JP2004308597A - High altitude performance testing device and pressure control method for the same - Google Patents

High altitude performance testing device and pressure control method for the same Download PDF

Info

Publication number
JP2004308597A
JP2004308597A JP2003105123A JP2003105123A JP2004308597A JP 2004308597 A JP2004308597 A JP 2004308597A JP 2003105123 A JP2003105123 A JP 2003105123A JP 2003105123 A JP2003105123 A JP 2003105123A JP 2004308597 A JP2004308597 A JP 2004308597A
Authority
JP
Japan
Prior art keywords
pressure
compressor
closed chamber
flow rate
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105123A
Other languages
Japanese (ja)
Inventor
Hideaki Ishida
秀昭 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003105123A priority Critical patent/JP2004308597A/en
Publication of JP2004308597A publication Critical patent/JP2004308597A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable high altitude performance testing device and a pressure control method for the same capable of precisely keeping internal pressure at a predetermined test pressure in corresponding to the variation of the exhaust gas quantity in an engine performance test and capable of continuously testing stably for a long period of time without possibility of surge and choke. <P>SOLUTION: Gas in a sealed chamber 10 housing an aircraft engine 1 is sucked, compressed to atmospheric pressure and discharged to an outside by an axial compressor 12. Fresh air quantity supplied to the inlet side of the axial compressor 12 is simultaneously controlled to maintain a pressure ratio of the axial compressor constant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、高空性能試験装置とその圧力制御方法に関する。
【0002】
【従来の技術】
航空エンジンの高空飛行状態を模擬してエンジン性能を試験するために高空性能試験装置が提案されている(例えば、特許文献1、特許文献2)。
【0003】
[特許文献1]の「航空エンジン試験装置」は、図5に示すように、テストチャンバ51と調温装置55との間に分岐点62を設けると共に、テストチャンバ51と排気冷却機59との間に合流点63を設け、これら分岐点62と合流点63とをバイパスライン64で接続する。バイパスライン64には流量調整用の調整弁65を設け、この調整弁65の開度を供試エンジン54の出力変化に対応して給気室52及び排気室53の圧力を一定に保持し得るよう制御装置66で制御するものである。
【0004】
[特許文献2]の「高空環境模擬試験設備」は、図6に示すように、高空環境試験室71と、大気中から空気73を取り込んで試験室71に向け圧送する送風機74と、送風機74からの空気73を膨張することにより減圧しかつ温度降下させて試験室71に導くエキスパンダ76と、試験室71から空気73を強制吸引して大気中に排出する排風機77とを備えた高空環境模擬試験設備において、排風機77の上流側に、同様の排風機77を多段に設置する替わりにエジェクタ78を配設し、送風機74から圧送される空気73を分流してエジェクタ78に作動空気として導くバイパス流路79を設けるものである。
【0005】
また、圧縮機の圧力制御手段としては、特許文献3、特許文献4、等が知られている。
【0006】
[特許文献3]の「航空エンジン用入口案内翼装置とその制御方法」は、図7に示すように、航空エンジンの圧縮機を構成する動翼列の前方に設置された複数の入口案内翼82と、各入口案内翼毎に設けられその設置角度を個々に修正する複数のアクチュエータ84と、入口案内翼より前方の空気流入口の周方向に配置された複数の圧力センサ86と、圧力センサの出力から各入口案内翼の最適設置角度を演算して各アクチュエータを制御する案内翼制御装置88とを備え、案内翼制御装置により、ディストーションの発生を圧縮機上流に周方向に配した圧力センサで検知し、発生した周位置での入口案内翼の設置角度を制御して、圧縮機動翼への流入角度を最適に保つものである。
【0007】
[特許文献4]の「圧縮機の圧力制御装置」は、圧縮機に連設された空気流路の適所に介設されたガイドベーンと、圧縮機の吐出側流路より分岐された放風路に介設された放風弁とを備え、・・・、上記ガイドベーンと放風弁とを各々択一的に開閉制御して吐出圧を一定に保持するように構成したものである。
【0008】
【特許文献1】
特開平04−318228号公報
【特許文献2】
特開平09−89725号公報
【特許文献3】
特開2002−130183号公報
【特許文献4】
特開昭58−35291号公報
【0009】
【発明が解決しようとする課題】
高空飛行状態を模擬してエンジン性能を試験する場合、航空エンジンを試験チャンバー内に格納し、その内部を想定する高空飛行時の圧力に減圧し保持する必要がある。そのため、試験中にエンジンから排出される大量の排気ガスを外部に排気し、かつ試験チャンバー内の圧力を真空に近い低圧(例えば1/25気圧〜1/30気圧)に減圧して保持するために、圧力比の高い(例えば25〜30)軸流圧縮機が用いられる。
【0010】
一方、エンジン性能試験では、エンジンの負荷、回転数、等を変化させるため、排気ガス量も変動し、このため、この変動に対応して軸流圧縮機を制御し、内部圧力を所定の試験圧力に保持する必要がある。従来、かかる制御は、軸流圧縮機に可変静翼を採用し、可変静翼開度を制御する可変静翼制御と回転数制御を併用して行っていた。
【0011】
しかし、この可変静翼機構には、高い作動精度と応答性が要求されるため、軸流圧縮機の機構が複雑になるばかりでなく、制御も複雑となり、長時間の連続試験が要求される場合に信頼性が低い問題点があった。
言い換えれば、軸流圧縮機の場合、性能曲線(流量−圧力比)が垂直に近い形で立っているため、吸込みガスのわずかな流量変動が圧力比の大きな変動につながりやすく、従来の制御ではサージやチョークにより圧縮機の破損に至るおそれがあった。
【0012】
本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明は、可変静翼機構を必要としない単純な機構の軸流圧縮機を用いて、全体として単純な構成と制御で、エンジン性能試験における排気ガス量の変動に対応して内部圧力を所定の試験圧力に精密に保持でき、かつサージやチョークのおそれがなく、長時間安定して連続試験ができる信頼性が高い高空性能試験装置とその圧力制御方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明によれば、航空エンジンを内部で運転可能に格納する密閉チャンバーと、該密閉チャンバー内のガスを外部に排気する排気ラインと、該排気ラインに設けられ密閉チャンバー内からガスを吸引し大気圧まで加圧する軸流圧縮機と、該軸流圧縮機の入側に外気を供給する外気供給弁と、該外気供給弁を制御し軸流圧縮機の圧力比を一定に保持する圧力比制御器とを備える、ことを特徴とする高空性能試験装置が提供される。
【0014】
また、本発明によれば、軸流圧縮機により航空エンジンを格納する密閉チャンバー内のガスを吸引し大気圧まで加圧して外部に排気し、同時に、前記軸流圧縮機の入側に供給する外気流量を制御し、これにより軸流圧縮機の圧力比を一定に保持する、ことを特徴とする高空性能試験装置の圧力制御方法が提供される。
【0015】
上記本発明の装置及び方法によれば、軸流圧縮機による吸込みガス流量の調節を可変静翼等で行う代わりに、軸流圧縮機は一定の運転状態で運転し、軸流圧縮機の入側に供給する外気流量を制御し、これにより軸流圧縮機の圧力比を一定に保持することにより、大気圧は一定であることから結果として入側の圧力を一定に保持することができる。
また、外気流量を制御するだけで、軸流圧縮機の吸込みガス流量(=排気ガス量+外気流量)を一定にできるので、航空エンジンの排気ガス量が変動しても、容易に追従させることができる。従って、全体として単純な構成と制御で、エンジン性能試験における排気ガス量の変動に対応して内部圧力を所定の試験圧力に保持できる。
また、軸流圧縮機を一定の運転状態で運転するので、サージやチョークのおそれがなく、長時間安定して連続試験ができ、信頼性を高めることができる。
【0016】
本発明の好ましい実施形態によれば、前記排気ラインの密閉チャンバーの下流側に設けられ排気流量を調節する排気流量調節弁と、該排気流量調節弁を制御し密閉チャンバーの圧力を一定に保持する排気流量制御器とを備え、前記密閉チャンバーの圧力を一定に保持するように、密閉チャンバーからの排気流量を制御する。
この構成及び方法により、排気流量調節弁の出側(=軸流圧縮機の入側)の圧力が一定に保持されていることから、密閉チャンバーの圧力を高い精度で一定に保持することができる。
【0017】
前記外気供給弁は、油圧駆動流量調節弁であることが好ましい。応答性に優れた油圧駆動流量調節弁を用いることにより、排気ガス量の変動に対する応答性を高め、制御性を向上することができる。
【0018】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
【0019】
図1は、本発明の高空性能試験装置の第1実施形態を示す全体構成図である。この図において、本発明の高空性能試験装置は、密閉チャンバー10、排気ライン11、軸流圧縮機12、外気供給弁14、圧力比制御器16を備える。
【0020】
密閉チャンバー10は、試験対象である航空エンジン1を内部で運転可能に格納する。密閉チャンバー10の上流側(図で左側)には、航空エンジン1に導入する空気を供給する導入空気ライン(図示せず)が設けられ、高空飛行状態を模擬した所定圧力の空気2が航空エンジン1に流入する。また、密閉チャンバー10の下流側には、水噴射装置4a,4b、加熱装置5、水滴除去器6等が設けられ、航空エンジン1から密閉チャンバー10内に排出される高温の排気ガス3を冷却するようになっている。
【0021】
排気ライン11は、密閉チャンバー10の下流端(図で右端)と図示しない外部(例えばスタック)とを連通する配管ラインであり、密閉チャンバー10内のガスを外部に排気する機能を有する。
【0022】
軸流圧縮機12は、排気ライン11の途中に設けられ、密閉チャンバー10内からガスを吸引し、これを大気圧まで加圧する。この例において、軸流圧縮機12はガスタービン12aで駆動され、サージやチョークのおそれがなく、長時間安定して連続試験が可能な所定の運転状態で運転する。
【0023】
外気供給弁14は、軸流圧縮機12の入側(吸込み側)に連結された配管ラインに設けられ、軸流圧縮機12の入側に供給する外気流量を調節する機能を有する。この外気供給弁14は、応答性の高い油圧駆動流量調節弁であるのがよい。
【0024】
圧力比制御器16は、軸流圧縮機12の入側と出側の圧力P1,P2を検出する圧力検出器16a,16bを有し、外気供給弁14をフィードバック制御して軸流圧縮機の圧力比(=P2/P1)を一定に保持するようになっている。
【0025】
図1において、本発明の高空性能試験装置は更に、排気流量調節弁18と排気流量制御器20を備える。
排気流量調節弁18は、排気ライン11の密閉チャンバー10の下流側直近に設けられ、排気ライン11を流れる排気流量を調節する。排気流量制御器20は、密閉チャンバー10内の圧力P0を検出する圧力検出器20aを有し、排気流量調節弁をフィードバック制御し、密閉チャンバー10の圧力P0を一定に保持するようになっている。
【0026】
上述した装置を用い、本発明の方法では、軸流圧縮機12により航空エンジン1を格納する密閉チャンバー10内のガスを吸引し大気圧まで加圧して外部に排気し、同時に、軸流圧縮機12の入側に供給する外気流量を制御し、軸流圧縮機12の圧力比(P2/P1)を一定に保持する。
また、密閉チャンバー10の圧力を一定に保持するように、密閉チャンバー10からの排気流量を制御する。
【0027】
図2は、軸流圧縮機の作動特性図である。この図において、横軸は吸込ガス流量、縦軸は圧縮機の圧力比(P2/P1)である。また、図中のA〜Cで示す線は圧縮機の静翼開度に対応している。
この図に示すように、静翼開度を固定した条件では、圧力比と吸込ガス流量の関係は1対1であり、従来のように可変静翼制御と回転数制御を併用して圧力比を一定に保つことは、高い作動精度と応答性が要求されることがわかる。
【0028】
これに対して本発明では、軸流圧縮機12は、サージやチョークのおそれがなく、長時間安定して連続試験が可能な所定の運転状態(運転点)で運転する。
運転点における吸込ガス流量は、密閉チャンバーからの排気ガス量と外気流量の和に設定されており、外気流量を調節することにより圧縮機の吸込ガス流量を一定にし、圧力比を一定に制御する。
すなわち、通常試験時においても、密閉チャンバー10からの排気ガス量(図中▲1▼)の5〜10%程度の外気を外気供給弁14から吸込んでおく(図中▲2▼)。排気ガス量の変動に対応して外気供給弁14により外気流量(図中▲2▼)を調節することで密閉チャンバー10からの排気ガス量(図中▲1▼)の変動を吸収し、運転点(圧力比)が一定になるように制御する。
本発明の圧力比制御により、高空性能試験時において圧縮機の運転点を一定に保つことができ、そのため、圧縮機を安定して運転することができる。
【0029】
上述した本発明の装置及び方法によれば、軸流圧縮機による吸込みガス流量の調節を可変静翼等で行う代わりに、軸流圧縮機12は一定の運転状態で運転し、軸流圧縮機の入側に供給する外気流量を制御し、これにより軸流圧縮機12の圧力比(P2/P1)を一定に保持することにより、大気圧P2は一定であることから結果として入側の圧力P1を一定に保持することができる。
また、外気流量▲2▼を制御するだけで、軸流圧縮機の吸込みガス流量(=排気ガス量+外気流量)を一定にできるので、航空エンジンの排気ガス量▲1▼が変動しても、容易に追従させることができる。従って、全体として単純な構成と制御で、エンジン性能試験における排気ガス量の変動に対応して内部圧力を所定の試験圧力に保持できる。
また、軸流圧縮機を一定の運転状態で運転するので、サージやチョークのおそれがなく、長時間安定して連続試験ができ、信頼性を高めることができる。
【0030】
更に、排気流量調節弁18と排気流量制御器20を備えることにより、排気流量調節弁18の出側(=軸流圧縮機12の入側)の圧力P1が一定に保持されていることから、密閉チャンバー10の圧力P0を高い精度で一定に保持することができる。
【0031】
図3は、本発明の高空性能試験装置の第2実施形態を示す部分構成図である。この図は、2台の軸流圧縮機12b,12cを並列運転する場合を示している。
この図に示すように、並列運転の場合、1台の軸流圧縮機12bの圧力比のみを監視し、軸流圧縮機12bの外気供給弁14aで制御を行い、その他の軸流圧縮機12cの外気供給弁14bでは圧力比制御は行わず、開度は固定とする。
【0032】
この構成により、排気ガス量が大量であり、1台の軸流圧縮機では対応できない場合でも、2台(又は3台以上)の軸流圧縮機の並列運転により対応することができる。また、圧力比制御はそのうち1台のみであり、その他は、制御しないので、全体として単純な構成と制御で、エンジン性能試験における排気ガス量の変動に対応して内部圧力を所定の試験圧力に保持できる。
【0033】
図4は、本発明の高空性能試験装置の第3実施形態を示す部分構成図である。この図は、2台の軸流圧縮機12b,12cを直列運転する場合を示している。
この図に示すように、直列運転の場合、2台の軸流圧縮機12b,12cのトータルの圧力比を監視し、その値が設定された値になるように、1台の軸流圧縮機12bの外気供給弁14のみで制御を行う。またその他の排気圧縮14bの外気供給弁は、直列運転時の軸流圧縮機トータルとしての制御性や流量バランスを考慮して、圧力比制御は行わず、全閉とする。
【0034】
この構成により、試験圧力が真空に近く、全体として必要とする圧力比(P2/P1)が高すぎて1台の軸流圧縮機では対応できない場合でも、2台(又は3台以上)の軸流圧縮機の直列運転により対応することができる。また、圧力比制御はそのうち1台のみであり、その他は、制御しないので、全体として単純な構成と制御で、エンジン性能試験における排気ガス量の変動に対応して内部圧力を所定の試験圧力に保持できる。
【0035】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0036】
【発明の効果】
上述したように、本発明の高空性能試験装置とその圧力制御方法は、可変静翼機構を必要としない単純な機構の軸流圧縮機を用いて、全体としても単純な構成と制御で、エンジン性能試験における排気ガス量の変動に対応して内部圧力を所定の試験圧力に精密に保持でき、かつサージやチョークのおそれがなく、長時間安定して連続試験ができる信頼性が高い、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の高空性能試験装置の第1実施形態を示す全体構成図である。
【図2】軸流圧縮機の作動特性図である。
【図3】本発明の高空性能試験装置の第2実施形態を示す部分構成図である。
【図4】本発明の高空性能試験装置の第3実施形態を示す部分構成図である。
【図5】従来の高空性能試験装置の構成図である。
【図6】従来の別の高空性能試験装置の構成図である。
【図7】軸流圧縮機の従来の圧力制御の模式図である。
【符号の説明】
1 航空エンジン、2 空気、3 排気ガス、
4a,4b 水噴射装置、5 加熱装置、6 水滴除去器、
10 密閉チャンバー、11 排気ライン、
12,12b,12c 軸流圧縮機、12a ガスタービン、
14,14a,14b 外気供給弁(油圧駆動流量調節弁)、
16 圧力比制御器、16a,16b 圧力検出器、
18 排気流量調節弁、
20 排気流量制御器、20a 圧力検出器
[0001]
[Industrial applications]
The present invention relates to a high altitude performance test apparatus and a pressure control method thereof.
[0002]
[Prior art]
High altitude performance test devices have been proposed to test engine performance by simulating a high altitude flight state of an aircraft engine (for example, Patent Documents 1 and 2).
[0003]
As shown in FIG. 5, the "aviation engine test device" of [Patent Document 1] has a branch point 62 between a test chamber 51 and a temperature control device 55, and a connection between the test chamber 51 and an exhaust cooling device 59. A junction 63 is provided between them, and the junction 62 and the junction 63 are connected by a bypass line 64. An adjustment valve 65 for adjusting the flow rate is provided in the bypass line 64, and the opening degree of the adjustment valve 65 can be maintained at a constant pressure in the air supply chamber 52 and the exhaust chamber 53 in accordance with a change in the output of the test engine 54. Is controlled by the control device 66 as described above.
[0004]
As shown in FIG. 6, a “high altitude environment simulation test facility” of [Patent Document 2] includes a high altitude environment test chamber 71, a blower 74 that takes in air 73 from the atmosphere and sends it to the test chamber 71 under pressure, and a blower 74. A high altitude provided with an expander 76 for reducing the pressure and lowering the temperature by expanding the air 73 from the air to the test chamber 71 and a blower 77 for forcibly sucking the air 73 from the test chamber 71 and discharging the air 73 to the atmosphere. In the environment simulation test facility, an ejector 78 is provided on the upstream side of the exhaust fan 77 instead of installing the same exhaust fan 77 in multiple stages, and the air 73 pressure-fed from the blower 74 is diverted to supply the working air to the ejector 78. A bypass passage 79 is provided to guide the flow.
[0005]
Further, as pressure control means of a compressor, Patent Literature 3, Patent Literature 4, and the like are known.
[0006]
[Patent Document 3] "Inlet guide vane device for aero engine and control method thereof", as shown in FIG. 7, a plurality of inlet guide vanes installed in front of a rotor row constituting a compressor of an aero engine. 82, a plurality of actuators 84 provided for each inlet guide vane and individually correcting the installation angle, a plurality of pressure sensors 86 arranged in the circumferential direction of the air inlet ahead of the inlet guide vane, and a pressure sensor And a guide vane control unit 88 which calculates an optimum installation angle of each inlet guide vane from the output of the compressor to control each actuator, and the guide vane control unit distributes the occurrence of distortion in the circumferential direction upstream of the compressor. In this case, the installation angle of the inlet guide vanes at the generated circumferential position is controlled, and the inflow angle to the compressor rotor blades is kept optimal.
[0007]
[Patent Literature 4] discloses a "pressure control device for a compressor" that includes a guide vane provided at an appropriate position in an air flow path connected to a compressor, and a blown air branched from a discharge side flow path of the compressor. And a blow-off valve interposed in the path,..., Wherein the guide vane and the blow-off valve are selectively opened and closed to maintain the discharge pressure constant.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 04-318228 [Patent Document 2]
JP 09-89725 A [Patent Document 3]
JP 2002-130183 A [Patent Document 4]
JP-A-58-35291
[Problems to be solved by the invention]
In order to test engine performance while simulating a high altitude flight state, it is necessary to store an aero engine in a test chamber and reduce the pressure inside the test chamber to an assumed high altitude flight pressure. Therefore, a large amount of exhaust gas exhausted from the engine during the test is exhausted to the outside, and the pressure in the test chamber is reduced to a low pressure close to a vacuum (for example, 1/25 to 1/30 atm) and maintained. An axial compressor having a high pressure ratio (for example, 25 to 30) is used.
[0010]
On the other hand, in the engine performance test, the amount of exhaust gas fluctuates in order to change the load, the number of revolutions, etc. of the engine. Therefore, the axial flow compressor is controlled in accordance with the fluctuation, and the internal pressure is adjusted to a predetermined test. Must be maintained at pressure. Conventionally, such control has been performed by employing a variable stator blade in an axial flow compressor and using both variable stator blade control for controlling the variable vane opening and rotation speed control.
[0011]
However, since high operating accuracy and responsiveness are required for this variable vane mechanism, not only the mechanism of the axial flow compressor becomes complicated, but also the control becomes complicated, and a long-term continuous test is required. In this case, there is a problem that reliability is low.
In other words, in the case of the axial flow compressor, the performance curve (flow-pressure ratio) stands almost vertically, so that a slight flow fluctuation of the suction gas easily leads to a large fluctuation of the pressure ratio. Surge and choke could lead to compressor damage.
[0012]
The present invention has been made to solve the above problems. That is, the present invention uses an axial flow compressor having a simple mechanism that does not require a variable stator blade mechanism, and has a simple configuration and control as a whole, and an internal pressure corresponding to a variation in exhaust gas amount in an engine performance test. It is an object of the present invention to provide a highly reliable high-altitude performance test apparatus capable of precisely maintaining a predetermined test pressure at a predetermined test pressure, having no risk of surge or choke, and performing a continuous test stably for a long time, and a pressure control method therefor.
[0013]
[Means for Solving the Problems]
ADVANTAGE OF THE INVENTION According to this invention, the closed chamber which accommodates an aviation engine inside so that an operation is possible, the exhaust line which exhausts the gas in this closed chamber to the exterior, and which sucks gas from the inside of the closed chamber provided in the exhaust line, and is large. An axial compressor that pressurizes to an atmospheric pressure, an external air supply valve that supplies external air to the inlet side of the axial compressor, and a pressure ratio control that controls the external air supply valve to maintain a constant pressure ratio of the axial compressor. , A high altitude performance test apparatus is provided.
[0014]
Further, according to the present invention, the gas in the closed chamber containing the aviation engine is sucked by the axial compressor, pressurized to the atmospheric pressure and exhausted to the outside, and simultaneously supplied to the inlet side of the axial compressor. A pressure control method for a high altitude performance test apparatus is provided, which controls an outside air flow rate and thereby keeps a pressure ratio of an axial flow compressor constant.
[0015]
According to the above-described apparatus and method of the present invention, instead of adjusting the suction gas flow rate by the axial-flow compressor using a variable stationary blade or the like, the axial-flow compressor operates in a constant operation state, and the input of the axial-flow compressor is controlled. By controlling the flow rate of the outside air supplied to the side and thereby keeping the pressure ratio of the axial compressor constant, the pressure on the inlet side can be kept constant as a result since the atmospheric pressure is constant.
In addition, since the intake gas flow rate (= exhaust gas amount + external air flow rate) of the axial compressor can be kept constant only by controlling the external air flow rate, it can be easily followed even if the exhaust gas amount of the aircraft engine fluctuates. Can be. Therefore, the internal pressure can be maintained at a predetermined test pressure in accordance with the variation of the exhaust gas amount in the engine performance test with a simple configuration and control as a whole.
In addition, since the axial compressor is operated in a constant operating state, there is no possibility of surge or choke, a continuous test can be stably performed for a long time, and reliability can be improved.
[0016]
According to a preferred embodiment of the present invention, an exhaust flow control valve provided downstream of the closed chamber of the exhaust line to control an exhaust flow rate, and the exhaust flow control valve is controlled to keep the pressure of the closed chamber constant. An exhaust flow rate controller, and controls an exhaust flow rate from the closed chamber so as to keep the pressure in the closed chamber constant.
With this configuration and method, the pressure on the outlet side (= the inlet side of the axial compressor) of the exhaust flow rate control valve is kept constant, so that the pressure in the closed chamber can be kept constant with high accuracy. .
[0017]
It is preferable that the outside air supply valve is a hydraulically driven flow control valve. By using a hydraulically driven flow control valve having excellent responsiveness, responsiveness to a change in the amount of exhaust gas can be improved, and controllability can be improved.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals.
[0019]
FIG. 1 is an overall configuration diagram showing a first embodiment of the high altitude performance test apparatus of the present invention. In this figure, the high altitude performance test apparatus of the present invention includes a closed chamber 10, an exhaust line 11, an axial compressor 12, an outside air supply valve 14, and a pressure ratio controller 16.
[0020]
The closed chamber 10 stores the aviation engine 1 to be tested inside so as to be operable. On the upstream side (left side in the figure) of the closed chamber 10, an introduction air line (not shown) for supplying air to be introduced into the aviation engine 1 is provided, and air 2 having a predetermined pressure simulating a high altitude flight state is provided by the aviation engine. Flow into 1. On the downstream side of the closed chamber 10, water injection devices 4a and 4b, a heating device 5, a water drop remover 6 and the like are provided to cool the high-temperature exhaust gas 3 discharged from the aircraft engine 1 into the closed chamber 10. It is supposed to.
[0021]
The exhaust line 11 is a piping line that communicates a downstream end (right end in the figure) of the closed chamber 10 with an outside (for example, a stack) not shown, and has a function of exhausting gas in the closed chamber 10 to the outside.
[0022]
The axial compressor 12 is provided in the middle of the exhaust line 11, sucks gas from the inside of the closed chamber 10, and pressurizes the gas to atmospheric pressure. In this example, the axial compressor 12 is driven by the gas turbine 12a, and operates in a predetermined operation state in which a continuous test can be stably performed for a long time without a risk of surge or choke.
[0023]
The outside air supply valve 14 is provided on a piping line connected to the inlet side (suction side) of the axial compressor 12, and has a function of adjusting the amount of outside air supplied to the inlet side of the axial compressor 12. The outside air supply valve 14 is preferably a highly responsive hydraulically driven flow control valve.
[0024]
The pressure ratio controller 16 has pressure detectors 16a and 16b for detecting the pressures P1 and P2 on the inlet side and the outlet side of the axial compressor 12, and performs feedback control of the outside air supply valve 14 to control the axial compressor. The pressure ratio (= P2 / P1) is kept constant.
[0025]
In FIG. 1, the high altitude performance test apparatus of the present invention further includes an exhaust flow rate control valve 18 and an exhaust flow rate controller 20.
The exhaust flow rate adjusting valve 18 is provided immediately downstream of the closed chamber 10 of the exhaust line 11 and adjusts an exhaust flow rate flowing through the exhaust line 11. The exhaust flow controller 20 has a pressure detector 20a for detecting the pressure P0 in the closed chamber 10, and performs feedback control of the exhaust flow control valve to keep the pressure P0 of the closed chamber 10 constant. .
[0026]
Using the above-described apparatus, in the method of the present invention, the gas in the closed chamber 10 containing the aviation engine 1 is sucked by the axial compressor 12, pressurized to the atmospheric pressure, and exhausted to the outside. The flow rate of outside air supplied to the inlet side of the compressor 12 is controlled, and the pressure ratio (P2 / P1) of the axial compressor 12 is kept constant.
Further, the exhaust flow rate from the closed chamber 10 is controlled so that the pressure in the closed chamber 10 is kept constant.
[0027]
FIG. 2 is an operation characteristic diagram of the axial compressor. In this figure, the horizontal axis represents the suction gas flow rate, and the vertical axis represents the compressor pressure ratio (P2 / P1). Lines indicated by A to C in the figure correspond to the stationary blade opening of the compressor.
As shown in this figure, under the condition where the vane opening is fixed, the relationship between the pressure ratio and the suction gas flow rate is 1: 1. It can be seen that maintaining a constant value requires high operating accuracy and responsiveness.
[0028]
On the other hand, in the present invention, the axial compressor 12 operates in a predetermined operating state (operating point) where there is no possibility of surge or choke and a continuous test can be stably performed for a long time.
The suction gas flow rate at the operating point is set to the sum of the amount of exhaust gas from the closed chamber and the outside air flow rate. By adjusting the outside air flow rate, the suction gas flow rate of the compressor is kept constant, and the pressure ratio is controlled to be constant. .
That is, even during the normal test, about 5 to 10% of the outside air of the exhaust gas amount ((1) in the figure) from the closed chamber 10 is drawn from the outside air supply valve 14 ((2) in the figure). By adjusting the outside air flow rate (2 in the figure) by the outside air supply valve 14 in response to the change in the amount of exhaust gas, the fluctuation in the amount of exhaust gas (1 in the figure) from the closed chamber 10 is absorbed and the operation is performed. Control is performed so that the point (pressure ratio) becomes constant.
According to the pressure ratio control of the present invention, the operating point of the compressor can be kept constant during the high altitude performance test, so that the compressor can be operated stably.
[0029]
According to the above-described apparatus and method of the present invention, instead of adjusting the suction gas flow rate by the axial compressor by using a variable vane or the like, the axial compressor 12 is operated in a constant operation state, and the axial compressor is operated. By controlling the outside air flow rate supplied to the inlet side of the compressor and thereby keeping the pressure ratio (P2 / P1) of the axial compressor 12 constant, the atmospheric pressure P2 is constant, and as a result, the pressure on the inlet side is increased. P1 can be kept constant.
Also, the suction gas flow rate (= exhaust gas quantity + outside air flow rate) of the axial compressor can be made constant only by controlling the outside air flow rate (2), so that even if the exhaust gas quantity (1) of the aircraft engine fluctuates. , Can be easily followed. Therefore, the internal pressure can be maintained at a predetermined test pressure in accordance with the variation of the exhaust gas amount in the engine performance test with a simple configuration and control as a whole.
In addition, since the axial compressor is operated in a constant operating state, there is no possibility of surge or choke, a continuous test can be stably performed for a long time, and reliability can be improved.
[0030]
Further, by providing the exhaust flow rate control valve 18 and the exhaust flow rate controller 20, the pressure P1 on the outlet side (= inlet side of the axial flow compressor 12) of the exhaust flow rate control valve 18 is kept constant. The pressure P0 of the closed chamber 10 can be kept constant with high accuracy.
[0031]
FIG. 3 is a partial configuration diagram showing a second embodiment of the high altitude performance test apparatus of the present invention. This figure shows a case where two axial compressors 12b and 12c are operated in parallel.
As shown in this figure, in the case of the parallel operation, only the pressure ratio of one axial compressor 12b is monitored, the external air supply valve 14a of the axial compressor 12b is controlled, and the other axial compressors 12c are controlled. In the outside air supply valve 14b, the pressure ratio control is not performed, and the opening degree is fixed.
[0032]
With this configuration, even when the amount of exhaust gas is large and one axial compressor cannot cope, it can be coped with by parallel operation of two (or three or more) axial compressors. In addition, the pressure ratio control is only one of them, and the other is not controlled. Therefore, the internal pressure is controlled to a predetermined test pressure corresponding to the fluctuation of the exhaust gas amount in the engine performance test with a simple configuration and control as a whole. Can hold.
[0033]
FIG. 4 is a partial configuration diagram showing a third embodiment of the high altitude performance test apparatus of the present invention. This figure shows a case where two axial compressors 12b and 12c are operated in series.
As shown in this figure, in the case of series operation, the total pressure ratio of the two axial compressors 12b and 12c is monitored, and one axial compressor is controlled so that the value becomes a set value. The control is performed only by the outside air supply valve 14 of 12b. Further, the outside air supply valve of the other exhaust compression 14b is fully closed without performing the pressure ratio control in consideration of the controllability and the flow rate balance as a whole of the axial compressor during the series operation.
[0034]
With this configuration, even if the test pressure is close to vacuum and the pressure ratio (P2 / P1) required as a whole is too high to be accommodated by one axial compressor, two (or three or more) shafts This can be handled by the series operation of the flow compressor. In addition, the pressure ratio control is only one of them, and the other is not controlled. Therefore, the internal pressure is controlled to a predetermined test pressure corresponding to the fluctuation of the exhaust gas amount in the engine performance test with a simple configuration and control as a whole. Can hold.
[0035]
It should be noted that the present invention is not limited to the above-described embodiment, and can be variously changed without departing from the gist of the present invention.
[0036]
【The invention's effect】
As described above, the high-altitude performance test apparatus and the pressure control method of the present invention use an axial flow compressor having a simple mechanism that does not require a variable vane mechanism, and have an engine with a simple configuration and control as a whole. The internal pressure can be precisely maintained at a predetermined test pressure in response to the variation in the amount of exhaust gas in the performance test, and there is no possibility of surge or choke, and the reliability can be continuously tested for a long time with high reliability. Has excellent effects.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a first embodiment of a high altitude performance test apparatus of the present invention.
FIG. 2 is an operation characteristic diagram of the axial compressor.
FIG. 3 is a partial configuration diagram showing a second embodiment of the high altitude performance test apparatus of the present invention.
FIG. 4 is a partial configuration diagram showing a third embodiment of the high altitude performance test apparatus of the present invention.
FIG. 5 is a configuration diagram of a conventional high altitude performance test apparatus.
FIG. 6 is a configuration diagram of another conventional high altitude performance test apparatus.
FIG. 7 is a schematic diagram of conventional pressure control of an axial compressor.
[Explanation of symbols]
1 aviation engine, 2 air, 3 exhaust gas,
4a, 4b water injection device, 5 heating device, 6 water drop remover,
10 closed chamber, 11 exhaust line,
12, 12b, 12c axial compressor, 12a gas turbine,
14, 14a, 14b outside air supply valve (hydraulic drive flow rate control valve),
16 pressure ratio controller, 16a, 16b pressure detector,
18 exhaust flow control valve,
20 Exhaust flow controller, 20a Pressure detector

Claims (5)

航空エンジンを内部で運転可能に格納する密閉チャンバーと、該密閉チャンバー内のガスを外部に排気する排気ラインと、該排気ラインに設けられ密閉チャンバー内からガスを吸引し大気圧まで加圧する軸流圧縮機と、該軸流圧縮機の入側に外気を供給する外気供給弁と、該外気供給弁を制御し軸流圧縮機の圧力比を一定に保持する圧力比制御器とを備える、ことを特徴とする高空性能試験装置。A closed chamber that houses the aviation engine operably inside, an exhaust line that exhausts gas in the closed chamber to the outside, and an axial flow that is provided in the exhaust line and sucks gas from the closed chamber and pressurizes it to atmospheric pressure A compressor, an outside air supply valve that supplies outside air to an inlet side of the axial flow compressor, and a pressure ratio controller that controls the outside air supply valve and maintains a constant pressure ratio of the axial flow compressor. High altitude performance test equipment characterized by the following. 前記排気ラインの密閉チャンバーの下流側に設けられ排気流量を調節する排気流量調節弁と、該排気流量調節弁を制御し密閉チャンバーの圧力を一定に保持する排気流量制御器とを備える、ことを特徴とする請求項1に記載の高空性能試験装置。An exhaust flow rate control valve provided on the downstream side of the closed chamber of the exhaust line to control an exhaust flow rate, and an exhaust flow rate controller that controls the exhaust flow rate control valve to maintain the pressure of the closed chamber constant. The high altitude performance test apparatus according to claim 1, wherein: 前記外気供給弁は、油圧駆動流量調節弁である、ことを特徴とする請求項1又は2に記載の高空性能試験装置。The high altitude performance test apparatus according to claim 1, wherein the outside air supply valve is a hydraulically driven flow control valve. 軸流圧縮機により航空エンジンを格納する密閉チャンバー内のガスを吸引し大気圧まで加圧して外部に排気し、同時に、前記軸流圧縮機の入側に供給する外気流量を制御し、これにより軸流圧縮機の圧力比を一定に保持する、ことを特徴とする高空性能試験装置の圧力制御方法。The gas in the closed chamber containing the aviation engine is suctioned by the axial compressor, pressurized to the atmospheric pressure and exhausted to the outside, and at the same time, the external air flow supplied to the inlet side of the axial compressor is controlled, whereby A pressure control method for a high altitude performance test device, characterized in that a pressure ratio of an axial compressor is kept constant. 前記密閉チャンバーの圧力を一定に保持するように、密閉チャンバーからの排気流量を制御する、ことを特徴とする請求項4に記載の圧力制御方法。The pressure control method according to claim 4, wherein an exhaust flow rate from the closed chamber is controlled so as to keep the pressure of the closed chamber constant.
JP2003105123A 2003-04-09 2003-04-09 High altitude performance testing device and pressure control method for the same Pending JP2004308597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105123A JP2004308597A (en) 2003-04-09 2003-04-09 High altitude performance testing device and pressure control method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105123A JP2004308597A (en) 2003-04-09 2003-04-09 High altitude performance testing device and pressure control method for the same

Publications (1)

Publication Number Publication Date
JP2004308597A true JP2004308597A (en) 2004-11-04

Family

ID=33467728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105123A Pending JP2004308597A (en) 2003-04-09 2003-04-09 High altitude performance testing device and pressure control method for the same

Country Status (1)

Country Link
JP (1) JP2004308597A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839813A (en) * 2010-04-23 2010-09-22 上海市建筑科学研究院(集团)有限公司 Device for indirectly testing one-time purification efficiency of air purifying component and method thereof
KR101218092B1 (en) * 2010-11-29 2013-01-03 국방과학연구소 Temperature and pressure test apparatus
CN106644250A (en) * 2016-12-14 2017-05-10 成都发动机(集团)有限公司 Portable device for air pressure measurement
CN109596302A (en) * 2018-11-02 2019-04-09 中国航空工业集团公司西安飞机设计研究所 A kind of flow control ejection system of dummy vehicle low-speed wind tunnel experiment
CN110793802A (en) * 2019-11-28 2020-02-14 中国科学院工程热物理研究所 Double-closed indirect cooling compressor experiment system
CN111735603A (en) * 2020-08-24 2020-10-02 中国航空工业集团公司沈阳空气动力研究所 Connecting and sealing structure between wind tunnel compressor and tunnel body
CN111947933A (en) * 2020-07-07 2020-11-17 南京航空航天大学 Comprehensive test device and test method for leakage, heat transfer, friction and wear characteristics of aircraft engine dynamic seal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839813A (en) * 2010-04-23 2010-09-22 上海市建筑科学研究院(集团)有限公司 Device for indirectly testing one-time purification efficiency of air purifying component and method thereof
CN101839813B (en) * 2010-04-23 2013-12-18 上海市建筑科学研究院(集团)有限公司 Device for indirectly testing one-time purification efficiency of air purifying component and method thereof
KR101218092B1 (en) * 2010-11-29 2013-01-03 국방과학연구소 Temperature and pressure test apparatus
CN106644250A (en) * 2016-12-14 2017-05-10 成都发动机(集团)有限公司 Portable device for air pressure measurement
CN106644250B (en) * 2016-12-14 2019-01-11 成都发动机(集团)有限公司 The mancarried device of air pressure measurement
CN109596302A (en) * 2018-11-02 2019-04-09 中国航空工业集团公司西安飞机设计研究所 A kind of flow control ejection system of dummy vehicle low-speed wind tunnel experiment
CN110793802A (en) * 2019-11-28 2020-02-14 中国科学院工程热物理研究所 Double-closed indirect cooling compressor experiment system
CN111947933A (en) * 2020-07-07 2020-11-17 南京航空航天大学 Comprehensive test device and test method for leakage, heat transfer, friction and wear characteristics of aircraft engine dynamic seal
CN111947933B (en) * 2020-07-07 2022-04-22 南京航空航天大学 Comprehensive test device and test method for leakage, heat transfer, friction and wear characteristics of aircraft engine dynamic seal
CN111735603A (en) * 2020-08-24 2020-10-02 中国航空工业集团公司沈阳空气动力研究所 Connecting and sealing structure between wind tunnel compressor and tunnel body

Similar Documents

Publication Publication Date Title
EP3318743B1 (en) Intercooled cooled cooling integrated air cycle machine
JP4571273B2 (en) How to operate an industrial gas turbine for optimum performance.
JP5552002B2 (en) Surge margin control
US4252498A (en) Control systems for multi-stage axial flow compressors
US11174031B2 (en) Environmental control system of an aircraft
US9926080B2 (en) Environmental control system utilizing parallel RAM heat exchangers with air cycle machine speed compensation
CN107849981B (en) The control device and method of gas turbine, store gas turbine control program storage medium, gas turbine
JP6222993B2 (en) 2-shaft gas turbine
JP2017198188A (en) Turbine engine ejector throat control
EP3318742A1 (en) Intercooled cooling air heat exchanger arrangement
JP2017036725A (en) Systems and methods for augmenting gas turbine power output with pressurized air tank and/or external compressor
JP2004308597A (en) High altitude performance testing device and pressure control method for the same
JP6215765B2 (en) Compression device
JP2013160235A (en) Method and apparatus to control part-load performance of turbine
US10858996B2 (en) Gas turbine startup method and device
CN102840136B (en) Steam drive type compression device
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JPH036334B2 (en)
EP3369941B1 (en) Centrifugal compressor
KR20160137596A (en) Method for pumping in a system of vacuum pumps and system of vacuum pumps
KR101465049B1 (en) Bleed air extraction apparatus for turbine and control method thereof
US11994088B2 (en) Ambient air environmental control system
JPH03185222A (en) Compressed air power-generation device
JPH0734809A (en) Temperature control device of extraction steam turbine
JPH07103847A (en) Ventilation system for test facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A02