JPS60220804A - Device for forming solid shaft - Google Patents

Device for forming solid shaft

Info

Publication number
JPS60220804A
JPS60220804A JP7721284A JP7721284A JPS60220804A JP S60220804 A JPS60220804 A JP S60220804A JP 7721284 A JP7721284 A JP 7721284A JP 7721284 A JP7721284 A JP 7721284A JP S60220804 A JPS60220804 A JP S60220804A
Authority
JP
Japan
Prior art keywords
beam light
target object
shape
axis
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7721284A
Other languages
Japanese (ja)
Inventor
Gensuke Okada
岡田 愿介
Gohei Iijima
飯島 剛平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7721284A priority Critical patent/JPS60220804A/en
Priority to DE8585104269T priority patent/DE3584642D1/en
Priority to AT85104269T priority patent/ATE69400T1/en
Priority to US06/721,451 priority patent/US4752964A/en
Priority to EP85104269A priority patent/EP0163076B1/en
Priority to CA000478699A priority patent/CA1257682A/en
Publication of JPS60220804A publication Critical patent/JPS60220804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37048Split beam, stripe projection on object, lines detected with cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49011Machine 2-D slices, build 3-D model, laminated object manufacturing LOM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To manufacture a solid shape of the same shape as an object body by making a form sheet of the same or similar shape as a sectional shape with a thin sheet having a thickness at a certain ratio on a diameter of a beam light and by overlapping these. CONSTITUTION:A locus of light image is found with a beam light 2' each diameter DELTAh of the beam light 2' from the extreme bottom end Z0 to the extreme top end Zm of a model 1 which is an object on the plane formed by a beam light, i.e., the plane of X-Y axis and shape data (Xi, Yi) on the plane of X-Y axis of each change of diameter DELTAh of a beam light are found. Based on the shape data (Xi, Yi) found each diameter DELTAh of the beam light 2' as above these data are inputted to an NC laser cutting machine and the same form sheet as the shape data is produced and by overlapping these form sheets in order, a solid shape of same shape as an object body can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人物等の立体形状を有する物から立体像等の
立体形状を形成する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for forming a three-dimensional shape such as a three-dimensional image from an object having a three-dimensional shape such as a person.

(従来技術) 従来、立体形状を有する物体から、これを同等の立体形
状を形成するために、倣い工作機械、鋳盤、反転型等を
用いていた。
(Prior Art) Conventionally, a copying machine tool, a casting machine, an inverted mold, etc. have been used to form an object having a three-dimensional shape into an equivalent three-dimensional shape.

しかしながら、工作機械、鋳型等の寸法的制限により、
立体形状を成形できる対象物に制約され、複雑な形状で
凹凸の顕著な対象物体から立体形状を複製するのは困難
であるという問題点を有していた。また、対象物体が軟
算である場合に、その物体を複製するためには高度な熟
練が要求されるとともに芸術的なセンスも要求されると
いう問題点があった。
However, due to dimensional limitations of machine tools, molds, etc.
There is a problem in that it is difficult to reproduce a three-dimensional shape from a target object that has a complex shape and noticeable irregularities because it is limited to objects that can be molded into a three-dimensional shape. Furthermore, when the target object is a soft calculation, there is a problem in that a high degree of skill and artistic sense are required in order to reproduce the object.

(発明の目的) 本発明は上述の従来技術の有する問題点を解決するため
になされたもので、対象物体の形状の複雑さの如何を問
わず、また対象物体の硬度の如何を問わずに、対象物体
となる立体形状と同等もしくは一定比率の立体形状を形
成する装置を提供することを目的とする。
(Object of the Invention) The present invention has been made to solve the problems of the above-mentioned prior art. , an object of the present invention is to provide a device that forms a three-dimensional shape that is equivalent to or has a constant ratio of a three-dimensional shape that is a target object.

(発明の構成) 本発明によれば上述の目的を達成するために、(1)立
体形状を有する対象物体から立体形状を作成する装置で
あって、 ビーム光を前記対象物体の水平方向に一定範囲で走査さ
せるビーム光照射手段と、 前記対象物体の水平方向における同一水平面上の全周を
、前記ビーム光照射手段のビーム光を照射させる全周照
射手段と、 前記全周照射手段の対象物体への垂直位置を可動させる
垂直位置可動手段と、 前記全周照射手段及び垂直位置可動手段により対象物体
に照射されたビーム光による同一水平面上における対象
物体の表面の光1象を連続的に撮像する撮像手段と、前
記撮像手段により得られる光像の軌跡形状と前記ビーム
光照射装置及び前記撮像手段との幾可学的関係から、前
記水平面に関する前記対象物体表面の断面形状を計測す
る断面計測手段と、 前記計測された対象物体表面の断面形状に基づいて、前
記ビーム光の直径に一定比率の肉厚を有する薄板で、前
記断面形状に同一もしくは相似の形状の型板を作成する
型板形成手段と、を備え、前記彫版を重ね合せることに
より立体形状を成形することを特徴とする立体形状成形
装置とした。
(Structure of the Invention) According to the present invention, in order to achieve the above-mentioned object, (1) a device for creating a three-dimensional shape from a target object having a three-dimensional shape, the beam light is fixed in the horizontal direction of the target object; beam light irradiation means for scanning a range; omnidirectional irradiation means for irradiating the entire circumference of the target object on the same horizontal plane in the horizontal direction with the beam light of the beam light irradiation means; and the target object of the entire circumference irradiation means. vertical position moving means for moving the vertical position of the target object; and continuous imaging of one light image of the surface of the target object on the same horizontal plane by the beam light irradiated to the target object by the all-round irradiation means and the vertical position moving means. cross-sectional measurement of measuring the cross-sectional shape of the surface of the target object with respect to the horizontal plane from the geometric relationship between the image capturing means, the trajectory shape of the light image obtained by the image capturing means, the beam light irradiation device, and the image capturing means; means, a template for creating a template with a thin plate having a wall thickness at a constant ratio to the diameter of the beam light and having a shape identical to or similar to the cross-sectional shape, based on the measured cross-sectional shape of the surface of the target object; A three-dimensional shape forming apparatus is provided, comprising a forming means, and forming a three-dimensional shape by overlapping the engravings.

(発明の効果) 本発明によれば、対象物体の形状の複雑さの如何を問わ
ず、また対象物体の硬度の如何を問わず、対象物体と同
一もしくは一定比率(拡大、縮小)した立体形状を容易
に作ることができる。
(Effects of the Invention) According to the present invention, regardless of the complexity of the shape of the target object and regardless of the hardness of the target object, the three-dimensional shape is the same as the target object or has a fixed ratio (enlarged or reduced). can be easily made.

(実施例) 以下、本発明の一実施例を添付図面により説明する。第
1a図及び第1b図は実施列の構成の一部を示す図で、
説明を容易にするために人物の顔を簡略化したモデル1
を対象物体とした。そして、モデル1に対する座標軸を
設定して、以後に説明するビーム光の照射位置及び光像
の撮像装置の位置の基準とする。座標軸はモデル1の底
面中心を原点Gとし、第1a図の立面図において原点G
から水平の方向をX軸、原点から垂直の方向をY軸、I
gIb図の正面図において、対象物体であるモデル1の
垂直中心線を2軸としている。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. Figures 1a and 1b are diagrams showing a part of the configuration of the implementation row,
Model 1 with a simplified human face for ease of explanation
is the target object. Then, coordinate axes for the model 1 are set and used as a reference for the irradiation position of the beam light and the position of the optical image capturing device, which will be described later. The coordinate axes have the origin G at the center of the bottom of model 1, and the origin G in the elevation view of Figure 1a.
The horizontal direction from the origin is the X axis, the vertical direction from the origin is the Y axis, I
In the front view of the gIb diagram, the vertical center line of the model 1, which is the target object, is the two axes.

ビーム光照射装置2は、発光源4例えばレーデから対象
物体たるモデル1に厚み社(例えば0.5羽)のビーム
光2′を照射する。ビーム光2′はZ軸に下した垂線を
中心線とし、回動ミラー等及び光学的レンズ系により回
動角度(θ)で厚み晶のビーム光2′を対象物体たるモ
デルに走査しつつ照射する。このビーム光の平面をX−
Y軸系平面とし、Z軸の原点ZOを対象物体であるモデ
ル1の最下端に置く。
The beam light irradiation device 2 irradiates the target object, the model 1, with a beam light 2' of Atsushisha (for example, 0.5 birds) from a light emitting source 4, for example, Rede. The center line of the beam light 2' is perpendicular to the Z axis, and the beam light 2' of the thick crystal is scanned and irradiated onto the target object, the model, at a rotation angle (θ) using a rotating mirror, etc. and an optical lens system. do. The plane of this beam light is
The Y-axis system plane is set, and the origin ZO of the Z-axis is placed at the lowest end of model 1, which is the target object.

二次元撮像装置であるITVカメラ3は、ビーム光照射
装置2の下方に一定の距離をもって配置する。そして、
ビーム光照射装置2のビーム光2′とITVカメラ3の
光軸とはZ軸を通るX−Y軸系平面に対して一定の角度
βを有し、I′I′vカメラ3の視野角はαである。ビ
ーム光照射装置2及びITVカメラ3は案内柱7内を摺
動案内される架台8に固定され、架台5はボールネジ軸
5に螺合するポールナツト6に固定する。ボールネジ軸
5にはステップモータ(図示しない)に接続され、該ス
テップモータはげ一ム光の直径泣の高さだけf−ルナッ
ト6、即ち架台8を段階的に上下に駆動する。
The ITV camera 3, which is a two-dimensional imaging device, is placed below the beam light irradiation device 2 at a certain distance. and,
The beam light 2' of the beam light irradiation device 2 and the optical axis of the ITV camera 3 have a constant angle β with respect to the X-Y axis system plane passing through the Z axis, and the viewing angle of the I'I'v camera 3 is is α. The beam light irradiation device 2 and the ITV camera 3 are fixed to a pedestal 8 that is slidably guided within a guide column 7, and the pedestal 5 is fixed to a pole nut 6 that is screwed into a ball screw shaft 5. A step motor (not shown) is connected to the ball screw shaft 5, and the step motor drives the nut 6, that is, the pedestal 8, up and down stepwise by the height of the diameter of the beam.

対象物体であるモデル1の外周全周をビーム光2′で照
射しく全周照射手段)、且つ2次元撮1象装置であるI
TVカメラ3をこれに対応してその外周全周を撮像する
ために、この実施例では、それぞれ4台のビーム光照射
装置2と2次元撮像装置であるITVカメラ3とを対象
物体たるモデルを囲んで配置して・いる。この場合、対
象物体であるモデル1の2軸に対するITVカメラ3と
の距離を等距離に配置し、ITVカメラ3の光学的倍率
を等しくして、それぞれのITVカメラ3の対象物体で
あるモデル1のビーム光2勺こよる光像を直接比較し、
光像の計測データーの処理をする。
A device for irradiating the entire outer circumference of a model 1, which is a target object, with a beam of light 2';
In order to image the entire outer circumference of the TV camera 3 in accordance with this, in this embodiment, a model is created in which each of the four beam light irradiation devices 2 and the ITV camera 3, which is a two-dimensional imaging device, are the target objects. It is surrounded and arranged. In this case, the model 1, which is the target object, is arranged at an equal distance from the ITV camera 3 to the two axes, and the optical magnification of the ITV camera 3 is made equal, so that the model 1, which is the target object, Directly compare the light images of two beams of light,
Processes optical image measurement data.

次に第2a図及び第2b図により対象物体であるモデル
1に対するビーム光照射装置2とITVカメラ3との幾
何学的な位置関係を説明する。
Next, the geometrical positional relationship between the beam light irradiation device 2 and the ITV camera 3 with respect to the model 1, which is a target object, will be explained with reference to FIGS. 2a and 2b.

第2a図において、ビーム光照射装置2のビーム光2の
回動角度はθであり、Y軸に対する視野限界8LMが0
から+Ymとなり、対象物体であるモデル1の原点Gで
のY軸位置はYm/7となる。
In FIG. 2a, the rotation angle of the beam light 2 of the beam light irradiation device 2 is θ, and the field of view limit 8LM with respect to the Y axis is 0.
, +Ym, and the Y-axis position of model 1, which is the target object, at the origin G is Ym/7.

1台のビーム光照射装置2がモデル1の全周を照射する
ために必要な照射範囲は原点Gを中心として90°の範
囲であり、Y軸のYLIとYL2との範囲になる。ビー
ム光照射装置2から対象物体であるモデル1に照射rる
ビーム光2′はZ軸上で2仄元撮像装置であるITVカ
メラ3の光軸3′と一定の角度1/lで交差し、この2
軸上への投影位置をzlとする。このとき、ビーム光照
射装置2から対象物体1に照射されたビーム光を2次元
撮像装置であるITVカメラ3で撮像すると、対象物体
であるモデル1のこの断面における光像はfg6図に示
すように、ビーム光の連続による蟻状の画像となる光像
平面が得られる。この光像平面において、線分10は前
述の21を通りY軸と平行な直線の像である。又第6図
に示した点P1は第2図に示すビーム光の光像の点P1
の像であり、これは対象物体であるモデル1の表面上に
照射されたビーム光の任意の一点である。
The irradiation range required for one beam light irradiation device 2 to irradiate the entire circumference of the model 1 is a range of 90° centered on the origin G, which is the range between YLI and YL2 on the Y axis. The beam light 2' irradiated from the beam light irradiation device 2 to the model 1, which is the target object, intersects the optical axis 3' of the ITV camera 3, which is a two-dimensional imaging device, at a constant angle of 1/l on the Z axis. , this 2
Let the projected position on the axis be zl. At this time, when the beam light irradiated from the beam light irradiation device 2 to the target object 1 is imaged by the ITV camera 3, which is a two-dimensional imaging device, the optical image in this cross section of the model 1, which is the target object, is as shown in figure fg6. In this case, an optical image plane is obtained, which is an ant-shaped image due to a succession of light beams. In this optical image plane, the line segment 10 is an image of a straight line passing through the aforementioned 21 and parallel to the Y axis. Also, the point P1 shown in FIG. 6 is the point P1 of the optical image of the beam light shown in FIG.
, which is an arbitrary point of the beam of light irradiated onto the surface of model 1, which is the target object.

第2図において、I’ffカメラ3の光軸を含みY軸に
平行な平面に対して点P1から下した垂線の長さを11
とし、又第3図において点pi’から線分10に下した
垂線の長さをYi’とするとき、線分Pi’Yi’の長
さ、をΔziとすれば、ai = 1/nxazi n:ITV用カメラの光学的倍率 となる。
In Figure 2, the length of the perpendicular line drawn from point P1 to the plane that includes the optical axis of I'ff camera 3 and is parallel to the Y axis is 11
Also, when the length of the perpendicular drawn from point pi' to line segment 10 in FIG. 3 is Yi', and the length of line segment Pi'Yi' is Δzi, then ai = 1/nxazi n : Optical magnification of ITV camera.

この場合Δz1は次の様にめる。In this case, Δz1 is calculated as follows.

第6図に示すようCCITV用カメラの一画面は1本(
一般に240〜500本程度)の走査線で構成されてい
て、これを上部から順にSl、S2.・・・8n・・・
・3rとする。第4図に示すようにITV力・メラ3か
らは画面の開始信号vBLが出力され、次に第1回目の
水平走査信号HBLが出力されたのちに鍬の明暗信号に
応じた映像信号が一部時間taでS1上を走査する。次
いでSl上の走査が終了すると再びHBL信号が出力さ
れ映像信号はS2から順次走査する。ここで、Sn上の
走査においてビーム光2′の光1象があると♂−ム光映
1象信号BH8として映像信号H8中に顕著に現われる
。そして、Srの走査迄順次繰返えされて1画面の走査
が終了する。
As shown in Figure 6, one CCITV camera screen has one screen (
In general, it consists of about 240 to 500 scanning lines, which are arranged in order from the top to S1, S2, and so on. ...8n...
・Set as 3r. As shown in FIG. 4, the ITV camera 3 outputs the screen start signal vBL, then the first horizontal scanning signal HBL, and then the video signal corresponding to the brightness signal of the hoe. S1 is scanned for a time ta. Then, when the scanning on Sl is completed, the HBL signal is outputted again, and the video signal is sequentially scanned from S2. Here, when there is one light image of the beam light 2' in scanning on the Sn, it appears conspicuously in the video signal H8 as a female light image signal BH8. Then, the scanning is repeated in sequence up to the scanning of Sr, and the scanning of one screen is completed.

次いでこのSrの走査が終了するとモーターによりビー
ム光をΔhだけZ軸方向の隣接位置に移動した後、次の
1画面の開始信号vBLが出力されてることにより、前
述と同様に水平走査開始信号が順次出力されて新たな1
画面が走査される。
Next, when the scanning of Sr is completed, the beam light is moved by Δh to an adjacent position in the Z-axis direction by the motor, and then the horizontal scanning start signal is output as described above because the start signal vBL for the next one screen is output. New 1 is output sequentially
The screen is scanned.

第5図はこのITV用カメラを用いてΔz1をめるため
の制御回路を示すブロック線図であり、3はI’ffカ
メラであり、31は分離回路で、■TVカメラ3で撮影
したビーム光2′の光像の映像信号H8と水平走査開始
信号HBLと画面開始信号’VBLといつとを分離回路
31に入力し、分離回路31で映像信号とHBLXvB
Lとを分離する。20はカウンターで、水平走査開始信
号HBLの数を計数するための計数器であり、画面開始
信号vBLが発信したときにOにリセットする。従って
カウンター20は画面開始信号vBLが発信された後、
次のvBLが発信される迄の水平走査開始信号HBLの
数を計数する。この様にして、カウンター20で計数さ
れた内容に応じて走査線番号S1が検出する。この走査
線番号S1を検出すると、この走査線番号S1に乗算器
21により走査線間隔△qを乗じ、SlからS1迄の長
さを変換する。次いで減算器22内でrX42の値(画
面の中央線、即ち第6図の線分10の位置)から減算さ
れ、線分10に対する走査点の垂直方向の長さを算出す
る。
Fig. 5 is a block diagram showing a control circuit for calculating Δz1 using this ITV camera, 3 is an I'ff camera, 31 is a separation circuit, The video signal H8 of the optical image of light 2', the horizontal scanning start signal HBL, and the screen start signal 'VBL are input to the separation circuit 31, and the separation circuit 31 separates the video signal and HBLXvB.
Separate L. 20 is a counter for counting the number of horizontal scanning start signals HBL, and is reset to O when the screen start signal vBL is transmitted. Therefore, after the screen start signal vBL is transmitted, the counter 20
The number of horizontal scanning start signals HBL until the next vBL is transmitted is counted. In this way, the scanning line number S1 is detected according to the content counted by the counter 20. When this scanning line number S1 is detected, this scanning line number S1 is multiplied by the scanning line interval Δq by a multiplier 21 to convert the length from S1 to S1. Then, it is subtracted from the value of rX42 (the center line of the screen, ie, the position of line segment 10 in FIG. 6) in the subtracter 22 to calculate the vertical length of the scanning point with respect to line segment 10.

他方1本の走査線の走査時間ta + m等分した間隔
パルスを出力する発振器23が設けられ、この間隔パル
スはカウンター24で計数され、また間隔パルスは水平
走査開始信号HBLで0にリセットする。この場合それ
ぞれの走査線に対する水平走査開始信号HBLが出力さ
れる迄この前の走査線上での発振器23からのパルスを
カウンター24が計数し、次いでこの計数内容を乗算器
26で、走査線の長さをm等分した長さへyeを乗する
。この様にしてITvカメラの映像面上の走査点の水平
位置が乗算器26の出力信号から算出される。
On the other hand, an oscillator 23 is provided which outputs interval pulses equally divided by the scanning time ta + m of one scanning line, and these interval pulses are counted by a counter 24, and the interval pulses are reset to 0 by a horizontal scanning start signal HBL. . In this case, the counter 24 counts the pulses from the oscillator 23 on the previous scanning line until the horizontal scanning start signal HBL for each scanning line is output. Multiply the length obtained by dividing the length into m equal parts by ye. In this way, the horizontal position of the scanning point on the image plane of the ITv camera is calculated from the output signal of the multiplier 26.

また、映像信号H84明61”、暗″0”という論理的
な2値に変換するために2値化回路25を分離回路31
の後方に接続し、映像信号H19のみを2値化回路25
で対象物体であるモデル1の外周に照射されたビーム光
像部分を“1”及びこれ以外の部分をOnとして出力す
る。
In addition, the binarization circuit 25 is connected to the separation circuit 31 in order to convert the video signal H84 into logical binary values of bright 61'' and dark 0.
is connected to the rear of the binarization circuit 25 and only the video signal H19 is connected to the binarization circuit 25.
The beam light image portion irradiated onto the outer periphery of the model 1, which is the target object, is output as “1” and the other portions are output as “ON”.

光像の垂直位置は2値化回路25の出力1が”1”の瞬
間減算器22の出力をデート回路2Tを介して記憶回路
28に記憶させる。
As for the vertical position of the optical image, the output of the instantaneous subtracter 22 when the output 1 of the binarization circuit 25 is "1" is stored in the storage circuit 28 via the date circuit 2T.

光1象の水平位置は、2値化回路25の出力が1”のと
き乗算器26の出力を記憶回路30に記憶させる。
Regarding the horizontal position of one light image, when the output of the binarization circuit 25 is 1'', the output of the multiplier 26 is stored in the storage circuit 30.

この様にして、第5図に示したブロック線図に従い、1
画面の光像についての第3図に示したひとつの走査線S
1に対する垂直位置Δz1と水平位置Δy1とが決定さ
れる。なお1本の走査線lこついてΔZi、Δy1が複
数検出される場合があるがこれをΔZip〜Δzip、
Δ711〜Δy1pとしてそのすべてを決定する。
In this way, according to the block diagram shown in FIG.
One scanning line S shown in Figure 3 regarding the light image on the screen
1, the vertical position Δz1 and horizontal position Δy1 are determined. Note that there are cases where multiple ΔZi and Δy1 are detected for one scanning line l, but these are
All of them are determined as Δ711 to Δy1p.

このITVカメラの1画面からビーム光の平面における
2次元平面、即ちX−Y軸系平面に変換すYj =01
−1×Δyi ) n Xi 1 +(−+−xΔ71 ) ・・・(2)I、n n : ITVカメラの光学的倍率 上記の演算は汎用のマイクロコンピュータ等により行な
う。
Converting one screen of this ITV camera to a two-dimensional plane in the plane of the beam light, that is, an X-Y axis system plane Yj = 01
−1×Δyi ) n Xi 1 +(−+−xΔ71 ) (2) I, n n : Optical magnification of ITV camera The above calculation is performed by a general-purpose microcomputer or the like.

そして、ビーム光2′をモデル1のすべてに照射するた
めにビーム光2′を段階的に上下に駆動する。
Then, in order to irradiate the entire model 1 with the light beam 2', the light beam 2' is driven up and down in steps.

即ち、ビーム光照射装置2は架台8に固定されf−ルネ
ジ軸5に螺合するポールナツトに固定されているので、
ぜ−ルネジ軸5をモーター(図示しない)で回転させる
ことによりビーム光の直径(厚み)Δhの高さだけ架台
8を段階的に2軸に対して上下に駆動する。
That is, since the beam light irradiation device 2 is fixed to the pedestal 8 and fixed to a pole nut that is screwed into the f-rule screw shaft 5,
By rotating the ball screw shaft 5 with a motor (not shown), the pedestal 8 is driven stepwise up and down with respect to the two axes by the height of the diameter (thickness) Δh of the beam light.

そして、ビーム光により形成される平面、即ちX−Y軸
系平面における対象物体であるモデル1の最下端zOか
ら最上端Zmまでビーム光2′の直径Δhごとに、ビー
ム光2′により光像軌跡をめ、ビーム光の直径Δhの変
化ごとのX−Y軸平面における形状データ(Xi、Yi
)をめる。
Then, the beam light 2' creates an optical image for each diameter Δh of the beam light 2' from the lowest end zO to the uppermost end Zm of the model 1, which is the target object, on the plane formed by the beam light, that is, the X-Y axis system plane. Based on the trajectory, shape data (Xi, Yi
).

このようにビーム光2′の直径Δhごとにめられた形状
データ(Xi、Yi)に基づいてこれらのデータをNC
レーデ切断機に入力して、薄板の厚さΔhから、形状デ
ータと同一の型板を作り出す(型板形成手段)。これら
の型板を順次重ね合せることにより対象物体と同一形状
の立体形状を作成する。
Based on the shape data (Xi, Yi) found for each diameter Δh of the beam light 2', these data are NC-processed.
A template identical to the shape data is created from the thickness Δh of the thin plate by inputting it to a Rede cutting machine (template forming means). By sequentially overlapping these templates, a three-dimensional shape having the same shape as the target object is created.

この実施例によれば、人の顔像等を対象物体した形状が
複雑で、表面が柔かい場合であっても容易に立体像を形
成できる。
According to this embodiment, even if the target object, such as a human face image, has a complex shape and a soft surface, a three-dimensional image can be easily formed.

この実施例において、型板形成の際にビーム光の直径と
同じ肉厚の薄板を用いて、対象物体と同一形状としたが
、薄板の肉厚をビーム光の直径△hと一定比率にして、
形状データ(xt、Yi)も一定比率にすることにより
容易の拡大、縮小した立体像を形成できる。また、この
実施例では4台のビーム光照射装置とITVカメラとは
使用したが、第1b図に示す台座9を設けて、台座9を
90゜づつ回転させて1台のビーム光照射装置でビーム
光を照射させてITVカメラで撮像させてもよい。
In this example, when forming the template, a thin plate with the same wall thickness as the diameter of the beam light was used to form the same shape as the target object, but the thickness of the thin plate was set at a constant ratio to the diameter △h of the beam light. ,
By setting the shape data (xt, Yi) to a constant ratio, a three-dimensional image that is easily enlarged or reduced can be formed. In addition, although four beam light irradiation devices and ITV cameras were used in this embodiment, a pedestal 9 shown in FIG. A light beam may be irradiated and an image may be taken with an ITV camera.

次に第6図から第7図により本発明の第2の実施例を説
明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 6 and 7.

第1冥施例においてはビーム光照射手段を一定角度の範
囲で走査する手段を用い、撮影手段として、二次元撮影
装置であるITVカメラを使用した。
In the first example, a means for scanning the beam light irradiation means within a fixed angle range was used, and an ITV camera, which is a two-dimensional photographing device, was used as the photographing means.

第2実施例では第6図に示すようにビーム光12′をY
軸に平行に可動させるとともに撮影手段として一次元撮
影装置である一次元ラインセンサ、カメラを使用した。
In the second embodiment, as shown in FIG.
It was moved parallel to the axis, and a one-dimensional line sensor and camera, which are one-dimensional imaging devices, were used as the imaging means.

以下、説明する。This will be explained below.

第6a図及び第6b図において、12はビーム光12′
の照射するビーム光照射装置で、ビーム光12′は平行
走査のみ行ない第1実施例と異なり一定角度範囲で走査
はしない。ビーム光照射装置12はY軸方向及び2軸方
向に可動できる架台18に固定され、発光源14からY
−Z軸系平面に垂直に直径Δhのビーム光12′を投光
し、架台18をY軸方向に移動させながらビーム光1z
を平行に走査し、対象物体であるモデル1に照射する。
In FIGS. 6a and 6b, 12 is a beam of light 12'
In this beam light irradiation device, the light beam 12' only performs parallel scanning, and unlike the first embodiment, does not scan within a fixed angular range. The beam light irradiation device 12 is fixed to a pedestal 18 movable in the Y-axis direction and two-axis directions.
- A beam of light 12' with a diameter Δh is projected perpendicular to the Z-axis plane, and the beam of light 1z is projected while moving the pedestal 18 in the Y-axis direction.
is scanned in parallel and irradiated the target object, model 1.

Y軸方向の移動は、第1実施例で示したZ軸方向の駆動
と同様にボールナツト及びボールネジ等をステッピング
モータ(図示しない)で可動させる。なお、19はY軸
の位置検出器である。
For movement in the Y-axis direction, the ball nut, ball screw, etc. are moved by a stepping motor (not shown), similar to the drive in the Z-axis direction shown in the first embodiment. Note that 19 is a Y-axis position detector.

また架台18にはビーム光照射装置12のZ軸と平行な
F方に1次元ラインセンサカメラ13を配置して、X−
Y平面に対し1次元ラインセンサカメラ13の光軸が角
度βを為し、かつ、検出方向がX−Z平面と平行となる
ように取りつけられている。
In addition, a one-dimensional line sensor camera 13 is arranged on the pedestal 18 in the F direction parallel to the Z-axis of the beam light irradiation device 12.
The one-dimensional line sensor camera 13 is mounted so that its optical axis forms an angle β with respect to the Y plane, and its detection direction is parallel to the XZ plane.

この実施例においても前述の架台18を4組を配置して
対象物体1のZ軸まわりの全周に関する形状を断点なく
検出しているが、ここではそのうちの1台について説明
している。
In this embodiment as well, four sets of the above-described mounts 18 are arranged to detect the shape of the entire circumference of the target object 1 around the Z-axis without any breaks, and only one of them will be described here.

第7a図及び第7b図は対象物体であるモデル1に対す
るビーム光照射装置12と一次元ラインセンサカメラ1
3との幾何学的な位置関係を示す図であり、(alは立
面図、(b)は正面図である。同図におけるZlはライ
ンセンサカメラ13の光軸と2軸との交点である。
Figures 7a and 7b show a beam light irradiation device 12 and a one-dimensional line sensor camera 1 for a model 1, which is a target object.
(al is an elevation view, (b) is a front view. In the same figure, Zl is the intersection of the optical axis of the line sensor camera 13 and the two axes. be.

一次元ラインセンサカメラ13は第8a図に示すように
光学レンズ50と1次元ラインセンサ51で構成されて
おり、1次元ラインセンサ51は第8b図1b+に示す
ように微少な光検出素子40を1列にEヶ(一般に12
8ケ、256ケ、512ケ、1024ケ・・・・・40
96 )並べたものである。
The one-dimensional line sensor camera 13 is composed of an optical lens 50 and a one-dimensional line sensor 51 as shown in FIG. 8a, and the one-dimensional line sensor 51 has a minute photodetector element 40 as shown in FIG. E numbers in one row (generally 12
8 pieces, 256 pieces, 512 pieces, 1024 pieces...40
96) They are arranged in a row.

いまビーム光照射装置12から照射されたビーム光12
′と対象物体であるモデル1の表面との交点をPlとし
、点P1を一次元ラインセンサカメラ13で撮像したと
きの1次元ラインセンサ上の像Pi’が1次元ラインセ
ンサ51の第0番目の素子に、またZlの像Z’iがE
 / 2番目の素子に結像したとする。第8a図におい
てラインセンサカメラ12の光軸を含み、Y軸に平行な
平面に対して点P1から下した垂線の長さを11、また
1次元ラインセンサ51の1つの素子のライン方向の長
さをΔqとすれば次の関係が成り立つ nニラインセンサカメラの光学系の倍率なお像Pi’が
結像している1次元ラインセンサの素子番号eは次のよ
うにしてめる。
Beam light 12 currently irradiated from beam light irradiation device 12
′ and the surface of the model 1 that is the target object is Pl, and when the point P1 is imaged by the one-dimensional line sensor camera 13, the image Pi′ on the one-dimensional line sensor is the 0th point of the one-dimensional line sensor 51. In addition, the image Z'i of Zl is E
/ Suppose that the image is focused on the second element. In FIG. 8a, the length of a perpendicular line drawn from point P1 to a plane including the optical axis of the line sensor camera 12 and parallel to the Y axis is 11, and the length of one element of the one-dimensional line sensor 51 in the line direction is 11. If Δq is the magnification of the optical system of the n-line sensor camera, the element number e of the one-dimensional line sensor on which the image Pi′ is formed is determined as follows.

第8b図に示すように1次元ラインセンサ51の谷素子
には受光量(光の強弱×受光時間)に応じて載荷Δqが
発生する。
As shown in FIG. 8b, a load Δq is generated in the valley element of the one-dimensional line sensor 51 according to the amount of light received (light intensity x light reception time).

41は各素子に貯わえられた電荷を電荷/電圧変換器4
2へ接続するためのスイッチであり、制御回路43から
の切換え信号CH8によって第1番目の素子からΔT待
時間とに順に1ケずつ開閉する。(同時には1ケのスイ
ッチのみが開で他はすべて閉となっている。) 第8C図は各素子の電荷が電荷/1を圧変換器42で゛
螺圧に変換された後の出力螺圧波形である。
41 converts the charge stored in each element into a charge/voltage converter 4
2, and is opened and closed one by one from the first element in response to the switching signal CH8 from the control circuit 43 during the ΔT waiting time. (At the same time, only one switch is open and all others are closed.) Figure 8C shows the output screw after the charge of each element is converted from charge/1 to screw pressure by the pressure converter 42. It is a pressure waveform.

第1番目から第8番目までの素子のうち第0番目の素子
にはビーム光像が結像されているため、他の素子の出力
に比べて高いレベルの出力が得うれる。
Since a beam light image is formed on the 0th element among the 1st to 8th elements, a higher level of output can be obtained compared to the outputs of the other elements.

第9図は1次元ラインセンサ出力から素子番号eを検出
する回路である。
FIG. 9 shows a circuit for detecting the element number e from the one-dimensional line sensor output.

カウンタ44はスイッチ開閉信号の数を計数するための
計数器であり、第1番目のスイッチ開閉信号が出力され
る直前に制御回路43から出方されるスイッチ開閉開始
信号STBで0にリセットされ、次のSTB信号までに
制御回路43がら出力されるスイッチ開閉信号SO8の
数を計数する。したかってカウンタ44の出力によって
現在開閉されているスイッチの番号を検知できる。
The counter 44 is a counter for counting the number of switch opening/closing signals, and is reset to 0 by the switch opening/closing start signal STB output from the control circuit 43 immediately before the first switch opening/closing signal is output. The number of switch opening/closing signals SO8 outputted from the control circuit 43 until the next STB signal is counted. Therefore, the number of the switch currently being opened or closed can be detected from the output of the counter 44.

2値化回路45は電荷/電圧変換器42の出力電圧を明
″1”暗″0”という°論理的な2値に変換する回路で
あり、対象物体であるモデル1の表面上でビーム光が照
射されている部分(pt点、)を61”、それ以外を1
0”として出力する。
The binarization circuit 45 is a circuit that converts the output voltage of the charge/voltage converter 42 into logical binary values of bright "1" and dark "0". The area where is irradiated (pt point) is 61", the rest is 1"
Output as 0".

r−ト回路46は2値化回路45の出力が1”(明)の
瞬間のカウンタ44の出力を記憶回路48へ出力し、記
憶させる。
The r-to circuit 46 outputs the output of the counter 44 at the moment when the output of the binarization circuit 45 is 1" (bright) to the storage circuit 48, and stores it.

次に架台18は前述のごとくY軸方向、Z軸方向に移動
でき、2ケの位置検出器lこより各軸に対する現在位置
を検出している。デート回路47は2値化回路46の出
力が’1”(明)の瞬間のY軸の位置検出器の出力を記
憶回路49へ出力し記憶回路48と対応して(順を合わ
せて)記憶させる。これをY軸方向に第7a図の点0か
ら点Ymまでビーム光の直径Δhのピッチで架台18を
動かしながら繰りかえす。
Next, as described above, the pedestal 18 can move in the Y-axis direction and the Z-axis direction, and the current position with respect to each axis is detected by two position detectors. The date circuit 47 outputs the output of the Y-axis position detector at the moment when the output of the binarization circuit 46 is '1' (bright) to the memory circuit 49, and stores it in correspondence with the memory circuit 48 (in the same order). This is repeated while moving the pedestal 18 in the Y-axis direction from point 0 to point Ym in FIG. 7a at a pitch of the diameter Δh of the beam light.

ところで第7b図において、点P1のZ軸からのX軸方
向の長さxlは 1 ・・・・・〔4〕 xi =″!iX5 でめられ〔4〕式を用いて 1 E 1 x1=−X [(−−e ) Xへ]×□、ア2 ・・・・・〔5〕 となる。
By the way, in Fig. 7b, the length xl of the point P1 in the X-axis direction from the Z-axis is determined by 1...[4] xi =''!iX5, and using the formula [4], 1 E 1 x1= -X [(--e) to X]×□, A2...[5].

またこのときのY座標Y1はY軸の位置検出器の値であ
る。〔5〕式の演算は電子回路やマイクロコンピュータ
などを用いて行ない、対象物体1のX−Y平面と平行な
断面形状をめる。
Further, the Y coordinate Y1 at this time is the value of the Y-axis position detector. The calculation of formula [5] is performed using an electronic circuit, a microcomputer, etc., and the cross-sectional shape of the target object 1 parallel to the X-Y plane is determined.

断面形状に基づいて型板を形成し、立体形状を形成する
のは第1実施例と同様である。
Forming a template based on the cross-sectional shape to form a three-dimensional shape is the same as in the first embodiment.

この実施例によれば、第1実施例の効果に加えて、1次
元ライセンサカメラを使用しているので装置全体のコス
トを低減させることができる。
According to this embodiment, in addition to the effects of the first embodiment, since a one-dimensional licensor camera is used, the cost of the entire apparatus can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図及び第1b図は本発明の第1実施例の平面及び
立面の概略図である。 第2a図及び第2b図は同実施例の対象物体の光像を計
測するための説明図である。 第6図は同実施例のITVカメラ(二次元撮像装置)の
画面を示す図である。 第4図は、第6図に示す画面の走査状態を示す図である
。 第5図は、同実施例の断面形状演算のためのデータ処理
を示すブロック線図である。 第6a図及び第6b図は本発明の第2実施例の平面及び
立面の概略図である。 第7a図及び第7b図は同実施例の対象物体の光像を計
測するための説明図である。 第8a図、第8b図及び第8c図は同実施例の一次元ラ
インセンサカメラ(撮像装置)の撮像状態を示す図であ
る。 第9図は同実施例の断面形状演算のためのデータ処理を
示すブロック線図である。 (符号の説明) 1・・・モデル(対象物体) 2.12・・・ビーム光照射装置 2’ 、 12’・・・ビーム光 3・・・ITVカメラ(二次元撮像装置)5・・・ボー
ルネジ 6・・・ポールナツト 7・・・案内柱 8.18・・・架台 13・・・−次元ラインセンサカメラ(−次元撮像装置
) 代理人 浅 村 皓 第60図 第6b図 第7b図 第80図 第8b図 第80図 手続補正書(方式) %式% 1、事件の表示 昭和59年特g’「願第 77212 号2、発明の名
称 立体形状成形装置 3、補正をする者 事1′Fとの関係 特許出願人 0・所 略称)川崎重工業株式会社 4、代理人 昭和59年7月31日 5、補正により増加する発明の数 1、 明細書第7頁第9行の「第2a図及び第2b’図
」を「第2図」に訂正する。 λ、同第21頁第1行の「第2a図及び第2b図」を「
第2図」に訂正する。 モT」埼士缶ヰ↓丁
Figures 1a and 1b are schematic plan and elevation views of a first embodiment of the invention. FIGS. 2a and 2b are explanatory diagrams for measuring an optical image of a target object in the same embodiment. FIG. 6 is a diagram showing the screen of the ITV camera (two-dimensional imaging device) of the same embodiment. FIG. 4 is a diagram showing the scanning state of the screen shown in FIG. 6. FIG. 5 is a block diagram showing data processing for calculating the cross-sectional shape of the same embodiment. Figures 6a and 6b are schematic plan and elevation views of a second embodiment of the invention. FIGS. 7a and 7b are explanatory diagrams for measuring an optical image of a target object in the same embodiment. FIGS. 8a, 8b, and 8c are diagrams showing the imaging state of the one-dimensional line sensor camera (imaging device) of the same embodiment. FIG. 9 is a block diagram showing data processing for calculating the cross-sectional shape of the same embodiment. (Explanation of symbols) 1...Model (target object) 2.12...Beam light irradiation device 2', 12'...Beam light 3...ITV camera (two-dimensional imaging device) 5... Ball screw 6...Pole nut 7...Guiding column 8.18...Base 13...-dimensional line sensor camera (-dimensional imaging device) Agent Akira Asamura Fig. 60 Fig. 6b Fig. 7b Fig. 80 Figure 8b Figure 80 Procedural amendment (method) % formula % 1. Indication of the case 1982 special g''Application No. 77212 2. Name of the invention Three-dimensional shape forming device 3. Person making the amendment 1' Relationship with F Patent applicant 0, company abbreviation) Kawasaki Heavy Industries Co., Ltd. 4, agent July 31, 1982 5, number of inventions increased by amendment 1, "Article 2a on page 7, line 9 of the specification""Figure2b'" is corrected to "Figure 2". λ, "Figures 2a and 2b" in the first line of page 21 of the same page are replaced with "Figures 2a and 2b".
Figure 2 has been corrected. MoT”Saishikan ↓ Ding

Claims (1)

【特許請求の範囲】[Claims] (1) 立体形状を有する対象物体から立体形状を作成
する装置であって、 ビーム光を前記対象物体の水平方向に一定範囲で走査さ
せるビーム光照射手段と、 前記対象物体の水平方向における同一水平面上の全周を
、前記ビーム光照射手段のビーム光を照射させる全周照
射手段と、 前記全周照射手段の対象物体への垂直位置を可動させる
垂直位置可動手段と、 前記全周照射手段及び垂直位置可動手段により対象物体
に照射されたビーム光による同一水平面上における対象
物体の表面の光像を連続的に撮像する撮像手段と、前記
撮像手段により得られる光像の軌跡形状と前記ビーム光
照射手段及び前記撮像手段との幾可学的関係から、前記
水平面に関する前記対象物体表面の断面形状を計測する
断面計測手段と、 前記計測された対象物体表面の断面形状ζこ基づいて、
前記ビーム光の直径に一定比率の肉厚を有する薄板で、
前記断面形状に同一もしくは相似の形状の型板を作成す
る盤板形成手段と、を備え、前記彫版を重ね合せること
により立体形状を成形することを特徴とする立体形状成
形装置。
(1) An apparatus for creating a three-dimensional shape from a target object having a three-dimensional shape, comprising: a beam light irradiation means for scanning a beam light in a certain range in the horizontal direction of the target object; and a same horizontal plane in the horizontal direction of the target object. All-around irradiation means for irradiating the entire circumference of the upper part with the beam light of the beam light irradiation means; Vertical position movable means for moving the vertical position of the all-around irradiation means with respect to the target object; The all-around irradiation means; an imaging means for continuously capturing optical images of the surface of the target object on the same horizontal plane by beam light irradiated onto the target object by the vertical position movable means; and a locus shape of the light image obtained by the imaging means and the beam light. a cross-sectional measuring means for measuring the cross-sectional shape of the surface of the target object with respect to the horizontal plane from the geometrical relationship between the irradiation means and the imaging means; and based on the measured cross-sectional shape ζ of the surface of the target object,
A thin plate having a wall thickness that is a certain ratio to the diameter of the beam light,
A three-dimensional shape forming apparatus comprising: a board forming means for creating a template having the same or similar shape to the cross-sectional shape, and forming a three-dimensional shape by overlapping the engravings.
JP7721284A 1984-04-17 1984-04-17 Device for forming solid shaft Pending JPS60220804A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7721284A JPS60220804A (en) 1984-04-17 1984-04-17 Device for forming solid shaft
DE8585104269T DE3584642D1 (en) 1984-04-17 1985-04-09 DEVICE FOR GENERATING A THREE-DIMENSIONAL COPY OF AN OBJECT.
AT85104269T ATE69400T1 (en) 1984-04-17 1985-04-09 DEVICE FOR CREATING A THREE-DIMENSIONAL COPY OF AN OBJECT.
US06/721,451 US4752964A (en) 1984-04-17 1985-04-09 Method and apparatus for producing three-dimensional shape
EP85104269A EP0163076B1 (en) 1984-04-17 1985-04-09 Apparatus for producing a three-dimensional copy of an object
CA000478699A CA1257682A (en) 1984-04-17 1985-04-10 Method and apparatus for producing three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7721284A JPS60220804A (en) 1984-04-17 1984-04-17 Device for forming solid shaft

Publications (1)

Publication Number Publication Date
JPS60220804A true JPS60220804A (en) 1985-11-05

Family

ID=13627520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7721284A Pending JPS60220804A (en) 1984-04-17 1984-04-17 Device for forming solid shaft

Country Status (1)

Country Link
JP (1) JPS60220804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196502A (en) * 1987-12-09 1989-08-08 Soc Natl Etud Constr Mot Aviat <Snecma> Non-contact inspection method and apparatus for geometric contour

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2189592A (en) * 1937-03-11 1940-02-06 Perera Bamunuarchige Victor Process of making relief maps
US3539410A (en) * 1967-11-20 1970-11-10 Gen Photogrammetric Services L Relief models
US3884577A (en) * 1973-01-08 1975-05-20 Richard A Carpentier Methods and apparatus for object reproduction
JPS54114264A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Screw inspection method
JPS56167118A (en) * 1980-05-28 1981-12-22 Katsuya Yamada Scanner of optical system
JPS5726706A (en) * 1980-07-24 1982-02-12 Mitsubishi Electric Corp Detector for shape of body
JPH0216842A (en) * 1988-07-05 1990-01-19 Komatsu Ltd Circuit for detecting disconnection of balanced transmission line

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2189592A (en) * 1937-03-11 1940-02-06 Perera Bamunuarchige Victor Process of making relief maps
US3539410A (en) * 1967-11-20 1970-11-10 Gen Photogrammetric Services L Relief models
US3884577A (en) * 1973-01-08 1975-05-20 Richard A Carpentier Methods and apparatus for object reproduction
JPS54114264A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Screw inspection method
JPS56167118A (en) * 1980-05-28 1981-12-22 Katsuya Yamada Scanner of optical system
JPS5726706A (en) * 1980-07-24 1982-02-12 Mitsubishi Electric Corp Detector for shape of body
JPH0216842A (en) * 1988-07-05 1990-01-19 Komatsu Ltd Circuit for detecting disconnection of balanced transmission line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196502A (en) * 1987-12-09 1989-08-08 Soc Natl Etud Constr Mot Aviat <Snecma> Non-contact inspection method and apparatus for geometric contour

Similar Documents

Publication Publication Date Title
US4752964A (en) Method and apparatus for producing three-dimensional shape
US5329597A (en) Device and method for measuring angles of a work
US4203064A (en) Method for automatically controlling the position of small objects
US8310534B2 (en) Three-dimensional model data confirming method, and three-dimensional model data confirming apparatus
JPH0425583B2 (en)
CN106964907A (en) A kind of method and apparatus of laser cutting
JP2923199B2 (en) Bending angle detecting device, straight line extracting device used therefor, and bending angle detecting position setting device
JPS60220805A (en) Device for forming solid shape
JPS60220804A (en) Device for forming solid shaft
KR910000185B1 (en) Method and apparatus for producing three-dimensional shape
JPS6093424A (en) Method and device for forming material body having the same shape as objective material body from objective thing
WO1994014084A1 (en) Process and device for taking a distance image
JPS6189505A (en) Forming method and apparatus of solid body
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JPS60118399A (en) Method and device for forming object having the same shape as shape of target object from target object
JPH076772B2 (en) Cross-sectional area and volume measuring device
JP2545151B2 (en) Angle measuring device
JPH0787951B2 (en) Die identification device for punch press by optical fiber
JPS6236505A (en) Detecting system for position of pattern
JPH03184625A (en) Method and device for working plate
JPS5822689A (en) Sensor device for robot
JPS60165505A (en) Method and device for forming body in the same shape with objective body
JPS5993293A (en) Visual device for robot
JPH04164205A (en) Three dimensional image analysis device
JPH0474155B2 (en)