1985-04-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7983384A JPS60224124A (en) 1984-04-20 1984-04-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60224124A true JPS60224124A (en) 1985-11-08

Family

ID=13701207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7983384A Pending JPS60224124A (en) 1984-04-20 1984-04-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60224124A (en)

Similar Documents

Publication Publication Date Title
JPS62121929A (en) Production of magnetic recording medium
GB2112666A (en) Magnetic recording medium
JPH0123853B2 (en)
US5370928A (en) Magnetic recording medium
US4622271A (en) Magnetic recording medium
US4643915A (en) Process for producing magnetic recording medium
JPS6194242A (en) Manufacture of magnetic recording medium
US4816351A (en) Magnetic recording medium
JPH0546013B2 (en)
JPS60224124A (en) Magnetic recording medium
JPS60145524A (en) Magnetic recording medium
US4661421A (en) Method for preparing a magnetic recording medium
JPS60224125A (en) Magnetic recording medium
JPS5897133A (en) Magnetic recording medium
JPS61139920A (en) Magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPS6262432A (en) Production of magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPS6262431A (en) Production of magnetic recording medium
JPS6333287B2 (en)
JPS6037528B2 (en) Manufacturing method for magnetic recording media
JPH01124115A (en) Magnetic recording medium and its production
JPS61229228A (en) Magnetic recording medium
JPS6242336B2 (en)
JPS6262430A (en) Production of magnetic recording medium