JPS60222531A - Gas turbine driving system with fuel gas compressor - Google Patents

Gas turbine driving system with fuel gas compressor

Info

Publication number
JPS60222531A
JPS60222531A JP7863184A JP7863184A JPS60222531A JP S60222531 A JPS60222531 A JP S60222531A JP 7863184 A JP7863184 A JP 7863184A JP 7863184 A JP7863184 A JP 7863184A JP S60222531 A JPS60222531 A JP S60222531A
Authority
JP
Japan
Prior art keywords
fuel gas
compressor
air
fuel
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7863184A
Other languages
Japanese (ja)
Other versions
JPH036334B2 (en
Inventor
Keiji Takagi
高木 圭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP7863184A priority Critical patent/JPS60222531A/en
Publication of JPS60222531A publication Critical patent/JPS60222531A/en
Publication of JPH036334B2 publication Critical patent/JPH036334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes

Abstract

PURPOSE:To maintain a ratio of fuel gas flow to air flow at an optimal value, by providing a device for controlling fuel gas flow in a fuel gas compressor and a device for controlling air flow in an air compressor. CONSTITUTION:An air compressor 2 and a turbine 3 are directly connected to each other by means of a shaft 13, and a shaft 10 of a fuel gas compressor 1 is connected through a reduction gear 11 to a shaft 12 of the air compressor 2. An angle of elevation of stationary blades 7 in all the stages of the air compressor 2 is adjustable to control air flow, while an angle of elevation of stationary blades 9 in all the stages of the fuel gas compressor 1 is adjustable to control fuel gas flow. Air and fuel gas are fed respectively through passages 20 and 18 to a combustor 5, and a turbine 3 is driven by combustion gas fed through a passage 21. Thus, air flow and fuel gas flow are controlled in this manner, so that a ratio of the air flow to the fuel gas flow may be maintained at an optimal value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料ガス圧縮機を持つガスタービン駆動システ
ム、特に燃料ガス圧縮機を持つガスタービン駆動発電シ
ステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine drive system having a fuel gas compressor, and more particularly to a gas turbine drive power generation system having a fuel gas compressor.

〔従来技術〕[Prior art]

近年、ガスタービンの分野において、燃料の多様化に伴
って各種のガス燃料をガスタービンの駆動用に使用する
ケースが増加し、またカロリー変動の大きい燃料を使用
する計画が増大している。
In recent years, in the field of gas turbines, with the diversification of fuels, there has been an increase in the use of various gas fuels for driving gas turbines, and there has also been an increase in plans to use fuels with large calorie fluctuations.

然し乍ら、従来のガスタービンシステムはガスタービン
の吸込空気量が一定の形式、或いは僅かに流量の調整が
可能な初段可変静翼方式で流量変更範囲が非常に小さい
ものであった。
However, conventional gas turbine systems have a type in which the intake air amount of the gas turbine is constant, or a first stage variable stator vane type in which the flow rate can be slightly adjusted, and the flow rate change range is very small.

従って、燃料組成の異った燃料、或いはカロリー変動が
ある燃料を使用する場合、燃料流量の変動が大きいため
に従来のガスタービンシステムの如く流量調整の自由度
が少ないシステムでは最適な運転が出来なかったり、全
く運転が出来ない恐れがある。
Therefore, when using fuels with different fuel compositions or fuels with calorie fluctuations, optimal operation cannot be achieved in systems with less flexibility in flow rate adjustment, such as conventional gas turbine systems, due to large fluctuations in fuel flow rate. You may not be able to drive at all, or you may not be able to drive at all.

例えば、−軸型ガスタービンにおける空気圧縮機は起動
時のサージ防止用、或いは定格運転中の部分負荷時に最
適運転に近づけて排ガス温度を高く維持するだけの単段
型初段可変静翼方式であり、積極的に吸込空気量を変更
するものではなかった。
For example, the air compressor in a -shaft type gas turbine is a single-stage first-stage variable stator vane system that is used to prevent surges during startup, or to maintain a high exhaust gas temperature close to optimal operation during partial load during rated operation. , it did not actively change the amount of intake air.

また、燃料ガス圧縮機は負荷変動に対して流量変動が少
な(燃料ガス流量の制御のため部分的可変翼方式、入ロ
ガイドヘーン、又はスライド弁を採用した単純な燃料ガ
ス圧縮方式である。
In addition, the fuel gas compressor has a small flow rate fluctuation with respect to load fluctuations (it is a simple fuel gas compression system that employs a partially variable vane system, an entry log guide hone, or a slide valve to control the fuel gas flow rate).

これらの燃料ガス圧縮機および空気圧縮機はガスタービ
ン軸と直結された方式、又は一定回転方式であるから流
量調整の作動域が少ないものであった。
Since these fuel gas compressors and air compressors are directly connected to the gas turbine shaft or are constant rotation type, the operating range for flow rate adjustment is small.

つまり、燃料ガス圧縮機を持つ一軸型ガスタービンは燃
料ガス圧縮機がガスタービンの駆動軸に直結している一
定回転型駆動システムで吸込空気量はほぼ一定に保たれ
外気条件の変化に対して成行きで吸込空気量が決る消極
的な吸込空気量制御方式であり、燃料ガスのカロリーの
変化や使用可能燃料量の制限によって燃料ガス流量変動
、又は制限に対し吸込空気を変化させて最適運転を行わ
せるために燃料と吸込空気量との流量比を最適に制御す
るものではなかった。
In other words, a single-shaft gas turbine with a fuel gas compressor is a constant rotation type drive system in which the fuel gas compressor is directly connected to the drive shaft of the gas turbine, and the amount of intake air is kept almost constant, regardless of changes in outside air conditions. This is a passive intake air amount control method that determines the amount of intake air depending on the amount of intake air.It is a passive intake air amount control method that determines the amount of intake air depending on the amount of intake air.The intake air is changed in response to fluctuations in fuel gas flow rate or restrictions due to changes in the calorie of fuel gas or restrictions on the amount of usable fuel, and optimal operation is achieved by changing the amount of intake air. In order to achieve this, the flow rate ratio between the fuel and the amount of intake air was not optimally controlled.

〔発明の目的〕[Purpose of the invention]

そこで、本発明はカロリー変動の大きいガス燃料を使用
する場合、又外気条件が変化する場合に燃料ガス流量と
空気流量の割合いを最適に確保しつつ燃料ガス量と空気
量との全体量を広範囲に可変とし、以って最適運転を維
持するようになしたことを目的とするものである。
Therefore, the present invention aims to reduce the overall amount of fuel gas and air while ensuring an optimal ratio of fuel gas flow rate and air flow rate when using gas fuel with large calorie fluctuations or when outside air conditions change. The purpose of this is to make it variable over a wide range, thereby maintaining optimal operation.

(発明の構成) すなわち、本発明の燃料ガス圧縮機を持つガスタービン
駆動システムは、多段可変静翼を有する燃料ガス圧縮機
と、多段可変静翼を備えた空気圧縮機と、前記燃料ガス
圧縮機の流量を制御する燃料ガス量設定制御手段と、前
記空気圧縮機の流量を制御する空気流量設定制御手段と
、から構成したことを特徴とするものである。
(Structure of the Invention) That is, a gas turbine drive system having a fuel gas compressor of the present invention includes a fuel gas compressor having a multi-stage variable stator vane, an air compressor having a multi-stage variable stator vane, and a gas turbine drive system having a fuel gas compressor of the present invention. The air compressor is characterized by comprising a fuel gas amount setting control means for controlling the flow rate of the air compressor, and an air flow rate setting control means for controlling the flow rate of the air compressor.

〔実施例〕〔Example〕

以下2図面をハ1酌をしながら本発明の一実施例につい
て説明する。
An embodiment of the present invention will be described below with reference to the two drawings.

第1図は一軸型ガスタービンの駆動システム図であり、
燃料ガス圧縮機1、空気圧縮機2、及び発電機4はター
ビン3により駆動されている。
Figure 1 is a drive system diagram of a single-shaft gas turbine.
A fuel gas compressor 1, an air compressor 2, and a generator 4 are driven by a turbine 3.

前記空気圧縮機2とタービン3は軸13により直結し、
燃料ガス圧縮機1の軸10は減速手段11を介して空気
圧縮機2の軸12と連結し、更にタービン3の出力軸1
4は減速手段15を介して発電機4の軸16と連結して
いる。
The air compressor 2 and the turbine 3 are directly connected by a shaft 13,
The shaft 10 of the fuel gas compressor 1 is connected to the shaft 12 of the air compressor 2 via a speed reduction means 11, and further connected to the output shaft 1 of the turbine 3.
4 is connected to a shaft 16 of the generator 4 via a deceleration means 15.

なお、燃料ガス圧縮機1は空気圧縮機2と同一回転数の
駆動機で駆動しても良い。
Note that the fuel gas compressor 1 may be driven by a drive machine having the same rotation speed as the air compressor 2.

上記空気圧縮機2は、動翼6および静翼7のうち全段の
静翼7のみ、その仰角が調節できるように構成している
。また、燃料ガス圧縮機1は、動翼8および静翼9のう
ち全段の静翼9のみ、その仰角が調節できるように構成
している。
The air compressor 2 is configured such that the elevation angle of only the stator blades 7 of all stages among the rotor blades 6 and the stator blades 7 can be adjusted. Further, the fuel gas compressor 1 is configured such that the elevation angle of only the stator blades 9 of all stages among the rotor blades 8 and the stator blades 9 can be adjusted.

空気圧縮機2は、その低圧側に空気吸込ダクト19を有
するとともに、その高圧側に燃焼器5と連通する通路2
0を持つ。またタービン3は、その高圧側に上記燃焼器
5と連通する通路21を有するとともに、その低圧側に
排気ダクト22ををする。
The air compressor 2 has an air suction duct 19 on its low pressure side, and a passage 2 communicating with the combustor 5 on its high pressure side.
Has 0. Further, the turbine 3 has a passage 21 communicating with the combustor 5 on its high pressure side, and an exhaust duct 22 on its low pressure side.

また、燃料ガス圧縮機1は、その低圧側に燃料吸込ダク
ト17を有するとともに、その高圧側に燃焼器5に連通
ずる燃料供給ダクト18を設置する。また、上記燃料吸
込ダクト17と燃料供給ダクト18とはバイパス弁24
を有するバイパスダクト23により連通ずる。
Further, the fuel gas compressor 1 has a fuel suction duct 17 on its low pressure side, and a fuel supply duct 18 communicating with the combustor 5 is installed on its high pressure side. Further, the fuel suction duct 17 and the fuel supply duct 18 are connected to a bypass valve 24.
It is communicated by a bypass duct 23 having a.

前記燃料供給ダクト18はアクチュエ〜り29により開
閉される燃料制御弁25を備えており、このアクチュエ
ータ29は燃料供給量制御手段28の指令により作動す
る。また、燃料供給量制御手段28は情報検出手段とし
て発電機4の回転数を検出する検出器26および排ガス
温度測定器27を備えている。
The fuel supply duct 18 is equipped with a fuel control valve 25 that is opened and closed by an actuator 29, and the actuator 29 is operated by a command from a fuel supply amount control means 28. Further, the fuel supply amount control means 28 includes a detector 26 for detecting the rotation speed of the generator 4 and an exhaust gas temperature measuring device 27 as information detection means.

また、空気圧縮機2の静翼7のIη1角は流体シリンダ
の如き往復動手段33内のプランジャー34に固定した
アーム35の移動量により調整される。この往復動手段
33はアクチュエータ32により作動し、またアクチュ
エータ32は空気流量設定制御器などの空気流量設定制
御手段30の指令により駆動する。この空気流量設定制
御手段30は空気吸込ダク)19内の空気温度を検出す
る気温検出器31と発熱量検出器41及び排ガス温度測
定器27とを擁している。
Further, the Iη1 angle of the stator vanes 7 of the air compressor 2 is adjusted by the amount of movement of an arm 35 fixed to a plunger 34 in a reciprocating means 33 such as a fluid cylinder. This reciprocating means 33 is actuated by an actuator 32, and the actuator 32 is driven by a command from an air flow rate setting control means 30 such as an air flow rate setting controller. The air flow rate setting control means 30 includes an air temperature detector 31 for detecting the air temperature in the air suction duct 19, a calorific value detector 41, and an exhaust gas temperature measuring device 27.

他方、燃料ガス圧縮機1の静翼9の仰角は流体シリンダ
の如き往復動手段43内のプランジャー44に固定した
アーム45の移動量により調整される。この往復動手段
43はアクチュエータ42により作動し、またアクチュ
エータ42は燃料ガス量設定制御器などの燃料ガス量設
定制御手段40の指令により駆動する。
On the other hand, the elevation angle of the stator blades 9 of the fuel gas compressor 1 is adjusted by the amount of movement of an arm 45 fixed to a plunger 44 in a reciprocating means 43 such as a fluid cylinder. This reciprocating means 43 is operated by an actuator 42, and the actuator 42 is driven by a command from a fuel gas amount setting control means 40 such as a fuel gas amount setting controller.

この燃料ガス量設定制御手段40は燃料ガスの発熱量を
検出する発熱量検出器41、燃料ガス圧縮機1における
静翼9の仰角度を検出する仰角検出器36、燃料ガス圧
縮機1における高圧側の圧力を検出する圧力検出器37
、空気圧縮機2における静翼7の仰角を検出する仰角検
出器38、及び空気圧縮機2における高圧側の圧力を検
出する圧力検出器39を擁している。
This fuel gas amount setting control means 40 includes a calorific value detector 41 that detects the calorific value of the fuel gas, an elevation angle detector 36 that detects the elevation angle of the stationary blades 9 in the fuel gas compressor 1, and a high pressure in the fuel gas compressor 1. Pressure detector 37 that detects side pressure
, an elevation angle detector 38 that detects the elevation angle of the stator blade 7 in the air compressor 2, and a pressure detector 39 that detects the pressure on the high pressure side of the air compressor 2.

なお、上記燃料ガスの発熱量を検出する検出器41の代
りに燃料ガスのガス組成を検出する検出器を使用しても
良い。
Note that instead of the detector 41 that detects the calorific value of the fuel gas, a detector that detects the gas composition of the fuel gas may be used.

而して、発電中、空気流量設定制御手段30ば空気吸込
ダクト19内を通過する空気の温度を気温検出器31か
ら、また排ガス温度を排ガス温度測定器27から、更に
燃焼ガス発熱量を発熱量検出器41から、それぞれ入力
して空気圧縮機2の静翼7の仰角を制御する。例えば、
空気の温度が高くなれば静翼7の仰角は大きくされ、空
気の温度が低くなれば静翼7の(r1+角は小さくされ
る。
During power generation, the air flow rate setting control means 30 measures the temperature of the air passing through the air suction duct 19 from the air temperature detector 31, the exhaust gas temperature from the exhaust gas temperature measuring device 27, and the combustion gas calorific value. The angle of elevation of the stationary blades 7 of the air compressor 2 is controlled by inputting them from the quantity detectors 41, respectively. for example,
As the air temperature increases, the elevation angle of the stator blade 7 is increased, and as the air temperature decreases, the (r1+ angle) of the stator blade 7 is decreased.

又、排ガス温度が高くなれば静H7の仰角は大きくされ
、排ガス温度が低くなれば静翼7の仰角は小さくされる
Further, as the exhaust gas temperature increases, the elevation angle of the static H7 is increased, and as the exhaust gas temperature decreases, the elevation angle of the stator blade 7 is decreased.

他方、燃料ガス圧縮機1におりる静翼9の仰角、燃料ガ
ス圧縮機1における高圧ガスの圧力、空気圧縮機2にお
ける静翼7の仰角、空気圧縮機2における高圧ガスの圧
力、および燃料ガスの発熱量が、常時、燃料ガス量設定
制御手段40に入力されており、発熱量が大幅にダウン
した燃料ガスが供給された場合は、燃料ガス量設定制御
手段40の指令により燃料ガス圧縮機1における静翼9
の仰角が大きくなるよ−)になる。
On the other hand, the elevation angle of the stator blades 9 entering the fuel gas compressor 1, the pressure of high pressure gas in the fuel gas compressor 1, the elevation angle of the stator blades 7 in the air compressor 2, the pressure of high pressure gas in the air compressor 2, and the fuel The calorific value of the gas is always input to the fuel gas amount setting control means 40, and when fuel gas whose calorific value has significantly decreased is supplied, the fuel gas is compressed by a command from the fuel gas amount setting control means 40. Stator blade 9 in aircraft 1
The elevation angle of will become -).

また、発熱量が大幅に増加した燃料ガスが供給された場
合は、燃料ガス量設定制御手段40の指令により燃料ガ
ス圧縮機1における静翼9の仰角が小さくなるようにな
る。
Further, when fuel gas with a significantly increased calorific value is supplied, the elevation angle of the stationary blades 9 in the fuel gas compressor 1 is reduced by a command from the fuel gas amount setting control means 40.

他方、第2図は二軸型ガスタービンの駆動システム図で
あり、タービンが高圧タービン3Aと低圧タービン3B
とに分離し、燃料ガス圧縮機1及び空気圧縮機2の回転
が発電機4の回転と切り離されるようになしている。
On the other hand, FIG. 2 is a drive system diagram of a two-shaft gas turbine, in which the turbines include a high-pressure turbine 3A and a low-pressure turbine 3B.
The rotation of the fuel gas compressor 1 and the air compressor 2 is separated from the rotation of the generator 4.

また、空気圧縮機2の回転数を検出する検出機52を備
えて空気圧縮機2の回転数を燃料ガス量設定制御手段4
0および燃料供給量制御手段28に入力し、よりデリケ
ートな制御が出来るようになっている。
The fuel gas amount setting control means 4 also includes a detector 52 for detecting the rotation speed of the air compressor 2.
0 and the fuel supply amount control means 28 to enable more delicate control.

なお、高圧タービン3Aと低圧タービン3Bはダクト5
1により連通させている。
Note that the high pressure turbine 3A and the low pressure turbine 3B are connected to the duct 5.
1 for communication.

その他の機器は第1図に図示した第1実施例の機器と相
違しないから同一の符号を付与し、それらの説明を省略
した。
Since the other devices are not different from those of the first embodiment shown in FIG. 1, they are given the same reference numerals and their explanations are omitted.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明の燃料ガス圧縮機を持つガスター
ビン駆動システムは、多段可変静翼を有する燃料ガス圧
縮機と、多段可変静翼を備えた空気圧縮機と、前記燃料
ガス圧縮機の流量を制御する燃料ガス量設定制御手段と
、前記空気圧縮機の流量を制御する空気流量設定制御手
段と、から構成したのでカロリー変動の大きいガス燃料
を使用する場合に、又外気条件が変化する場合に燃料ガ
ス流量と空気流量の割合いを最適に確保しつつ燃料ガス
量と空気量との全体量を広範囲に変更することが出来る
ようになった。
As described above, a gas turbine drive system having a fuel gas compressor according to the present invention includes a fuel gas compressor having a multi-stage variable stator vane, an air compressor having a multi-stage variable stator vane, and a fuel gas compressor having a multi-stage variable stator vane. Since it is composed of a fuel gas amount setting control means for controlling the flow rate and an air flow rate setting control means for controlling the flow rate of the air compressor, when using gas fuel with large calorie fluctuations, the outside air conditions also change. In some cases, the overall amount of fuel gas and air can be changed over a wide range while ensuring an optimal ratio between the fuel gas flow rate and the air flow rate.

従って、本発明によれば、燃料ガスのカロリー、或いは
ガス組成が大幅に変動したとしても、又外気条件の変化
により吸込空気量が変化したとしても最適運転を維持す
ることが出来るようになるのである。
Therefore, according to the present invention, even if the calorie of the fuel gas or the gas composition changes significantly, or even if the amount of intake air changes due to changes in outside air conditions, optimal operation can be maintained. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係るガスタービン駆動シ
ステムの概略図である。 ■・・・燃料ガス圧縮機、2・・・空気圧縮機、7゜9
・・・静翼、30・・・空気流量設定制御手段、40・
・・燃料ガス量設定制御手段。 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士 斎 下 和 彦
1 and 2 are schematic diagrams of a gas turbine drive system according to the present invention. ■...Fuel gas compressor, 2...Air compressor, 7゜9
... Stationary blade, 30 ... Air flow rate setting control means, 40.
...Fuel gas amount setting control means. Agent: Patent Attorney Makoto Ogawa − Patent Attorney: Ken Noguchi Patent Attorney: Kazuhiko Saishita

Claims (1)

【特許請求の範囲】[Claims] 燃料ガス圧縮機を持つガスタービン駆動システムであっ
て、多段可変静翼を有する燃料ガス圧縮機と、多段可変
静翼を備えな空気圧縮機と、前記燃料ガス圧縮機の流量
を制御する燃料ガス量設定制御手段と、前記空気圧縮機
の流量を制御する空気流量設定制御手段と、がら成る燃
料ガス圧縮機を持つガスタービン駆動システム。
A gas turbine drive system having a fuel gas compressor, the fuel gas compressor having a multi-stage variable stator vane, an air compressor having a multi-stage variable stator vane, and a fuel gas compressor for controlling the flow rate of the fuel gas compressor. A gas turbine drive system having a fuel gas compressor comprising: a flow rate setting control means; and an air flow rate setting control means for controlling the flow rate of the air compressor.
JP7863184A 1984-04-20 1984-04-20 Gas turbine driving system with fuel gas compressor Granted JPS60222531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7863184A JPS60222531A (en) 1984-04-20 1984-04-20 Gas turbine driving system with fuel gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7863184A JPS60222531A (en) 1984-04-20 1984-04-20 Gas turbine driving system with fuel gas compressor

Publications (2)

Publication Number Publication Date
JPS60222531A true JPS60222531A (en) 1985-11-07
JPH036334B2 JPH036334B2 (en) 1991-01-29

Family

ID=13667219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7863184A Granted JPS60222531A (en) 1984-04-20 1984-04-20 Gas turbine driving system with fuel gas compressor

Country Status (1)

Country Link
JP (1) JPS60222531A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915242A2 (en) 1997-11-04 1999-05-12 Hitachi, Ltd. Gas turbine
JP2000310128A (en) * 1999-03-16 2000-11-07 General Electric Co <Ge> Gas turbine generator having additional capacity control device
EP1528237A2 (en) * 2003-10-30 2005-05-04 Hitachi, Ltd. Gas-turbine power generating installation and method of operating the same
JP2011202515A (en) * 2010-03-24 2011-10-13 Mitsubishi Heavy Ind Ltd Gas turbine system
JP2014231745A (en) * 2013-05-28 2014-12-11 三菱日立パワーシステムズ株式会社 Twin-screw gas turbine
US20170082033A1 (en) * 2014-06-10 2017-03-23 Wenjie Wu Gas turbine system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569622A (en) * 1979-07-04 1981-01-31 Nissan Motor Co Ltd Variable vane controller
JPS581241A (en) * 1981-06-26 1983-01-06 Fuji Electric Co Ltd Data transmitter
JPS5862320A (en) * 1981-10-09 1983-04-13 Hitachi Zosen Corp Gas turbine plant using low calorific power gas for fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569622A (en) * 1979-07-04 1981-01-31 Nissan Motor Co Ltd Variable vane controller
JPS581241A (en) * 1981-06-26 1983-01-06 Fuji Electric Co Ltd Data transmitter
JPS5862320A (en) * 1981-10-09 1983-04-13 Hitachi Zosen Corp Gas turbine plant using low calorific power gas for fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915242A2 (en) 1997-11-04 1999-05-12 Hitachi, Ltd. Gas turbine
US6199366B1 (en) 1997-11-04 2001-03-13 Hitachi, Ltd. Gas turbine
JP2000310128A (en) * 1999-03-16 2000-11-07 General Electric Co <Ge> Gas turbine generator having additional capacity control device
EP1528237A2 (en) * 2003-10-30 2005-05-04 Hitachi, Ltd. Gas-turbine power generating installation and method of operating the same
EP1528237A3 (en) * 2003-10-30 2012-04-11 Hitachi, Ltd. Gas-turbine power generating installation and method of operating the same
JP2011202515A (en) * 2010-03-24 2011-10-13 Mitsubishi Heavy Ind Ltd Gas turbine system
JP2014231745A (en) * 2013-05-28 2014-12-11 三菱日立パワーシステムズ株式会社 Twin-screw gas turbine
US20170082033A1 (en) * 2014-06-10 2017-03-23 Wenjie Wu Gas turbine system and method

Also Published As

Publication number Publication date
JPH036334B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US10830123B2 (en) Systems and method for a waste heat-driven turbocharger system
US3688504A (en) Bypass valve control
US6226974B1 (en) Method of operation of industrial gas turbine for optimal performance
US7762084B2 (en) System and method for controlling the working line position in a gas turbine engine compressor
US2219994A (en) Gas turbine plant and regulating system therefor
US6003298A (en) Steam driven variable speed booster compressor for gas turbine
US4252498A (en) Control systems for multi-stage axial flow compressors
US4729715A (en) Variable inlet for a radial turbine
JPS61252838A (en) Gas turbine
US5224337A (en) Operating method for gas turbine with variable inlet vanes
US9726187B2 (en) Multiple turbocharger control
US20200141417A1 (en) Booster compressor with speed change system
CA1086512A (en) Bleed valve control system
US3232043A (en) Turbocompressor system
JP2013531175A (en) How to control a turbo compressor
US4640091A (en) Apparatus for improving acceleration in a multi-shaft gas turbine engine
JPS60222531A (en) Gas turbine driving system with fuel gas compressor
US4149371A (en) Air supply control system
US2811302A (en) Gas turbine plant and control arrangements therefor
JP2954754B2 (en) Operation control device for gas turbine system and pressurized fluidized bed boiler power plant
US4590759A (en) Method and apparatus for improving acceleration in a multi-shaft gas turbine engine
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JP2004308597A (en) High altitude performance testing device and pressure control method for the same
JPH03172539A (en) Shaft output type gas turbine and operation method thereof
JP2001153091A (en) Method of starting multi-stage compression system and multi-stage compression system