JPS60221972A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS60221972A
JPS60221972A JP59079901A JP7990184A JPS60221972A JP S60221972 A JPS60221972 A JP S60221972A JP 59079901 A JP59079901 A JP 59079901A JP 7990184 A JP7990184 A JP 7990184A JP S60221972 A JPS60221972 A JP S60221972A
Authority
JP
Japan
Prior art keywords
sodium
sulfur
sulfur battery
solid electrolyte
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079901A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP59079901A priority Critical patent/JPS60221972A/en
Priority to EP85302545A priority patent/EP0161079B1/en
Priority to DE8585302545T priority patent/DE3577252D1/en
Priority to US06/724,989 priority patent/US4615957A/en
Publication of JPS60221972A publication Critical patent/JPS60221972A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase utilization factor of positive active material by arranging a porous metal which is corroded by sulfur between a cathode electric conductive material and solid electrolyte. CONSTITUTION:A metallic material 9 at least whose surface is changed to sulfide is arranged between a solid electrolyte tube 1 and a cathode electric conductive material 6. Passages in which sodium ions can move to a cathode active material 5 are formed in the metallic material 9. To forming these passages, the metallic material is formed in porous form such as fiber, textile fabric, sinter, plate-shaped fibrous body or sinter or net having numberless holes or slits. The metallic material 9 consists of metal of alloy such as aluminium, copper, nickel, iron, zinc, tin, stainless steel, or magnetisum whose surface or the entire part is corroded by sulfur or sodium polysulfide, but iron is most preferable among them.

Description

【発明の詳細な説明】 本発明はナトリウム−硫黄電池の陽極に関するもので、
陽極電脚拐と固体電解質との間に硫黄腐食性の多孔性金
属を配することにより、陽極活物質の利用率を高めるも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anode for a sodium-sulfur battery.
By placing a sulfur-corrosive porous metal between the anode electrode leg and the solid electrolyte, the utilization rate of the anode active material is increased.

ナトリウム−硫黄電池の陽極室は第1図の縦断面図に示
す如く、ナトリウムイオン伝導性のβ′−アルミナ、β
−アルミナなどからなる固体型ff+44管1の外側を
陽極室とし、上端にガラス接合されたα−アルミナリン
グ2の下面には陽極葡6が熱圧接合されている0陽極蓋
3に溶接された電槽4と固体電解質管1との間に陽極活
物1jI5の硫黄又は多硫化す) IJウムを含浸した
陽極1h導月6が配設され、底にグラファイトフェルト
円板7を配し、底蓋8を電<11I4に溶接して構成さ
れている。電池作動温度300°C〜570℃において
、放?1f5時は陰極活物質のす) IJウムはイオン
化して固体電解質管1を通り陽れ゛(窒で陽極活物質5
と反応して族11〜生成物Na2Sxとなり、陽極1江
導月6中の陽極活物質5の組JんがNa2S2.z〜3
oになった時点で放電停止する。充電時は、放71(生
成物中のす) IJウムが陰極室内にもどされるが、第
2図に示される如く即放電においては全ての硫黄が放電
末組成となり理論容量値が認められたが、1−+Iイク
ル充電では約70%しか充電できなかった。さらに以後
の充放τにサイクルでも同様の傾向を示し、150サイ
クル時の充電■は理ぷ0容景値の約54%で陽II!i
j活物質の利用率は約54%となり、以後のサイクルで
もさらに減少することが他の電池K K’A結果からも
確認された。
The anode chamber of a sodium-sulfur battery is made of sodium ion conductive β'-alumina, β
- The outside of the solid type FF+44 tube 1 made of alumina etc. is used as an anode chamber, and the lower surface of the α-alumina ring 2 glass-bonded to the upper end is welded to the anode lid 3 which is thermo-pressure bonded. An anode 1h conductor 6 impregnated with an anode active material 1jI5 (sulfur or polysulfide) is disposed between the battery container 4 and the solid electrolyte tube 1, and a graphite felt disk 7 is arranged at the bottom. It is constructed by welding the lid 8 to an electrode <11I4. Does it release at battery operating temperature of 300°C to 570°C? At 1f5, the cathode active material is used.) IJium is ionized and passes through the solid electrolyte tube 1.
reacts with the group 11 to form the product Na2Sx, and the anode active material 5 in the anode 1 reacts with Na2S2. z~3
Discharge stops when the temperature reaches o. During charging, the released 71 (sulfur in the product) IJum is returned to the cathode chamber, but as shown in Figure 2, in the case of immediate discharge, all the sulfur becomes the final discharge composition, and the theoretical capacity value is observed. , 1-+I cycle charging could only charge about 70%. Furthermore, the subsequent charging and discharging cycles showed a similar tendency, and the charging ■ at the 150th cycle was approximately 54% of the Ripu 0 capacity value, which was positive II! i
The utilization rate of the j active material was approximately 54%, and it was confirmed from the results of other batteries K K'A that it would further decrease in subsequent cycles.

本発明は上記した陽極活物質利用率低下を改善するもの
で、第6図の要部拡大図及び第4図の要部拡大斜視図に
示す如く、固体電解質管1と陽極電導材6との間に少な
くとも表面が硫化した金属材9を設けたものである。
The present invention improves the above-mentioned decrease in the utilization rate of the anode active material, and as shown in the enlarged view of the main part in FIG. 6 and the enlarged perspective view of the main part in FIG. 4, the solid electrolyte tube 1 and the anode conductive material 6 are A metal material 9 whose surface is at least sulfurized is provided between them.

陽極活物*5uナトリウムイオンが#動しうるように該
金属相9に通路が設けられている。
A passage is provided in the metal phase 9 so that the anode active material*5u sodium ions can move.

通路形成として金属相の形状を多孔性の、例えは繊維体
(フェルト状の不織布、■維を加圧焼成した不織布など
)、編状体、焼結体(+1: )fB、ろ 適当であうた。!5i維体の場合、1サイクル詩の前記
利用率は94%〜96%で最も優れていた。
For channel formation, the shape of the metal phase can be changed to a porous material, such as a fibrous material (felt-like non-woven fabric, non-woven fabric made of pressure-fired fibers, etc.), a knitted material, a sintered material (+1: )fB, or a suitable filter material. . ! In the case of 5i fiber, the utilization rate of one cycle poem was the best at 94% to 96%.

編状体では86%〜90%、焼結体では87%〜92%
、穴又はスリットでは72%〜76%1ネツトでは75
%〜83%であった。また金属相9の材質は褒面又は全
体が容易に硫黄及び多硫化ナトリウムに腐食されるアル
ミニウム、銅、エラ’r 71z、鉄、1ilkt’J
、t’Q、t+szステンレス、マグネシウム等の金P
5又は合金で被■11又はlli体からなり、特に?J
(の賜金が望ましい。また、金)4月9の厚みは2虐以
下がRノましい。2M以上あれば金属を硫化させると陽
極活物質5中の1゛1)池反応に寄乃づる有効硫黄量を
減少せしめ、電池容量を低下させ、台用硫化物層の厚み
が増加し、ナ) IJウムイメンの移動を妨げ、電池の
内部抵抗を高める’J ’1’1.i、池性能を層化せ
しめる。さらに金属相9の多孔度もまた上記要因の1つ
ともなるが、約75体fit%〜約98体積%であれば
′t、]に影響を与えることはなく、金FIj月9が硫
化される景だけ奈分に硫黄量を増加させておけば良い。
86% to 90% for braided bodies, 87% to 92% for sintered bodies
, 72% to 76% for hole or slit, 75 for 1 net
% to 83%. The material of the metal phase 9 is aluminum, copper, iron, iron, etc., which are easily corroded by sulfur and sodium polysulfide.
, t'Q, t+sz Gold P of stainless steel, magnesium, etc.
5 or alloy, consisting of 11 or lli body, especially? J
(It is desirable to have a donation of . Also, Friday) The thickness of April 9th is preferably 2 or less R. If the metal is sulfurized if it is 2M or more, the effective amount of sulfur in the anode active material 5 that contributes to the 1) cell reaction will be reduced, the battery capacity will be reduced, the thickness of the base sulfide layer will increase, and the ) 'J '1' 1. Blocks the movement of IJ umuimen and increases the internal resistance of the battery. i. Stratify pond performance. Furthermore, the porosity of the metal phase 9 is also one of the above factors, but if it is about 75% to about 98% by volume, it will not affect the All you have to do is increase the amount of sulfur just in case.

以下実施例により説明する。This will be explained below using examples.

金属相9としてi:q ash、径約25μ、繊維長駒
5〜100mmの欽iijジオ:11:を平均孔径約1
50μで厚さ約0.4rMの不Rう1布とし、陽極電導
材6の内面に配し、硫黄を含浸せしめて加圧成型し、縦
24國 分割の陽極成型体を2/亀池に用いて充放電試験をした
ところ第2図の破線に示す如く、150サイクルを経て
も電池容量の減少はほとんど認められず、陽極活物質の
利用率は約94%であった。さらに本発明の他の特徴は
金属材9を電池内に収容又は成型しやすくするため、縦
方向又は横方向又は斜め方向に少なくとも2分割され1
さらにこの分割は陽極電導材6と同じになっていること
である。これは金九月9を陽tL+電導材乙の表面上で
陽極活物質5で固定さぜることにより取扱いを容易にす
る一方、金属相9を電池に収納することにより電池を電
池作動温度にタイ湿させると1陽極活物質5が溶融し、
陽1!lj電導拐6を固体電解質管1の表面に抑圧、接
触させるように働かせることにある。このような構成の
本発明が陽極活物質の利用率を向上させすると共に、陽
極電導材6内に泥状物質となつて一部侵入し、電気抵抗
勾配を形成することで、充電中の硫黄の偏析を防止し、
陽極電導材6中の陽極活物質5のHa3sX→2Na 
+ XSなる反応をより一層促進したものである。この
効果は金属材9が硫化されるに従い、すなわち充放電す
規 イクルを経るに従い顕著に以われでくる。
As the metal phase 9, i:q ash, diameter of about 25 μ, fiber length of 5 to 100 mm, 11: with average pore size of about 1
A non-Rin cloth with a thickness of 50μ and about 0.4 rM was placed on the inner surface of the anode conductive material 6, impregnated with sulfur and pressure molded, and the anode molded body divided into 24 vertical sections was used for 2/Kameike. When a charge/discharge test was conducted, as shown by the broken line in FIG. 2, almost no decrease in battery capacity was observed even after 150 cycles, and the utilization rate of the anode active material was approximately 94%. Furthermore, another feature of the present invention is that the metal material 9 is divided into at least two parts vertically, horizontally, or diagonally in order to make it easier to accommodate or mold the metal material 9 in the battery.
Furthermore, this division is the same as that of the anode conductive material 6. This makes handling easier by fixing the metal phase 9 with the positive electrode active material 5 on the surface of the positive tL + conductive material 5, and at the same time, by storing the metal phase 9 in the battery, the battery can be heated to the battery operating temperature. When the tie is moistened, 1 anode active material 5 melts,
Yang 1! The purpose is to suppress and bring the lj conductive layer 6 into contact with the surface of the solid electrolyte tube 1. The present invention having such a configuration not only improves the utilization rate of the anode active material, but also partially penetrates into the anode conductive material 6 as a muddy substance and forms an electrical resistance gradient, thereby reducing sulfur during charging. prevent the segregation of
Ha3sX → 2Na of the anode active material 5 in the anode conductive material 6
+XS reaction is further promoted. This effect becomes more pronounced as the metal material 9 becomes sulfurized, that is, as the metal material 9 undergoes charging and discharging cycles.

以下さらに他の実施例をもって説明する。Further examples will be described below.

実施例1、繊維径8μのステンレスフェルトを気孔率9
4俤になるよう加圧成型して厚さ0.8門とした金J−
・口〕9を用いた場合、即放電容ft156AHに対し
、150サイクル時は約150AHであった。
Example 1: Stainless steel felt with a fiber diameter of 8μ has a porosity of 9
Gold J-, which was pressure molded to have a thickness of 0.8 mm and has a thickness of 4.
・When using [port] 9, the instant discharge capacity was about 150 AH at 150 cycles compared to the instant discharge capacity ft156 AH.

実施例2.繊8・[1径0.1 niの銅ワイヤーをネ
ット状とし、厚み0,4πmとした場合、陽t!IJH
活物質の利用率は150号イクル時で約78%であった
Example 2. When a copper wire with a diameter of 0.1 ni is made into a net and the thickness is 0.4πm, positive t! IJH
The utilization rate of the active material was approximately 78% at 150 cycles.

なお、電池形状により本発明の金属材9の大きさは異な
り、長さ、rl]、気孔率及び完全に硫化されるに至る
日数及び硫化に要する硫黄量等々については特に限定す
るものではない。
Note that the size of the metal material 9 of the present invention varies depending on the battery shape, and there are no particular limitations on the length, rl], porosity, number of days until complete sulfidation, amount of sulfur required for sulfidation, etc.

以上説明した如く本発明はナトリウム−硫黄電池の陽極
活物質の利用率を高めるのに効果があり、その工業的価
値は大なるものである。
As explained above, the present invention is effective in increasing the utilization rate of the positive electrode active material of sodium-sulfur batteries, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・ナトリウム−硫黄電池の縦断匍図第2図・
・・充放電電圧特性1a 第6図・・・本発明電池の要部拡大図 第4図・・・本発明電池の要部拡大斜視図1・・・固体
電S質管 6・・・陽極電導材5・・・陽極活物質 9
・・・金属材 出細入 湯浅電池株式会社 第1図 第3図 第4図 第2図 1 2 :3 4 5 6 7 8 9 10曲″1L
L時間(Ilr)
Figure 1...Longitudinal diagram of a sodium-sulfur battery Figure 2.
...Charge/discharge voltage characteristics 1a Fig. 6...Enlarged view of main parts of the battery of the present invention Fig. 4...Enlarged perspective view of main parts of the battery of the invention 1...Solid electrolyte tube 6...Anode Conductive material 5... anode active material 9
・・・Metal material input Yuasa Battery Co., Ltd. Figure 1 Figure 3 Figure 4 Figure 2 Figure 1 2:3 4 5 6 7 8 9 10 songs "1L
L time (Ilr)

Claims (1)

【特許請求の範囲】 (1) ナトリウムイオン伝導性固体電解質管とグラフ
ァイトフェルト又はカーボンフェルトからなる陽極電溶
材との間に少なくとも表面が硫化せしめられた金属材を
設けたことを特徴とするナトリウム−硫黄電池。 (2)金Fi6fAの厚みが2鮎以下であることを特徴
とする特許請求の範囲第1項記載の→−トリウムー硫黄
屯池。 (6)金属材が多孔性であることを特徴とする特許請求
の範囲第1項及び第2項記載のす) IJウムー硫黄電
池。 (4)金淘利がフェルト、不織布などの繊維体、編状体
、穴又はスリットを有する板状体、又は焼結体からなる
ことを特徴とする特i1’f 請求の範囲第1項〜第5
項記載のナトリウム−硫黄電池。 (5)金属材が縦方向又は横方向又は斜め方向に少なく
とも2分割されていることを特徴とする特許請求の範囲
第1項〜第4項記載のナトリウム−硫黄電池。 (6)金属材は陽極電導相表面上に陽極活物質によって
成型固定され、電池作動温度において固体電解質管表面
に圧接されることを特徴とする特許請求の範囲第1項〜
第5項記載のナトリウム−硫黄電池。 (力 金属相がアルミニウム、ニッケル、*11、鉄、
錫、亜鉛、鉛、マダネシウム、ステンレスなどの金属又
は合金で、被覆又は単体でなることを特徴とする特許請
求の範囲第1項〜第6項記載のす)IJウムー硫黄電池
[Scope of Claims] (1) A sodium ion conductive solid electrolyte tube characterized in that a metal material whose surface is at least sulfurized is provided between the sodium ion conductive solid electrolyte tube and the anode electrolyte material made of graphite felt or carbon felt. sulfur battery. (2) The →-Thorium-Sulfur Tunke according to Claim 1, characterized in that the thickness of the gold Fi6fA is 2 or less. (6) IJ Umu sulfur battery according to claims 1 and 2, characterized in that the metal material is porous. (4) A feature i1'f characterized in that the gold plate is made of a fibrous body such as felt or non-woven fabric, a knitted body, a plate-like body having holes or slits, or a sintered body. Fifth
Sodium-sulfur battery as described in section. (5) The sodium-sulfur battery according to any one of claims 1 to 4, wherein the metal material is divided into at least two parts in a vertical direction, a horizontal direction, or an oblique direction. (6) The metal material is molded and fixed on the surface of the anode conductive phase by the anode active material, and is pressed against the solid electrolyte tube surface at the battery operating temperature.
The sodium-sulfur battery according to item 5. (The metal phase is aluminum, nickel, *11, iron,
The IJ Umu sulfur battery according to claims 1 to 6, characterized in that it is coated or made of a metal or alloy such as tin, zinc, lead, madanesium, or stainless steel.
JP59079901A 1984-04-19 1984-04-19 Sodium-sulfur battery Pending JPS60221972A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59079901A JPS60221972A (en) 1984-04-19 1984-04-19 Sodium-sulfur battery
EP85302545A EP0161079B1 (en) 1984-04-19 1985-04-11 Sodium-sulfur storage batteries
DE8585302545T DE3577252D1 (en) 1984-04-19 1985-04-11 SODIUM SULFUR BATTERIES.
US06/724,989 US4615957A (en) 1984-04-19 1985-04-19 Sodium-sulfur storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079901A JPS60221972A (en) 1984-04-19 1984-04-19 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS60221972A true JPS60221972A (en) 1985-11-06

Family

ID=13703182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079901A Pending JPS60221972A (en) 1984-04-19 1984-04-19 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS60221972A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733836A (en) * 1980-08-07 1982-02-24 Oki Electric Ind Co Ltd Automatic noise reducing circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733836A (en) * 1980-08-07 1982-02-24 Oki Electric Ind Co Ltd Automatic noise reducing circuit

Similar Documents

Publication Publication Date Title
US2832813A (en) Electrode for an alkali storage cell and a process of manufacturing same
US2636916A (en) Electrode for galvanic cells
CA1285317C (en) Electrochemical cell
GB2227357A (en) High temperature MAlHal4 cell
US4054729A (en) Rechargeable high temperature electrochemical battery
US3410726A (en) Electric cell with water repellant coated porous layer and method of making said layer
JPS5829581B2 (en) I can&#39;t do anything about it.
JPH01194276A (en) Electrochemical cell
US4123596A (en) Cathode structure for sodium sulphur cells
US4024320A (en) Galvanic cells
JPH01211869A (en) Rechargeable high temperature electrochemical battery
US3497387A (en) Electrochemical cells with negative zinc electrodes
US3108910A (en) Process for making electrodes or electrode elements for alkaline storage batteries an articles thus obtained
US2834825A (en) Storage batteries, more particularly storage battery plates and method of manufacture
US4615957A (en) Sodium-sulfur storage battery
JPS60221972A (en) Sodium-sulfur battery
US4049884A (en) Sodium-sulphur electric cell
US1942791A (en) Electrode for secondary cells
JP3972417B2 (en) Sealed metal oxide-zinc storage battery and manufacturing method thereof
JPS60235369A (en) Sodium-sulphur battery
US2075492A (en) Storage battery plate
GB331540A (en) Improvements in the manufacture and production of electrodes for secondary cells, in particular for those which have alkaline electrolytes
JPS60235368A (en) Sodium-sulphur battery
US1119313A (en) Secondary galvanic battery.
JPH0680593B2 (en) Alkali metal-sulfur battery