JPS60222741A - Gas leak detector of low temperature double-shell tank - Google Patents

Gas leak detector of low temperature double-shell tank

Info

Publication number
JPS60222741A
JPS60222741A JP7862084A JP7862084A JPS60222741A JP S60222741 A JPS60222741 A JP S60222741A JP 7862084 A JP7862084 A JP 7862084A JP 7862084 A JP7862084 A JP 7862084A JP S60222741 A JPS60222741 A JP S60222741A
Authority
JP
Japan
Prior art keywords
gas
inner tank
tank
gas leak
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7862084A
Other languages
Japanese (ja)
Inventor
Tsutomu Tomita
冨田 勉
Katsuharu Kaiho
海法 克治
Masakazu Masago
真砂 昌和
Hisashi Toda
戸田 久
Yuichi Kokubu
国分 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7862084A priority Critical patent/JPS60222741A/en
Publication of JPS60222741A publication Critical patent/JPS60222741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To detect the gas leak from an inner tank at an early stage and to detect the leaking point, by partitioning at least one part of the outer surface of the inner tank, and providing a gas-leak-detecting sampling means for every cell covered by a film. CONSTITUTION:Cells are formed in the roof part and the side plate part of an inner tank 1. A film 2 is provided in each cell so as to cover the cell wall. The outside of the film is contacted with the outer surface of the inner tank 1. A gas-leak-detecting sampling device 3 is provided between the outer surface of the inner tank and the film 2 in each cell. The part between the film 2 and an outer tank 4 is filled with pearlite 5. Nitrogen gas between the outer surface of the inner tank and the film 2 in each cell is sucked to a gas-leak detecting instrumentation by a pump, which is connected to the gas sampling device 3. Nitrogen gas is introduced into the space from a nitrogen feeding pipe and made to of flow through the space. When stored low-temperature liquid gas leaks from the inner tank, the gas is mixed into the flowing nitrogen gas. The gas is sampled and detected by the gas-leak detecting instrumentation.

Description

【発明の詳細な説明】 技術分野 本発明は、二重殻低温タンクのガス漏洩検知装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a gas leak detection device for a double shell cryogenic tank.

従来技術 LPGやLNG等の低温液化ガスの大型貯槽としては二
重殻平底低温タンクが広く使用されているが、この形式
のタンクの大型のものは数万トンの貯蔵能力を有し1非
常に大きなエネルギーを内蔵しておシ、破壊した場合の
災害は甚大であシ、安全管理は極めて重要である。した
がってタンクの破壊に至らない前に極力早期に貯槽殻体
の亀裂の発生を検知することが肝要である。
Conventional technology Double-shell flat-bottom cryogenic tanks are widely used as large-scale storage tanks for low-temperature liquefied gases such as LPG and LNG, but large tanks of this type have a storage capacity of tens of thousands of tons. Since they contain a large amount of energy, the disaster would be enormous if they were destroyed, so safety management is extremely important. Therefore, it is important to detect cracks in the tank shell as early as possible before the tank is destroyed.

二重殻低温タンクは、内槽が低温液化ガスの貯槽となっ
ておシ、内槽と外槽との間の空間は保冷材とシールガス
が充填されて保冷層となっているが、内槽殻体に生じた
亀裂の検知は従来一般に保冷層のシールガスとして使用
されている窒素ガス等の不活性ガスを外部から保冷層内
に流入させる一方、保冷層内の適所に適数個所設けたサ
ンプリング部よシシールガスをサンプリングしてその中
の貯蔵ガス成分を検出することにょシ行なわれていた。
In a double-shell cryogenic tank, the inner tank serves as a storage tank for low-temperature liquefied gas, and the space between the inner tank and outer tank is filled with cold insulation material and seal gas to form a cold insulation layer. In order to detect cracks that have occurred in the tank shell, an inert gas such as nitrogen gas, which is generally used as a sealing gas for the cold insulation layer, is allowed to flow into the cold insulation layer from the outside, while at the same time it is placed at appropriate locations in the cold insulation layer. The method used was to sample the sealed gas from the sampling section and detect the stored gas components therein.

さて、二重殻平底低温タンクの側部及び屋根保冷層の保
冷材としては、パーライトが多く使用されているが、こ
の保冷材は通気性が悪く、内槽殻体に生じた亀裂から漏
洩したガスが保冷層を通ってサンプリング部に達する迄
に長時問掛る欠点があった。又、大型低温タンクでは内
槽の外表面積が大きく、たとえ漏洩が検知されても漏洩
箇所を捜し出すのに時間が掛る難点があった。
Now, perlite is often used as the cold insulation material for the sides and roof cold insulation layer of double-shell flat bottom cryogenic tanks, but this cold insulation material has poor breathability and leaks from cracks that occur in the inner tank shell. There was a drawback that it took a long time for the gas to pass through the cold layer and reach the sampling section. Furthermore, in large low-temperature tanks, the outer surface area of the inner tank is large, and even if a leak is detected, it takes time to locate the leak.

目 的 本発明は、従来の二重殻平底低温タンクの従来のガス漏
洩検知装置の上述の問題点にがんがみ、比較的速やかに
内槽からのガス漏洩を検知することができ、しかも漏洩
箇所のお\まかな位置の見当を容易につけることができ
る二重殻低温タンクのガス漏洩検知装置を提供すること
を目的とする。
Purpose The present invention addresses the above-mentioned problems of the conventional gas leakage detection device for the conventional double-shelled flat-bottom cryogenic tank, and is capable of relatively quickly detecting gas leakage from the inner tank. It is an object of the present invention to provide a gas leakage detection device for a double-shelled low-temperature tank that can easily locate the approximate location of a leakage point.

構 成 この目的を達成する本発明のガス漏洩−釦装置は、内槽
外表面の少くとも一部を区画し、夫々の区画を覆い周囲
が内槽外表面に接着された膜を張設し、各区画毎に内槽
外表面と上記膜との間の空間にガス漏洩検知用サンプリ
ング手段を設i1これによシサンプリングされたガスを
各区画毎にガス漏洩検知するガス漏洩検知計装を設けた
ことを特徴とする。
Structure: The gas leakage button device of the present invention which achieves this object divides at least a part of the outer surface of the inner tank, and covers each compartment with a membrane that is bonded to the outer surface of the inner tank. In each compartment, a sampling means for detecting gas leakage is installed in the space between the outer surface of the inner tank and the above-mentioned membrane. It is characterized by having been established.

以下、本発明を図面に示す実施例に基いて詳細にル、明
する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図の左半分は、内槽lの屋根部及び側板郡全体を区
画した例であり、第2図に上面を示す如く、複数部分A
、B、C,・・・・・・に区画された各区画を覆い周囲
が内槽1の外表面に接着された膜2が張設されている。
The left half of Fig. 1 is an example in which the entire roof and side panels of the inner tank l are partitioned, and as shown in Fig. 2 the top surface, multiple parts A
, B, C, . . . , a membrane 2 whose periphery is adhered to the outer surface of the inner tank 1 is stretched.

各区画毎の内槽外表面と膜2との間には第3図に示す如
く、ガス漏洩検知用ガスサンプリング装置3が設けられ
ている。膜2と外槽4との間にはパーライト5が充填さ
れている。
As shown in FIG. 3, a gas sampling device 3 for detecting gas leakage is provided between the outer surface of the inner tank and the membrane 2 in each compartment. Perlite 5 is filled between the membrane 2 and the outer tank 4.

各区画の内槽1の外表面と膜2との間の空間には、図示
せぬ窒素ガス供給管が接続されており、該空間に窒素ガ
スが供給されるようになっている。一方、ガスサンプリ
ング装置3には図示せぬポンプを介してガス漏洩検知計
装が接続されている。したがって、このポンプにより各
区画の内槽外表面と膜2との間の窒素ガスをガス漏洩検
知計装に吸引すれば、窒素ガス供給管から窒素ガスが該
空間内に導入されて該空間を頁流し、もし内槽から貯蔵
低温液化ガスが漏洩している場合は、貫流する窒素ガス
中に混入してサンプリングされ、ガス漏洩検知計装によ
り検出される。
A nitrogen gas supply pipe (not shown) is connected to the space between the outer surface of the inner tank 1 and the membrane 2 in each compartment, so that nitrogen gas is supplied to the space. On the other hand, gas leak detection instrumentation is connected to the gas sampling device 3 via a pump (not shown). Therefore, if the nitrogen gas between the outer surface of the inner tank of each compartment and the membrane 2 is sucked into the gas leak detection instrumentation using this pump, the nitrogen gas will be introduced into the space from the nitrogen gas supply pipe and fill the space. If the stored low-temperature liquefied gas leaks from the inner tank, it will be mixed into the flowing nitrogen gas and sampled, and detected by the gas leak detection instrumentation.

したがって、ガスが漏洩した場合は、従来に比較して速
やかに検出され、しかも漏洩箇所はガス漏洩が検知され
た区画内であると見当をつけることができるので、早期
に対策を購することができる。
Therefore, in the event of a gas leak, it will be detected more quickly than in the past, and the location of the leak can be determined to be within the area where the gas leak was detected, so countermeasures can be taken early. can.

第1図の右半分は、内槽1の屋根外表面のみを区画して
膜2を張った例を示す。二重殻低温タンクの側部保冷は
、保冷材としてパーライトを使用する場合でも溝槽、空
槽の繰返しによる温度変化により、パーライトが沈降し
ないように内槽外面に接してグラスウール等の弾力性を
有する保冷材の層が設けられることと、シールガスと漏
洩ガスよ。よ□よ2.□カフー5゜−よエヵ ′向に移
動する。しかし、屋根保冷についてはグラスウールの層
が設けられず、又、水平に近いため、比重差によっても
漏洩ガスは容易に移動しない。
The right half of FIG. 1 shows an example in which only the outer surface of the roof of the inner tank 1 is partitioned and covered with the membrane 2. Even when perlite is used as a cold insulation material, the sides of the double-shell low-temperature tank are kept cool by using elastic materials such as glass wool in contact with the outer surface of the inner tank to prevent perlite from settling due to temperature changes caused by repeated use of the tank and empty tank. A layer of cold insulation material is provided to prevent sealing gas and leakage gas. Yo□yo 2. □Move in the direction of 5 degrees. However, the roof is not provided with a layer of glass wool for cold insulation, and since the roof is nearly horizontal, leaking gas does not move easily due to differences in specific gravity.

したがって、比較的容易にガスが移動する側部には、膜
2で覆われた区画は設けず、漏洩ガスが移動しにくい屋
根保冷部にのみ区画を設けたものである。
Therefore, no compartments covered with the membrane 2 are provided on the side parts where gas moves relatively easily, and compartments are provided only in the roof cold insulation part where leakage gas is difficult to move.

各区画の内槽外面と膜2との間の空間を窒素ガスが貝流
し易くするために、内槽外表面と膜2との間に通気空間
を確保するスペーサーを設けることが望捷しい。スペー
サーとしては、グラスウール等の通気性の良い保冷材を
使用すれば、ガス貫流路の形成と兼ねて保冷層が形成さ
れるので好都合である。これ以外に各種断面の型鋼、木
材、プラスチック等を適当に配置してもよい。
In order to facilitate the flow of nitrogen gas through the space between the outer surface of the inner tank and the membrane 2 in each compartment, it is desirable to provide a spacer to ensure a ventilation space between the outer surface of the inner tank and the membrane 2. It is convenient to use a breathable cold insulating material such as glass wool as the spacer because it forms a cold insulating layer that also serves as a gas passage. In addition to this, shaped steel, wood, plastic, etc. with various cross sections may be appropriately arranged.

なお、内槽殻板からのガスの漏洩は、事実上溶接線から
に限られることから、ガス貫流路が溶接線の上に形成さ
れるようにスペーサーを配置するのがよい。スペーサー
として溝型鋼を使用する場合は、両フランジの先端が溶
接線の両側に接触するように配置すればその内部にガス
貫流路が形成される。
In addition, since leakage of gas from the inner tank shell plate is practically limited to the weld line, it is preferable to arrange the spacer so that the gas passage is formed above the weld line. When channel steel is used as a spacer, if the tips of both flanges are placed in contact with both sides of the weld line, a gas flow path will be formed inside the spacer.

又、ガスの漏洩が溶接線にのみ発生する事実から、内槽
外表面全域でなく、溶接線の上に帯状に膜を張る区画を
設けても充分効果が得られる。
Furthermore, since gas leakage occurs only at the weld line, sufficient effects can be obtained even if a section is provided where the membrane is stretched in a band shape over the weld line, rather than over the entire outer surface of the inner tank.

本発明に使用する膜としてはポリエステル、ポリエチレ
ン等が使用でき、これを内槽外表面に接着する接着剤と
してはエポキシ樹脂が使用できる。
Polyester, polyethylene, etc. can be used as the membrane used in the present invention, and epoxy resin can be used as the adhesive for bonding the membrane to the outer surface of the inner tank.

なお、保冷材として、パーライトを使用する場合は、そ
の自重で膜が内槽外表面に圧接されるので特に接着剤を
使用しなくても差支えない。
Note that when pearlite is used as the cold insulating material, the film is pressed against the outer surface of the inner tank by its own weight, so there is no need to use an adhesive.

効 果 以上の如く、本発明によれば、早期に内槽がらのガス漏
洩を検知することができ、しかも、漏洩箇所の見当も容
易につけられるので、遅滞なく対策を樹でることが可能
となり、安全管理上顕著な効果が得られる。
Effects As described above, according to the present invention, gas leakage from the inner tank can be detected at an early stage, and the location of the leakage can be easily determined, so countermeasures can be taken without delay. Significant effects on safety management can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図で左半分は屋根部
及び側板部を区画した例を示し、右半分は屋根部のみを
区画した例を示す図、第2図はその内槽屋根部の上面図
、第3図は屋根部の拡大断面図である。 l・・・内槽 2・・・膜 3・・・ガスサングリグ手段 4・・・外槽 5・・・保冷材 A、B、C,・・・・・・区画
Fig. 1 is a sectional view showing an embodiment of the present invention, the left half shows an example in which the roof and side panels are partitioned, the right half shows an example in which only the roof is partitioned, and Fig. 2 shows the inner tank. A top view of the roof section, and FIG. 3 is an enlarged sectional view of the roof section. l...Inner tank 2...Membrane 3...Gas sangrig means 4...Outer tank 5...Cold insulation material A, B, C,...Division

Claims (6)

【特許請求の範囲】[Claims] (1) 内槽と外槽とを有し、内槽内を低温液化ガス貯
蔵空間とし、内外槽間の空間を保冷層とする二重殻低温
夕/りの内槽殻体からの貯蔵液化ガスの漏洩検知装置に
おいて、内槽外表面の少くとも一部を区画し、夫々の区
画を覆い周囲が内槽外表面に接着された膜を張設し、各
区画毎に内槽外表面と上記膜との間の空間にガス漏洩検
知用サンプリング手段を設け、該サンプリング手段でサ
ンプリングされたガスを各区画毎にガス漏洩検知するガ
ス漏洩検知計装を設けたことを特徴とするガス漏洩検知
装置。
(1) Storage liquefaction from the inner tank shell of a double-shell low-temperature tank that has an inner tank and an outer tank, with the inner tank serving as a storage space for low-temperature liquefied gas, and the space between the inner and outer tanks serving as a cold insulation layer. In a gas leak detection device, at least a part of the outer surface of the inner tank is divided, a membrane covering each compartment and the outer surface of the inner tank is bonded to the outer surface of the inner tank is provided, and each compartment is separated from the outer surface of the inner tank. Gas leak detection characterized in that a gas leak detection sampling means is provided in the space between the membrane and a gas leak detection instrumentation is provided for detecting the gas leak in each section of the gas sampled by the sampling means. Device.
(2)・上記の膜と内槽外表面との間に通気空間を形成
するスペーサーを設けたことを特徴とする特許請求の範
囲第1項に記載の装置。
(2) The device according to claim 1, further comprising a spacer that forms a ventilation space between the membrane and the outer surface of the inner tank.
(3)上記のスペーサーが通気性を有する保冷材である
ことを特徴とする特許請求の範囲第2項に記載の装置。
(3) The device according to claim 2, wherein the spacer is a breathable cold insulating material.
(4)上記のスペーサーが剛性を有する型材であること
を特徴とする特許請求の範囲第2項に記載の装置。
(4) The device according to claim 2, wherein the spacer is a rigid shaped member.
(5)上記のスペーサーが少くとも内槽の溶接線上に通
気空間を形成する如く配設されたことを特徴とする特許
請求の範囲第2項に記載の装置。
(5) The device according to claim 2, wherein the spacer is disposed at least on the weld line of the inner tank so as to form a ventilation space.
(6)上記の区画が内槽の溶接線を含む帯状に設けられ
ていることを特徴とする特許請求の範囲第1項に記載の
装置。
(6) The device according to claim 1, wherein the section is provided in a band shape including the weld line of the inner tank.
JP7862084A 1984-04-20 1984-04-20 Gas leak detector of low temperature double-shell tank Pending JPS60222741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7862084A JPS60222741A (en) 1984-04-20 1984-04-20 Gas leak detector of low temperature double-shell tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7862084A JPS60222741A (en) 1984-04-20 1984-04-20 Gas leak detector of low temperature double-shell tank

Publications (1)

Publication Number Publication Date
JPS60222741A true JPS60222741A (en) 1985-11-07

Family

ID=13666929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7862084A Pending JPS60222741A (en) 1984-04-20 1984-04-20 Gas leak detector of low temperature double-shell tank

Country Status (1)

Country Link
JP (1) JPS60222741A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152859A (en) * 1989-12-14 1992-10-06 Sharp Bruce R Method of making a double walled cylindrical-shaped storage tank with independent monitoring of tank areas
US5269172A (en) * 1991-12-16 1993-12-14 The Dow Chemical Company Processes and apparatus for the prevention, detection and/or repair of leaks or avenues for leaks from above-ground storage tanks
CN104614131A (en) * 2014-12-22 2015-05-13 山东大学 Underground oil and gas storage cavern airtightness test method
WO2021063971A1 (en) * 2019-10-02 2021-04-08 Vacuum Engineering Services Ltd Fluid evacuation apparatus
JP2021518542A (en) * 2018-03-21 2021-08-02 ギャズトランスポルト エ テクニギャズ A method for diffusing tracer gas and a method for membrane leak testing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418404A (en) * 1977-07-12 1979-02-10 Sumitomo Metal Ind Ltd Controlling method for burning rate in sintering machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418404A (en) * 1977-07-12 1979-02-10 Sumitomo Metal Ind Ltd Controlling method for burning rate in sintering machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152859A (en) * 1989-12-14 1992-10-06 Sharp Bruce R Method of making a double walled cylindrical-shaped storage tank with independent monitoring of tank areas
US5269172A (en) * 1991-12-16 1993-12-14 The Dow Chemical Company Processes and apparatus for the prevention, detection and/or repair of leaks or avenues for leaks from above-ground storage tanks
CN104614131A (en) * 2014-12-22 2015-05-13 山东大学 Underground oil and gas storage cavern airtightness test method
JP2021518542A (en) * 2018-03-21 2021-08-02 ギャズトランスポルト エ テクニギャズ A method for diffusing tracer gas and a method for membrane leak testing
WO2021063971A1 (en) * 2019-10-02 2021-04-08 Vacuum Engineering Services Ltd Fluid evacuation apparatus

Similar Documents

Publication Publication Date Title
GB1231491A (en)
US4170952A (en) Cryogenic insulation system
EP0263511B1 (en) Vacuum insulation panel
US4669632A (en) Evacuated heat insulation unit
CN104443284A (en) Liquefied natural gas carrier B type independent liquid cargo tank thermal insulation system and construction method thereof
US3908468A (en) Storage tank leak detector
JPS6318079B2 (en)
US3419174A (en) Method and apparatus for liquefied gas storage
GB1106647A (en) Insulated liquefied gas containers
JPS60222741A (en) Gas leak detector of low temperature double-shell tank
CN111868495A (en) Method for diffusing tracer gas and method for testing sealing performance of membrane
US3099362A (en) Container for storing liquefied gases at very low temperatures
CN104443282A (en) B-type independent LNG liquid cargo tank thermal insulation layer installation fixing mechanism and method
GB1355666A (en) Insulation of containers for cryogenic fluids
GB952564A (en) A seal for use in a container for storing liquefied gases at low temperature
US3477606A (en) Membrane tank structures
US3922987A (en) Liquefied gas tanker construction using stiffener members
US3724703A (en) Low temperature liquefied gas storage tank and tanker
CN115485536A (en) Device for monitoring the tightness of a sealing component
JPH0448400Y2 (en)
JPH0231331B2 (en) NIJUKAKUTEIONTANKUNOGASUROEIKENCHISOCHI
CA1135977A (en) System for detecting cracks in the heat-insulating lining of a container for liquefied gas
JPS60219534A (en) Gas leakage detection apparatus of double shell low temperature tank
SU617021A3 (en) Heat-insulating facing for reservoir with low-temperature liquid
JPH05221380A (en) Containing device for low temperature liquid