JPS60221285A - Arm for robot - Google Patents

Arm for robot

Info

Publication number
JPS60221285A
JPS60221285A JP7646584A JP7646584A JPS60221285A JP S60221285 A JPS60221285 A JP S60221285A JP 7646584 A JP7646584 A JP 7646584A JP 7646584 A JP7646584 A JP 7646584A JP S60221285 A JPS60221285 A JP S60221285A
Authority
JP
Japan
Prior art keywords
arm
robot
strength
weight
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7646584A
Other languages
Japanese (ja)
Inventor
勝彦 後藤
礼司 中
幸隆 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7646584A priority Critical patent/JPS60221285A/en
Publication of JPS60221285A publication Critical patent/JPS60221285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ロボット用アームの製造方法に係り特に、発
泡ポリウレタンを原料とする反応性射出成形、いわゆる
RIM成形成形相いて、超軽量を図り、なおかつアーム
の剛性を向上させるロボット用アームに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a robot arm, and in particular, involves reactive injection molding using foamed polyurethane as a raw material, so-called RIM molding, to achieve ultra-lightweight, Furthermore, the present invention relates to a robot arm that improves the rigidity of the arm.

〔発明の背景〕[Background of the invention]

従来のロボット用アームは、スチール製(比重=7)、
アルミ合金製(比重=2.7)、最近ではFRP製(比
重=1.5)と軽量化を図る傾向にある。これは軽量化
することにより動作速度の高速化、吊り上げ荷重の増加
等の能方向上を図nるためであるか、さらに特性を改善
するためには大幅な軽量化が必要となった。そこでRI
、M(比重=0.5〜1,0)が注1」されてきたが松
科的には」二記材料と比較し強度、剛性が劣る。特に応
力か集中する回転軸および軸受は付近が、強度的に矧点
であった。また、FRPは軽量でかつ強度的にも問題が
少ないが、ガラス繊組°布とポリエステル樹脂とを何層
にも重ね合せる必要があり、この作業をほとんど手作業
で行なっているため高価になる欠点かある。
Conventional robot arms are made of steel (specific gravity = 7),
There is a trend toward lighter weight products, such as aluminum alloys (specific gravity = 2.7) and, recently, FRP products (specific gravity = 1.5). This may be due to the fact that by reducing the weight, it is possible to increase the operating speed, increase the lifting load, etc., or to further improve the characteristics, it is necessary to significantly reduce the weight. So R.I.
, M (specific gravity = 0.5 to 1.0) has been used as Note 1, but in terms of pinecology, it is inferior in strength and rigidity compared to materials listed in Note 2. In particular, the areas near the rotating shaft and bearings, where stress is concentrated, were weak in terms of strength. In addition, FRP is lightweight and has few problems in terms of strength, but it is expensive because it requires laminating multiple layers of glass fiber fabric and polyester resin, and this work is mostly done by hand. There are some drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、発泡ポリウレタンを原料とする。いわ
ゆるRIM材により成形される製品の強度的難点を効率
良く補うことにより、超軽量、高強度のロボット用アー
ムを提供することにある。
The object of the present invention is to use foamed polyurethane as a raw material. The purpose of this invention is to provide an ultra-lightweight, high-strength robot arm by efficiently compensating for the strength disadvantages of products molded from so-called RIM materials.

〔発明の概要〕[Summary of the invention]

従来、発泡プラスチック材料を構造材として用いる場合
に強度不足になりがちであり、そこで原料に種々のフィ
ラーを添加することが行われている。しかしこの方法で
強度を増すためには、樹脂密度を増すか、フィラー含有
量を増加するか、又−両材料を併用するかであるが、い
ずれの材料も成形品重量が増大してしまう。本発明はロ
ボット用アームを発泡プラスチック材料としてスキン層
とコア層を有するサンドウィンチ構造ができる。いわゆ
る発泡ウレタンを原料とするRIM成形注形法い、なお
かつ強度的に不充分な部分すなわち構造的に応力が集中
する部分のみを補強することにより、応力分散を図り、
ロボットとしての吊上げ時のたわみ量を減少することが
でき、その分、材料密度を小さくでき、全体重量の減少
化も図れるものである。
Conventionally, when foamed plastic materials are used as structural materials, they tend to lack strength, so various fillers have been added to the raw materials. However, in order to increase the strength with this method, the resin density must be increased, the filler content must be increased, or both materials must be used in combination, but either material increases the weight of the molded product. In the present invention, a sandwich structure having a skin layer and a core layer can be obtained by using a foamed plastic arm as a robot arm. The RIM molding method uses so-called urethane foam as a raw material, and by reinforcing only the areas with insufficient strength, that is, the areas where stress is concentrated structurally, we aim to disperse stress.
The amount of deflection during lifting as a robot can be reduced, the material density can be reduced accordingly, and the overall weight can also be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について第1図〜第3図により説明
する。まず発泡ポリウレタンを原料とする反応射出成形
法すなわちRIM成形注形法り成形されたロボット用第
1アーム3に成形時インサートされた回転用軸1がある
。この軸に溶接した鉄板2が軸と同時にtM内にインサ
ートしたものである。又第1アーム1および第2アニム
6は、」二部、下部の2ピース形としており上下各々に
上−記聞様鉄板をインサートしであるか、輔1と下部鉄
板は溶接ではなくはめ合いとした。さらに軸受5および
第2アームの軸受部にも鉄板をインサートした。RIM
材のみの密度はQ、6f/adとした。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3. First, there is a rotating shaft 1 inserted during molding into a first arm 3 for a robot, which is molded by reaction injection molding, ie, RIM molding, using polyurethane foam as a raw material. A steel plate 2 welded to this shaft is inserted into tM at the same time as the shaft. In addition, the first arm 1 and the second arm 6 are in the form of two pieces, the lower part of which is a two-piece type, with iron plates like those described above inserted in the upper and lower parts, respectively, or the arm 1 and the lower iron plate are fitted together rather than welded. did. Furthermore, iron plates were also inserted into the bearing portion of the bearing 5 and the second arm. RIM
The density of the material alone was Q, 6f/ad.

以上によりRIMにて成形したロボット用アームにおい
て集中応力を受け最も変形および歪の発生しゃすい輔お
よび軸受付近を高強度の鉄板を補強材として用いること
で、全体密度を増すことなく高強度なロボット用アーム
をilることかできる。
As described above, by using high-strength steel plates as reinforcing materials near the heel and bearings, where the most deformation and strain occurs due to concentrated stress in a robot arm formed using RIM, a high-strength robot can be created without increasing the overall density. You can also use the arm for use.

〔発明の効果〕〔Effect of the invention〕

本発明によれば製品密度0.5〜1において、軽量化と
高強度を両立できるもので、ロボッl−IIIアームと
して実用範囲の密度Q、 5 ?/crlとすると従来
のアルミ合金材に比ベア896重量減、FRPに比ベロ
0%重量減となり、動作物性か大幅に改善され、また、
吊り」ユげ重油も増加し、付加価値が一段と高めること
ができる。
According to the present invention, it is possible to achieve both light weight and high strength at a product density of 0.5 to 1, and the density Q, 5? is within the practical range as a robot l-III arm. /crl, the weight is reduced by 896 compared to conventional aluminum alloy materials, and the weight is reduced by 0% compared to FRP, and the operating properties are greatly improved.
Hanging heavy oil will also increase, further increasing added value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロボット用アームを組立てた状態の斜視図であ
る。第2図および第3図は第1図のA部の詳細図であり
第2図は正面の断面図、第3図は平面図である。 1・・・アーム回転用軸、2・・・インサートされた補
強用鉄板、3・・・ロボット用第1アーム本体、4・・
・第1・第2アーム連結軸用軸、5・・・軸4用軸受け
、6・・・第2アーム本体、7・・・RIM材、8・・
・スキン層。 代理人 弁理士 高 橋 明 夫 隼 II¥1 第 2 回 箔30
FIG. 1 is a perspective view of the assembled robot arm. 2 and 3 are detailed views of section A in FIG. 1, with FIG. 2 being a front sectional view and FIG. 3 being a plan view. DESCRIPTION OF SYMBOLS 1... Axis for arm rotation, 2... Inserted reinforcing steel plate, 3... First arm body for robot, 4...
・Shaft for connecting the first and second arms, 5... Bearing for shaft 4, 6... Second arm body, 7... RIM material, 8...
・Skin layer. Agent Patent Attorney Akira Takahashi Hayabusa II ¥1 2nd Haku 30

Claims (1)

【特許請求の範囲】[Claims] ロボット用アームにRIM材を用いてなるロボット用ア
ームの軸受部に介在物を埋設したことを特徴とするロボ
ット用アーム。
A robot arm characterized in that an inclusion is embedded in a bearing part of a robot arm made of RIM material.
JP7646584A 1984-04-18 1984-04-18 Arm for robot Pending JPS60221285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7646584A JPS60221285A (en) 1984-04-18 1984-04-18 Arm for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7646584A JPS60221285A (en) 1984-04-18 1984-04-18 Arm for robot

Publications (1)

Publication Number Publication Date
JPS60221285A true JPS60221285A (en) 1985-11-05

Family

ID=13605910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7646584A Pending JPS60221285A (en) 1984-04-18 1984-04-18 Arm for robot

Country Status (1)

Country Link
JP (1) JPS60221285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103751A (en) * 2003-10-01 2005-04-21 Korea Advanced Inst Of Science & Technol Robot arm having shock absorbing structure
JP2018167338A (en) * 2017-03-29 2018-11-01 積水化成品工業株式会社 Arm for connection
US10456907B2 (en) 2017-04-10 2019-10-29 Fanuc Corporation Robot arm and robot
US11926050B2 (en) 2018-07-25 2024-03-12 Fanuc Corporation Robot arm, manufacturing method therefor, and robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103751A (en) * 2003-10-01 2005-04-21 Korea Advanced Inst Of Science & Technol Robot arm having shock absorbing structure
JP2018167338A (en) * 2017-03-29 2018-11-01 積水化成品工業株式会社 Arm for connection
US10456907B2 (en) 2017-04-10 2019-10-29 Fanuc Corporation Robot arm and robot
US11926050B2 (en) 2018-07-25 2024-03-12 Fanuc Corporation Robot arm, manufacturing method therefor, and robot

Similar Documents

Publication Publication Date Title
JPH02116389A (en) Golf club head
US6273830B1 (en) Tapered hollow shaft
US5759112A (en) Golf club shaft
JPH0790046B2 (en) Golf shaft
JPH0315484A (en) Iron type club head and its manufacture
JP3714791B2 (en) Lightweight golf club shaft
CA2365484A1 (en) Hockey stick blade with braided fibre envelope
JPS60221285A (en) Arm for robot
US6767422B1 (en) Shaft for light-weight golf clubs
JPH06321167A (en) Crank for bicycle
JP4146923B2 (en) Golf club shaft
US4061106A (en) Racing paddle and method of making the same
JPH0143090Y2 (en)
US2961362A (en) Methods of fabricating aircraft skis and components thereof
JPH1015130A (en) Shaft for putter
JPH0221088Y2 (en)
JPH07215037A (en) Stabilizer made of carbon
CN220841712U (en) Environment-friendly bamboo orientation plate with reinforcing structure
JP3278985B2 (en) FRP cylinder
CN206521422U (en) Low VOC green environment-friendly high strength reinforcement film
JPH0133097Y2 (en)
JPH02191474A (en) Manufacture of golf club head
KR960005027B1 (en) Manufacturing process of dump link and dump link structure
Berg Composite material advances in the golf industry
KR20050113432A (en) Method for improving the performance of carbon fiber reinforced golf shaft using the characteristic of bamboo