JPS60222702A - Fringe-scanning sharing interferometer - Google Patents

Fringe-scanning sharing interferometer

Info

Publication number
JPS60222702A
JPS60222702A JP59079173A JP7917384A JPS60222702A JP S60222702 A JPS60222702 A JP S60222702A JP 59079173 A JP59079173 A JP 59079173A JP 7917384 A JP7917384 A JP 7917384A JP S60222702 A JPS60222702 A JP S60222702A
Authority
JP
Japan
Prior art keywords
wavefront
light
beam splitter
measured
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079173A
Other languages
Japanese (ja)
Inventor
Toshio Kano
加納 敏夫
Taira Kochiwa
小団扇 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59079173A priority Critical patent/JPS60222702A/en
Priority to US06/724,397 priority patent/US4643576A/en
Publication of JPS60222702A publication Critical patent/JPS60222702A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0215Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods by shearing interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Abstract

PURPOSE:To obtain the titled interferometer, whose vibration resistance is improved, by providing two rectangular prisms in the vicinity of a beam splitter for splitting laser light, and commonly using optical elements. CONSTITUTION:Laser light from a laser light source 11 is split by a first beam splitter 13. The light beams are supplied to a curved surface to be measured 15 and a second beam splitter 16. Two rectangular prisms 17 and 18 are provided in the vicinity of the second beam splitter 16. The rectangular prism 17 is moved in the vertical direction by a pulse motor 19. The rectangular prism 18 is minutely moved in the incident direction of light by a piezoelectric element 20. Thus the shared part is formed. Therefore, the part, which commonly utilizes the light elements, are increased, vibration resistance is improved and the compact configuration can be attained.

Description

【発明の詳細な説明】 (技術分野) 本発明シエ、縞走査シェアリング干渉計に関し、より詳
細には、平面、球面、非球面形状の高精度測定や光学素
子の波面収差、偏心の測定、焦点距離の測定等に適用し
5る縞走査シェアリング干渉計に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a fringe scanning shearing interferometer, and more specifically, it is applicable to high precision measurement of flat, spherical and aspherical shapes, measurement of wavefront aberration and eccentricity of optical elements, This invention relates to a fringe scanning shearing interferometer that is applied to focal length measurements and the like.

(従来技術〉 第1図に、従来の縞走査シェアリング干渉計の構成を示
す。
(Prior Art) FIG. 1 shows the configuration of a conventional fringe scanning shearing interferometer.

図において、符号■はレーザー光源、符号L1゜L2ハ
コリメータレンズ、符号2,3はハーフミラ−1符号L
3は照明レンズ、符号4 ’を工振勘ミラー、符号5は
圧電素子若しくは磁歪素子、符号6’r1 平行プレー
ト、符号7はハーフミラ−1符号L4は結像レンズ、符
号9は光電検出装置そして符号10は被測定物体をそれ
ぞれ示す。
In the figure, the symbol ■ is a laser light source, the symbol L1゜L2 is a collimator lens, the symbols 2 and 3 are half mirrors, the symbol L is
3 is an illumination lens, 4' is an engineering mirror, 5 is a piezoelectric element or magnetostrictive element, 6'r1 is a parallel plate, 7 is a half mirror, 1 is an imaging lens, 9 is a photoelectric detection device, and Reference numeral 10 indicates an object to be measured.

被測定物体の形状測定に際し、レーザー光源1から出た
レーザー光はコリメータレンズL、、L。
When measuring the shape of an object to be measured, the laser light emitted from the laser light source 1 is passed through collimator lenses L, L.

を追って平行光となり、そして)\−フミラー2゜3、
照明レンズL3 を通って被測定物体10に至石。
It becomes a parallel light, and)
The light passes through the illumination lens L3 and reaches the object to be measured 10.

被画定物体10で反射された光は照明レンズL3ヲ1L
11ってハーフミラ−3に至り、ここでこの反射光は2
分割されろ。一方の分割光は・・−フミラー2からハー
フミラ−7へ向は反射され、そしてノ翫−フミラー7か
ら結像レンズL4 を通って光電検出装置9に入る。こ
れを被検波面と称する。他方の分割光もハーフミラ−3
から光路彼畏変化装置としての圧電素子若しくは磁歪素
子5に固定された振′・のミラー4を経て、波面を光の
進路に対し横にずらす平行プレート6を通り、そし、て
・・−フミラー7と結像レンズL4 を通って光電検出
装置9に入ろ。これを参照波面と称する。
The light reflected by the object to be defined 10 is passed through the illumination lens L3 to 1L.
11 reaches the half mirror 3, where this reflected light is 2
Be divided. One of the split lights is reflected from the half mirror 2 to the half mirror 7, and then enters the photoelectric detection device 9 from the half mirror 7 through the imaging lens L4. This is called the test wavefront. The other split light is also half mirror 3
From there, the optical path passes through a vibratory mirror 4 fixed to a piezoelectric element or magnetostrictive element 5 as a device for changing the optical path, passes through a parallel plate 6 that shifts the wavefront laterally with respect to the path of the light, and then... 7 and the imaging lens L4 to enter the photoelectric detection device 9. This is called a reference wavefront.

そこで、光電検出装置9上に投影された上記2つの波l
酊を以て干渉縞をつくり、この干渉縞の各点の位相差を
測定し、測定値から被検波面を算出して、被測定物体l
Oの面形状を決定するのである。
Therefore, the two waves l projected onto the photoelectric detection device 9
We carefully create interference fringes, measure the phase difference at each point of the interference fringes, calculate the wavefront to be measured from the measured values, and then locate the object to be measured.
This determines the surface shape of O.

゛ しかじ、当該従来技術でシま、分割後の各々の波面
が、異なる光学素子間を長語′離にわたり伝播する構成
となっているので、振動など外部からの影響を受け易く
、このため、測定精度を高めることができないという問
題がある。
゛ However, in this prior art, each wavefront after division is configured to propagate over a long distance between different optical elements, so it is susceptible to external influences such as vibrations, and therefore , there is a problem that measurement accuracy cannot be improved.

(目 的) したがって、この発明の目的は耐振動性を向上して測定
N度を高めることのできる改良された縞走査シェアリン
グ干渉計を提供することにある。
(Objective) Therefore, an object of the present invention is to provide an improved fringe scanning shearing interferometer that can improve vibration resistance and increase measurement N degree.

この発明の上記目的にしたがって、共通に用いろ光学素
子の部分が多い構成の縞走査シェアリング干渉計が提供
される。
According to the above-mentioned object of the present invention, a fringe scanning shearing interferometer is provided which has a structure in which many optical elements are commonly used.

(溝 成) 本発明の構成を、以下、−実施例疋基づいて説明する。(Mizo Sei) The structure of the present invention will be explained below based on embodiments.

第2図において、符号11は17−ザ光源、符号12は
コリメータレンズ系、符号13シまレーザ光の進路を被
測定物に向けろ分割素子としてのビームスプリッタ、符
号14は被測定曲面15に投光して生じた被側定波面を
平行に近い波面に変11g!する変換素子としてのコン
バータレンズをそれぞれ示す。
In FIG. 2, reference numeral 11 indicates a laser light source 17; reference numeral 12 indicates a collimator lens system; reference numeral 13 indicates a beam splitter as a splitting element for directing the course of the laser beam toward the object to be measured; Change the fixed wave surface on the side caused by light to a nearly parallel wave surface 11g! A converter lens is shown as a conversion element.

さらに、符号16は上記ビームスプリ・ツタ13からの
破画定波面の進行方向を2方向に分割する外削素子とし
てのビームスプリッタヲ示ス。
Further, reference numeral 16 indicates a beam splitter as an external cutting element that divides the traveling direction of the fracture-defined wavefront from the beam splitter vine 13 into two directions.

このビームスプリッタ16に対して近恢した同r巨糀の
位置には2つの直角プリズム17.18が配I6されて
いる。
Two right-angled prisms 17 and 18 are arranged I6 at a position close to the beam splitter 16.

これらの1げ角プリズムの中、直角プリズム17(′こ
ついては、光の入射方向に対して当該プリズムを垂直方
向に変動させるf#I手段が付設されている。この変動
手段としては、例えば、パルスモータ19と、このパル
スモータの軸と一体のねじ軸【9a と、このねじ軸に
螺合されているとともに頁町プリズム17と一体的に取
付けられている枠1:4= 17 a 等による構成を
挙げろことができろ。
Among these single angle prisms, a right angle prism 17 (in particular, f#I means for varying the prism in a direction perpendicular to the direction of incidence of light is attached. As this variation means, for example, A pulse motor 19, a screw shaft [9a that is integral with the shaft of this pulse motor, and a frame 1:4=17a that is screwed to this screw shaft and is integrally attached to the Shimachi prism 17, etc. Can you name the configuration?

上記変動手段としては、上記の他、ピエゾ素子を用いる
こともできろ。
In addition to the above, a piezo element may also be used as the variation means.

一方、直角プリズム18に関しては、光の入射方向と同
じ方向に当該プリズムを微小量変1させてシェアさせる
手段が付設されている。
On the other hand, with respect to the right-angle prism 18, a means is provided for causing the prism to change by a minute amount in the same direction as the direction of incidence of light so as to share the prism.

このシェアさせる手段としては、直角プリズム18と一
体的に設けられたピエゾ素子2oを挙げることかできろ
As a means for this sharing, a piezo element 2o provided integrally with the right angle prism 18 can be mentioned.

次に、符号21′L’!、上記2つの直角プリズム17
゜18を各々経由し、さらにビームスプリッタ16を経
て入射してくる波面を光電検出装置22に結慮させて干
渉縞を出現させる結像レンズを示す。
Next, code 21'L'! , the two right angle prisms 17
18 and the beam splitter 16 are reflected onto the photoelectric detection device 22 to cause interference fringes to appear.

被測定曲面J5な6り定するに際しては次のような働き
が営まれる。
In determining the curved surface to be measured J5, the following operation is carried out.

レーザー光源11 より出た光は、コリメータレンズ系
12を経て平行光となり、ビームスプリッ □り13で
左折させられてからコンバータレンズ■4により基準球
面の球面波に変換され、被画定曲面15に入射される。
The light emitted from the laser light source 11 passes through the collimator lens system 12, becomes parallel light, is turned left by the beam splitter □ 13, is converted into a spherical wave of the reference spherical surface by the converter lens □4, and is incident on the defined curved surface 15. be done.

但し、ここで基準球面とは、コンパ−タレ/ズ14の焦
点から被測定曲面15の光軸上の頂点までの距離を半径
比とした球面である。そして、被測定曲面15上の任意
の点における基準球面からのずれをd/2 とすると、
被測定曲面15を反射した波面はdの波面収差を有する
波面となる。このdを測定すれば、被測定曲面15の形
状を知ることができろ。
However, the reference spherical surface here is a spherical surface whose radius ratio is the distance from the focal point of the comparator lens 14 to the apex on the optical axis of the curved surface 15 to be measured. If the deviation from the reference spherical surface at any point on the curved surface 15 to be measured is d/2, then
The wavefront reflected from the curved surface 15 to be measured becomes a wavefront having a wavefront aberration of d. By measuring this d, the shape of the curved surface 15 to be measured can be known.

さて、被側定曲面15からの反射光シュ、当該被測定曲
面150面形状に関する情報を含んだ光(1メ後、波面
と称する)となり、再び、コンバータ1/ンズ14、ビ
ームスプリンタ■3 を通過してビームスプリッタ16
へ向かう。ところで、この波面は平面波より少しずれた
波面となっており、そのずれ壇゛tま丁度、被測定曲面
と基準球面とのずれfiiの2倍に対応している。
Now, the reflected light beam from the constant curved surface 15 to be measured becomes light containing information about the shape of the curved surface 150 to be measured (after 1 step, it is called a wavefront), and the converter 1/lens 14 and beam splinter 3 are again activated. Pass through beam splitter 16
Head to. By the way, this wavefront is a wavefront slightly shifted from a plane wave, and the shift angle t corresponds to exactly twice the shift fii between the curved surface to be measured and the reference spherical surface.

ビームスプリンタ16により、波面1まその進行方向を
2方向に分割され、一つ1は直進して直角プリズム18
で2回反射して、さらにビームスプリッタ16でもう一
度反射して結像レンズ21へ到る。この波面を便宜上波
面Aとする。
The beam splinter 16 splits the traveling direction of the wavefront 1 into two directions, and each wavefront 1 travels straight to the right angle prism 18.
The beam is reflected twice at the beam splitter 16 and then once more at the beam splitter 16 to reach the imaging lens 21. This wavefront will be referred to as wavefront A for convenience.

もう一つの波面は、ビームスプリンタ16により反射し
て直角プリズム17へ入り、2回反射してビームスプリ
ッタ16に入り、直進して結像レノズ21へ到る。この
波面を便宜上、波面Bとする。
The other wavefront is reflected by the beam splinter 16 and enters the right-angle prism 17, is reflected twice, enters the beam splitter 16, and travels straight to the imaging lens 21. For convenience, this wavefront will be referred to as wavefront B.

C皮面BOX直角プリズム17によりSだけ横ずら置か
ら1/2Sだげ上記変動手段たろパルスモータ19を駆
動してずらすことにより行なわれろ。
This is done by driving the variable means taro pulse motor 19 to shift the C surface BOX by 1/2 S from the horizontal displacement by S by the rectangular prism 17.

これにより、光電検出装置22上で″ぼ、波面Aと、こ
れを横にSだけずらした波面に対応する波面Bとの干渉
縞が発生する。この意味において、本干渉法はシェアリ
ング干渉法である。
As a result, interference fringes are generated on the photoelectric detection device 22 between wavefront A and wavefront B, which corresponds to a wavefront that is laterally shifted by S. In this sense, this interferometry is a shearing interferometry. It is.

同時に、直角プリズム18を変調手段たろピエゾ素子2
0にて微小量変動させ、波面Aの位相を変調させろこと
ができろ。この意味において、本干渉法は縞走査(フリ
ンジスキャンニング)法である。
At the same time, the right angle prism 18 is modulated by the piezoelectric element 2
It is possible to modulate the phase of wavefront A by making a minute change at 0. In this sense, the present interferometry is a fringe scanning method.

したがって、本干渉光学系は縞走査ンエアリング干渉計
を構成する。
Therefore, this interference optical system constitutes a fringe scanning air ring interferometer.

(効 果) この発明による縞走査シェアリング干渉計は、分割素子
に近接させて2つの直角、プリズムを設けた構成とし、
共通に柑いる光学素子の部分が多い。
(Effects) The fringe scanning shearing interferometer according to the present invention has a configuration in which two right-angled prisms are provided close to the dividing element,
There are many common optical elements that are interesting.

よって、耐振動性が向上し、さらに副次的効果として装
置の小型化が達成されろ。
Therefore, vibration resistance is improved, and as a secondary effect, the device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図jjjf米技術に係る縞走査シェアリング干渉計
の構成図、第2図は本発明の一実施例としての縞走査7
エアリング干渉計の構成図である。 15・・・ 被測定波面、 16・・・ 分割素子とし
てのビームスプリッタ、 17.18・・・直角プリズ
ム、 19・・・ ノくルスモータ、19a・・・ ね
じ、 17a・・・ 枠体1.20・・・ 変調手段と
してのピエゾ素子、 21・・・ 結1象レンズ、 2
2・・・ 光電検出装置。
Fig. 1 is a block diagram of a fringe scanning shearing interferometer according to jjjf technology, and Fig. 2 is a diagram of a fringe scanning shearing interferometer according to the jjjf US technology.
FIG. 2 is a configuration diagram of an air ring interferometer. 15... Wavefront to be measured, 16... Beam splitter as splitting element, 17.18... Right angle prism, 19... Nockles motor, 19a... Screw, 17a... Frame body 1. 20... Piezo element as a modulation means, 21... Quadrature lens, 2
2... Photoelectric detection device.

Claims (1)

【特許請求の範囲】 被訃]定曲面に投光して生じた被測定波面を平行ン(近
い波面に変換する変換素子と、 この被mυ定波面の進行方向を2方向に分割する分割素
子と、 上記変換素子に対して近接した同距離の位置にゴ己1!
された2つの宣角プリズムと、これら2つの直角プリズ
ムの甲、1つの直角プリズムを光の入射方向に対して垂
直方向に変動させろ変り手段と、 他の1つの直角プリズムを光の入射方向と同じ方向に微
小量変動させてンエアさせる手段と、上記2つの直角プ
リズムを各々経由した波面を光電検出装置上に結像させ
て干渉縞を出現させろ結陳レンズをイ1することを特徴
とする縞走査シェアリング干渉計。
[Claims] A conversion element that converts a wavefront to be measured generated by projecting light onto a constant curved surface into a parallel (near) wavefront, and a dividing element that divides the traveling direction of the constant wavefront to be measured into two directions. And Goji 1 is located at the same distance and close to the above conversion element!
two wide-angle prisms, the uppers of these two right-angle prisms, a means for changing one right-angle prism in a direction perpendicular to the direction of incidence of light, and a means for changing the other right-angle prism in a direction perpendicular to the direction of incidence of light. The present invention is characterized by a means for causing air to fluctuate by a minute amount in the same direction, and a condensing lens that images the wavefronts that have passed through the two right-angle prisms on a photoelectric detection device to cause interference fringes to appear. Fringe scanning shearing interferometer.
JP59079173A 1984-04-19 1984-04-19 Fringe-scanning sharing interferometer Pending JPS60222702A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59079173A JPS60222702A (en) 1984-04-19 1984-04-19 Fringe-scanning sharing interferometer
US06/724,397 US4643576A (en) 1984-04-19 1985-04-18 Fringe scanning shearing interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079173A JPS60222702A (en) 1984-04-19 1984-04-19 Fringe-scanning sharing interferometer

Publications (1)

Publication Number Publication Date
JPS60222702A true JPS60222702A (en) 1985-11-07

Family

ID=13682585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079173A Pending JPS60222702A (en) 1984-04-19 1984-04-19 Fringe-scanning sharing interferometer

Country Status (1)

Country Link
JP (1) JPS60222702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446710A (en) * 1992-11-06 1995-08-29 International Business Machines Corporation Focus error detection using an equal path length lateral shearing interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446710A (en) * 1992-11-06 1995-08-29 International Business Machines Corporation Focus error detection using an equal path length lateral shearing interferometer

Similar Documents

Publication Publication Date Title
JP4151159B2 (en) Medium measuring device
JP2755757B2 (en) Measuring method of displacement and angle
JPS6117921A (en) Real-time wave-head analyzing correcting device
US6064472A (en) Method for speed measurement according to the laser-doppler-principle
JPH0519927B2 (en)
US4643576A (en) Fringe scanning shearing interferometer
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
JPS60222702A (en) Fringe-scanning sharing interferometer
JPS60253945A (en) Shape measuring instrument
JP2990266B1 (en) Sinusoidal wavelength scanning interferometer and sinusoidal wavelength scanning light source device
JP3461566B2 (en) Interferometer for measuring cone shape
JPH0211084B2 (en)
US4023906A (en) Compact three-beam interferometer
JP2553662B2 (en) Hologram range finder
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
RU2018792C1 (en) Method and device for aligning fabric-perot interferometer
SU844994A1 (en) Device for obtaining parallel light beams
SU1497451A1 (en) Interferometer for measuring linear displacement of objects
JPH08166209A (en) Polygon mirror evaluating device
JPS61272605A (en) Interferometer for measuring surface shape
JPH0549922B2 (en)
JPH11325848A (en) Aspherical surface shape measurement device
JPS60222703A (en) Fringe-scanning sharing interferometer
SU1672206A1 (en) Method of measuring decentering of optical parts and device for effecting same