JPS60220715A - Continuous forming process of carbon fiber reinforced plastic cylinder - Google Patents

Continuous forming process of carbon fiber reinforced plastic cylinder

Info

Publication number
JPS60220715A
JPS60220715A JP59065158A JP6515884A JPS60220715A JP S60220715 A JPS60220715 A JP S60220715A JP 59065158 A JP59065158 A JP 59065158A JP 6515884 A JP6515884 A JP 6515884A JP S60220715 A JPS60220715 A JP S60220715A
Authority
JP
Japan
Prior art keywords
zone
resin
temperature
carbon fiber
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59065158A
Other languages
Japanese (ja)
Other versions
JPH0119335B2 (en
Inventor
Takahiko Watanabe
渡辺 隆比古
Mineichi Kodama
児玉 峰一
Toshiyuki Sugano
俊行 菅野
Kunihiko Murayama
邦彦 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59065158A priority Critical patent/JPS60220715A/en
Publication of JPS60220715A publication Critical patent/JPS60220715A/en
Publication of JPH0119335B2 publication Critical patent/JPH0119335B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To draw form the CFRP having no breakages or orientation disorders of fibers, high strength and a thin wall by dividing a pultrusion hot die into three parts, i.e. a resin drawing zone, a gelling zone and a curing zone, and regulating the temperature of each part independently. CONSTITUTION:A carbon fiber prepreg 7 wound on a mandrel 8 is passed through the hot die 10 divided into three parts, and is drawn in (C) direction at take up mechanism 9. Thus, a cylindrical CFRP may be formed. The temperature of the resin drawing zone 11 with 4-6 deg. drawing angle (a) is slightly low, and the temperature of gellation zone 12 is sufficient for gellation of the resin for impregnation, and then the curing zone 13 has slightly large inner diameter and its temperature is kept by controlling at the sufficient temperature for curing the resin. The drawing angle (a) is caused to be a suitable angle, and in the front half part of the gelling zone 12 the resin for impregnation gels perfectly, and then in the curing zone 13 the resin is cured at uncontact condition, whereby CFRP having no defects or orientation disorders of the fibers, high strength and a thin wall may be manufactured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、炭素繊維強化プラスチック(以下0FRP
と略称する)円筒の連続成形方法に関し。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to carbon fiber reinforced plastic (hereinafter referred to as 0FRP).
Regarding continuous cylindrical forming method.

特に大型宇宙構造体用部材として用いられるような軽量
、長尺で高い機械的強度を有する0FRP薄肉円筒の連
続成形にも適用できる方法に関するものである。
In particular, the present invention relates to a method that can be applied to continuous molding of thin-walled 0FRP cylinders that are lightweight, long, and have high mechanical strength, such as those used as members for large space structures.

〔従来技術〕[Prior art]

熱硬化性樹脂を含浸してマトリクスとした繊維強化プラ
スチック(以下FRPと略称する)円筒のような一定断
面形状を有する長尺成形品の連続成形方法としては引抜
成形方法がよく知られており。
A pultrusion method is well known as a continuous molding method for a long molded product having a constant cross-sectional shape, such as a cylinder made of fiber-reinforced plastic (hereinafter referred to as FRP) impregnated with a thermosetting resin to form a matrix.

従来から強化材としてガラス繊維を用いた厚肉の絶縁管
や耐食管などの製造が実際に行なわれている。
BACKGROUND ART Thick-walled insulating pipes, corrosion-resistant pipes, and the like have been manufactured using glass fiber as a reinforcing material.

第1図は従来の引抜成形方法を説明する断面図である。FIG. 1 is a sectional view illustrating a conventional pultrusion method.

図において、(1)は熱硬化性樹脂を含浸した繊維集合
体、(2)は芯金、(3)は引取り機構であり。
In the figure, (1) is a fiber aggregate impregnated with a thermosetting resin, (2) is a core bar, and (3) is a take-off mechanism.

この例ではローラ、(4)は加熱成形型すなわちホット
ダイ、(5)はホットダイ(41入口の絞り部、(6)
は平たん部である。
In this example, the roller, (4) is a hot mold, or hot die, (5) is a hot die (41 inlet constriction part, (6)
is the flat part.

次に成形方法について説明する。熱硬化性樹脂を含浸し
た繊維集合体(11を芯金(2)に巻付け、これを引取
り機構(3)を矢印人の方向に回転させること罠より矢
印Bの方向に移東1j シ、ホットダイ(4)入口の絞
りMX151で上記繊維集合体から余分な樹脂を除去す
ると共圧全体の外形を整え、平たん部(6)で硬化を行
ない円筒状の成形品を得る。
Next, the molding method will be explained. Wrap the fiber aggregate (11) impregnated with a thermosetting resin around the core bar (2), and move it from the trap in the direction of arrow B by rotating the take-up mechanism (3) in the direction of arrow B. Excess resin is removed from the fiber aggregate by the aperture MX151 at the entrance of the hot die (4), the outer shape of the entire co-pressure is adjusted, and the flat part (6) is cured to obtain a cylindrical molded product.

しかしながら、このような成形方法では1例えば大型宇
宙構造体用部材として用いられるような。
However, such a molding method is used, for example, as a member for a large space structure.

強化繊維として炭素繊維を用いその比強度および比弾性
率の優位性を生かした軽量、薄肉の0FRP長尺円筒の
成形には充分対応できない。すなわち。
Using carbon fiber as a reinforcing fiber and taking advantage of its superior specific strength and specific modulus cannot be adequately applied to the molding of lightweight, thin-walled 0FRP long cylinders. Namely.

このような成形品には必要強度に対する極限の軽量化が
要求され、その為には薄肉化と成形精度による30M%
(複合剤による理論値に対する成形品の強度保持率)の
向上が必要であるが、従来の成形方法ではこの30M%
に対する配慮がなされていない。
Such molded products are required to be as light as possible to meet the required strength, and to achieve this, it is necessary to reduce the weight by 30M% through thinner walls and molding precision.
It is necessary to improve the strength retention rate of the molded product against the theoretical value due to the composite agent, but conventional molding methods can only achieve this by 30M%.
No consideration has been given to

従来の引抜成形方法は厚肉品を対称としたものが主であ
り、余分の熱硬化性樹脂の除去量が多いため2例えば、
絞り部(5)の絞り角度を大きくするかあるいは多段絞
りが行なわtているが、このことは本来脆性を有する炭
素繊維を折れやすくする。
Conventional pultrusion molding methods are mainly for thick-walled products, and a large amount of excess thermosetting resin is removed.2For example,
The drawing angle of the drawing part (5) is increased or multistage drawing is performed, but this makes the carbon fiber, which is inherently brittle, more likely to break.

また、絞り剖(5)での逆張力を抑えるため熱硬化性樹
脂のゲル化がホットダイ(4)の後半になるように引抜
き速度や温度を設定しており、このことは流動状態での
移動距離が長くなり繊維の配向乱れが生じやすく、何れ
も30M%を低下させる原因となっていた。
In addition, in order to suppress the reverse tension in the drawing process (5), the drawing speed and temperature are set so that the thermosetting resin gels in the latter half of the hot die process (4). As the distance becomes longer, the orientation of the fibers is more likely to be disturbed, both of which cause a decrease in 30M%.

〔発明の概要〕[Summary of the invention]

この発明は以上のような従来のものの欠点を除去するた
めになされたもので、ホットダイを樹脂絞りゾーン、樹
脂ゲル化ゾーン、および樹脂硬化ゾーンの3個のゾーン
で構成し、これら谷ゾーンをそれぞれ個別に温度調節し
、かつ上記樹脂ゲル化ゾーンの前半部でゲル化を完了さ
せるようにすることにより、炭素繊維の折れや配向乱れ
忙起因するROM%低下の少ない0FRP円筒を連続的
に得ることを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional method, and consists of a hot die consisting of three zones: a resin squeezing zone, a resin gelling zone, and a resin hardening zone. By adjusting the temperature individually and completing gelation in the first half of the resin gelation zone, it is possible to continuously obtain 0FRP cylinders with less reduction in ROM% due to bending and disordered orientation of carbon fibers. It is an object.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図をもとに説明する。第2
図はこの発明の一実施例による方法を説明する断面図、
第3図は第2図の一部を拡大して示す断面図である。図
において、(7)は熱硬化性樹脂を含浸した炭素繊維プ
リプレグであり、一般には、繊維を熱硬化性樹脂槽(図
示せず)に通して含浸させながら使用する場合と、あら
かじめ熱硬化性樹脂を含浸させたシート状もしくはテー
プ状のもの(プリプレグ)を用いる場合とがあるが。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is a sectional view illustrating a method according to an embodiment of the present invention.
FIG. 3 is an enlarged sectional view of a part of FIG. 2. In the figure, (7) is a carbon fiber prepreg impregnated with a thermosetting resin. Generally, the fibers are used while being impregnated by passing them through a thermosetting resin bath (not shown), or the fibers are pre-impregnated with a thermosetting resin. In some cases, a sheet or tape-like material (prepreg) impregnated with resin is used.

炭素繊維の場合は、折れるのを極力抑えるために後者を
用いるのが好ましい。(8)は芯金、(9)は引取り機
構、QOはホットダイ、Iは樹脂絞りゾーン。
In the case of carbon fibers, it is preferable to use the latter in order to minimize breakage. (8) is the core bar, (9) is the take-off mechanism, QO is the hot die, and I is the resin drawing zone.

02は樹脂ゲル化ゾーン、住jは樹脂硬化ゾーン、 +
141は樹脂絞りゾーンの平たん都、19は断熱用温度
調節機構である。
02 is the resin gelling zone, J is the resin curing zone, +
141 is a flat cap of the resin squeezing zone, and 19 is a temperature control mechanism for heat insulation.

次に形成方法について説明する。熱硬化性樹脂を含浸し
た炭素繊維プリプレグのテープまたはシートを芯金(8
)に巻付け、これを引取り機構(9)でつかんで矢印0
の方向に移動することにより、ホットダイa値を通して
連続的に引抜く。ホットダイQ[Iは樹脂しぼりゾーン
aυ、樹脂ゲル化ゾーン(LZ、樹脂硬化ゾーン0列の
3個の円筒状のゾーンで構成され、各ゾーンaυ、 (
12,+13はそれぞれ個別に温度調節されている。し
かも各ゾーンaυ、 (12,Q3は、後での分解掃除
を容易にするため0円筒の軸に平行な断面方向に例えば
2つに割れる合せ型構造になっている。
Next, the formation method will be explained. A tape or sheet of carbon fiber prepreg impregnated with thermosetting resin is attached to a core bar (8
), grab it with the take-up mechanism (9) and follow the arrow 0.
By moving in the direction of , continuously pull through the hot die a value. Hot die Q [I is composed of three cylindrical zones: a resin squeezing zone aυ, a resin gelling zone (LZ, and 0 rows of resin curing zones), and each zone aυ, (
12 and +13 are individually temperature controlled. Moreover, each zone aυ, (12, Q3 has a mating structure that can be split into two, for example, in a cross-sectional direction parallel to the axis of the zero cylinder, in order to facilitate later disassembly and cleaning.

芯金(8)に巻付けられた炭素繊維プリプレグすなわち
繊維集合体(7)は樹脂絞りゾーンa9通過時に所定の
加熱により一旦流動状態に戻され、余分の樹脂が絞り作
用により除去されると共に、平たん部Iで全体の外径が
整えられ、さらに繊維が引き揃えられ1次の樹脂ゲル化
ゾーンf13に移動して行く。
The carbon fiber prepreg, that is, the fiber aggregate (7) wound around the core metal (8) is once returned to a fluid state by a predetermined heating when passing through the resin squeezing zone a9, and the excess resin is removed by the squeezing action. The overall outer diameter is adjusted in the flat portion I, and the fibers are further aligned and moved to the primary resin gelling zone f13.

なお、樹脂硬化ゾーンc111の絞り角度は炭素繊維の
折れを防ぐためかなシ小さくなっており、その角度は4
°〜6°の範囲内であることが好ましい。この範囲は種
々の検討結果から設定されたものであシ。
The squeezing angle of the resin curing zone c111 is made small to prevent the carbon fiber from breaking, and the angle is 4.
Preferably, the angle is within the range of 6° to 6°. This range was set based on the results of various studies.

6°以上では80M%の低下、4°以下では絞シ効果の
低下による逆張力の増加が顕著になるためである。また
、樹脂絞りゾーン(Il+は、゛含浸されている熱硬化
性樹脂がほとんどゲル化を起こすことが無<、シかも粘
度が最低となるような比較的低い温度(例えば90°C
±10°Cであジこの例では90°)に調節されている
のに対し1次の樹脂ゲル化ゾーン02では前半の短い移
駿距離でゲル化を完了させるよう高温(例えば140°
C±20°Cであシこの例で1d140°C)に調節さ
れており、しかもこれら両ゾーンaD、α2の連結部は
炭素繊維の折れを防ぐため密着した形になっている。し
たがって、この連結部での温度差が約50°C〜100
°Cになシロゾーンan、 a’tr全体の温度調節だ
けでは不充分なため、樹脂絞シゾーンtillの平たん
都住4に1例えば熱または冷媒の循環路のような温度調
節機構(ハ)が組み込まれている。、(矢印りは熱およ
び冷媒の流れる方向を示す。)このため、絞シゾーン+
Ill内でのゲル化は起こり難り、万が−にもゲル化が
生じてもその範囲は平たん部a4にととまり、逆張力の
増加には結びつかない。
This is because when the angle is 6 degrees or more, there is a decrease of 80 M%, and when it is 4 degrees or less, the reverse tension increases significantly due to a decrease in the squeezing effect. In addition, the resin squeezing zone (Il+) is set at a relatively low temperature (for example, 90
±10°C (in this example, 90°), whereas in the primary resin gelation zone 02, the temperature is adjusted to a high temperature (for example, 140°) to complete the gelation in the short first half.
C±20°C (1d140°C in this example), and the connecting portions of both zones aD and α2 are in close contact to prevent the carbon fibers from breaking. Therefore, the temperature difference at this connection is approximately 50°C to 100°C.
Since it is not enough to control the temperature of the entire temperature zone at °C, a temperature control mechanism (c), such as a heat or refrigerant circulation path, is required for the flat Tsuzumi 4 of the resin-wrapped zone. It has been incorporated. , (arrows indicate the direction of flow of heat and refrigerant.) Therefore, the restriction zone +
Gelation within Ill is difficult to occur, and even if gelation occurs, it will be confined to the flat portion a4 and will not lead to an increase in reverse tension.

樹脂絞りゾーン+111から樹脂ゲル化ゾーンa3に移
動して来た芯金(8)に巻付けらjた繊維集合体(7)
の熱硬化性樹脂は、上述のように樹脂ゲル化ゾーンf1
2が高温に設定されているためM′c)にゲル化を起こ
し、短時間すなわち前半の比較的短い移動距離の間に一
定のケル化状態に達するため、その後の繊維の配向乱れ
は起こシ難い。したがって、成形品の形状が変形しガい
程度までのゲル化を樹脂ゲル化ゾーン(I2で行なえば
、後は熱のみの硬化を完全にさせるだけでよいので、樹
脂硬化ゾーンα騰の径は成形品(7)の径すなわち樹脂
ゲル化ゾーンα2のいる。
Fiber aggregate (7) wrapped around the core bar (8) that has moved from the resin squeezing zone +111 to the resin gelling zone a3
As described above, the thermosetting resin of
2 is set at a high temperature, gelation occurs in M'c), and a certain gelation state is reached during a short period of time, that is, a relatively short moving distance in the first half, so that the subsequent fiber orientation is disturbed. hard. Therefore, if gelation is carried out in the resin gelling zone (I2) to the extent that the shape of the molded product is deformed, all that is left is to complete the curing with heat, so the diameter of the resin curing zone α is The diameter of the molded product (7), that is, the resin gelation zone α2 exists.

このように、上述の実施例によれば、樹脂絞りゾーンa
υの絞9角度を4°〜6°と小さくシ、樹脂絞りゾーン
aυと樹脂ゲル化ゾーンazとの間に間隙を設けないで
両者を連結することによシ炭素繊維の折れを極力抑える
と共に、樹脂ゲル化ゾーンα2でのゲル化を前半の短か
い移動距離で行なわせることによシ繊維の配向乱れを無
くすることができる。
Thus, according to the embodiment described above, the resin squeezing zone a
By reducing the drawing angle of υ to 4° to 6° and connecting the resin drawing zone aυ and the resin gelling zone az without creating a gap between them, bending of the carbon fibers can be suppressed as much as possible. By performing gelation in the resin gelation zone α2 over a short moving distance in the first half, disordered orientation of the fibers can be eliminated.

これは、樹脂絞シゾーンt111と樹脂ゲル化ゾーンα
2との間に、ゾーンu、 Q2全体の温度調節機構(図
示せず)の他に断熱用温度調節機構を組み込むことによ
シロそれぞれのゾーンαB、α2が完全に独立して温度
調節できるようにしたためで、樹脂絞りゾーンO1内で
のゲル化発生による逆張力の増加が無くなり、繊維の折
れや配向乱れに起因するROM%低下の少ない0FRP
薄肉円筒を連続的に得ることができる。
This is the resin squeezing zone t111 and the resin gelling zone α
In addition to the temperature control mechanism (not shown) for the entire zones u and Q2, an adiabatic temperature control mechanism is incorporated between the zones αB and α2 so that the temperature of each zone αB and α2 can be adjusted completely independently. As a result, there is no increase in reverse tension due to gelation in the resin squeezing zone O1, and 0FRP has less ROM% decrease due to fiber bending and orientation disorder.
Thin cylinders can be obtained continuously.

なお、上記実施例では引取シ機楡(9)として第2図に
示すものについて説明したが、これに限らず。
In addition, in the above embodiment, the collection machine frame (9) shown in FIG. 2 has been described, but the present invention is not limited to this.

例えば第1図に示すローラ(3)など他のものであって
もよい。
For example, other rollers such as the roller (3) shown in FIG. 1 may be used.

また、上記実施例では樹脂絞シゾーンαBに断熱用温度
調節機構α9を設けた場合について説明したが、樹脂ゲ
ル化ゾーンα2に設けてもよい。ただしこの場合は0両
ゾーンαn、 a”aの連結の状態は、第3図とは逆圧
樹脂絞シゾーンfiυが凹み、樹脂ゲル化ゾーンa2が
突出している力が望ましい。また。
Further, in the above embodiment, a case has been described in which the heat-insulating temperature adjustment mechanism α9 is provided in the resin squeezing zone αB, but it may be provided in the resin gelling zone α2. However, in this case, the state of connection of both zones αn and a"a is preferably such that the reverse pressure resin squeeze zone fiυ is depressed and the resin gelation zone a2 is protruded, which is different from that shown in FIG. 3.

熱硬化性樹脂の稲畑など場合によっては断熱用温度調節
機構α9が無くても上記実施例と同様の効果を奏する。
In some cases, such as rice fields made of thermosetting resin, the same effects as in the above embodiment can be achieved even without the heat-insulating temperature control mechanism α9.

また、上記実施例では接触抵抗による逆張力を低く抑え
るために樹脂硬化ゾーンα9の径を樹脂ゲル化ゾーンα
2の径よシ若干大きくした場合について説明したが、必
ずしも太きくシカ<てもかなりの80M%の向上が期待
できる。
In addition, in the above embodiment, in order to suppress the reverse tension due to contact resistance, the diameter of the resin hardening zone α9 was changed to the diameter of the resin gelling zone α9.
We have explained the case where the diameter is slightly larger than that of 2, but even if it is not necessarily thicker, a considerable improvement of 80M% can be expected.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ホットダイを樹脂絞
シゾーン、樹脂ゲル化ゾーン、および樹脂硬化ゾーンの
3個のゾーンで構成し、これら各ゾーンをそれぞれ個別
に温度調節し、かつ上記樹脂ゲル化ゾーンの前半部でゲ
ル化を完了させるようにしたので、炭素繊維の折れや配
向乱れに起因するROM低下の少ない0FRP円筒を連
続的に得ることができる効果がある。
As described above, according to the present invention, the hot die is composed of three zones: a resin drawing zone, a resin gelling zone, and a resin curing zone, and each of these zones is individually temperature-controlled, and the resin gelling zone is Since gelation is completed in the first half of the gelation zone, it is possible to continuously obtain 0FRP cylinders with less ROM deterioration due to bending or disordered orientation of carbon fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の引抜成形方法を説明する断面図。 第2図はこの発明の一実施例による成形方法を説”、′
A 、―する断面図、第3図は第2図の一部を拡大して゛示
す断面図である。 図において、(1)は熱硬化性樹脂を含浸した繊維集合
体、 +21. +81は芯金、+31. (91は引
取り機構、 +41゜α〔はホットダイ、(5)は絞シ
部、(6)は平たん部、(7)は炭素繊維プリプレグ、
αBは樹脂絞りゾーン、(12は樹脂ゲル化ゾーン、α
9は樹脂硬化ゾーンである。 々お5図中同一符号は同一または相当部分な示すものと
する。 出願人 工業技術院長 用田裕部 痛 1 凶 箔 2 旧 第 3 囚 手続補正書(自発) 昭和60年号月λλ日 特許庁長官殿 1、事件の表示 %願昭59−65158 号2、発明
の名称 炭素繊維強化プラスチツク円節の連続成形方法4、補正
をする者 住所 同 所 氏名 工業技術院 次世代産業技術企画官室シ話(50
1)1511内線4601〜46054 補正の対象 明a書の発明の詳細な説明の掴 5、補正の内容 (υ 明細書の第5頁第8行〜9行の「(7)は熱硬化
性樹脂を」を「(7)は熱硬化性樹脂(この例ではエポ
キシ樹脂)を」と訂正する。 (2)同、第9頁第19行〜第10頁第4行の[また上
記実施例では〜が望ましい。」を剛除す(4)同、第1
0頁第20行の「ROM低下」を「ROM%低下」と訂
正する。 以上
FIG. 1 is a sectional view illustrating a conventional pultrusion method. Figure 2 illustrates a molding method according to an embodiment of the present invention.
3 is an enlarged sectional view of a part of FIG. 2. In the figure, (1) is a fiber aggregate impregnated with a thermosetting resin, +21. +81 is the core metal, +31. (91 is the pulling mechanism, +41°α [is the hot die, (5) is the drawing part, (6) is the flat part, (7) is the carbon fiber prepreg,
αB is the resin squeezing zone, (12 is the resin gelation zone, α
9 is a resin curing zone. The same reference numerals in the five figures indicate the same or corresponding parts. Applicant: Ita Hirobe Yoda, Director of the Agency of Industrial Science and Technology 1. Kyohaku 2. Former No. 3 Written amendment to the prison procedure (spontaneous) Date of issue: 1985, month λλ, Mr. Commissioner of the Japan Patent Office 1. Indication of the case: % Application No. 59-65158 2. Title of the invention Continuous forming method of carbon fiber reinforced plastic circles 4, Address of person making the correction Name Agency of Industrial Science and Technology Next Generation Industrial Technology Planning Office Shi (50)
1) 1511 extensions 4601 to 46054 Target of amendment Detailed explanation of the invention in Specification A 5, contents of amendment (υ "(7) in page 5, lines 8 to 9 of the specification is a thermosetting resin '' should be corrected to ``(7) is a thermosetting resin (epoxy resin in this example).'' (2) Same, page 9, line 19 to page 10, line 4 ``is desirable.'' (4) Same, 1st
Correct "ROM decrease" on page 0, line 20 to "ROM% decrease."that's all

Claims (1)

【特許請求の範囲】 (11熱硬化性樹脂を含浸した炭素繊維プリプレグを芯
金に巻付け、これをホットダイを通して連続的に引抜い
て連続成形するものにおいて、上記ホットダイを樹脂絞
りゾーン、樹脂ゲル化ゾーン。 および樹脂硬化ゾーンの3個のゾーンで構成し。 これら各ゾーンを、それぞれ個別に温度調節し、かつ上
記樹脂ゲル化ゾーンの前半部でゲル化を完了させるよう
にしたことを特徴とする炭素繊維、強化プラスチック円
筒の連続成形方法。 (2)倒脂絞すゾーンの絞り角度が4°〜6°の範囲内
であり、上記樹脂絞りゾーンと樹脂ゲル化ゾーンとの間
に断熱用温度調vI6機構な有している%計請求の範囲
第1項記載の炭素繊維強化プラスチック円筒の連続成形
方法、 (31谷ゾーンは芯金の軸に沿って分離可能な合せ型構
造となっている特許請求の範囲w1項または第2項記載
の炭素繊維強化プラスチツク円筒の連続成形方法。
[Claims] (11) In a device in which a carbon fiber prepreg impregnated with a thermosetting resin is wound around a core metal and continuously drawn out through a hot die for continuous molding, the hot die is connected to a resin drawing zone, a resin gelling zone, etc. The resin curing zone is composed of three zones: a resin curing zone, and a resin curing zone. The temperature of each of these zones is adjusted individually, and gelation is completed in the first half of the resin gelation zone. Continuous molding method for carbon fiber and reinforced plastic cylinders. (2) The squeezing angle of the fallen fat squeezing zone is within the range of 4° to 6°, and the temperature for insulation is maintained between the resin squeezing zone and the resin gelling zone. A method for continuous molding of a carbon fiber reinforced plastic cylinder according to claim 1, wherein the 31 valley zone has a mating structure that can be separated along the axis of the core metal. A method for continuously forming a carbon fiber reinforced plastic cylinder according to claim w1 or claim 2.
JP59065158A 1984-04-03 1984-04-03 Continuous forming process of carbon fiber reinforced plastic cylinder Granted JPS60220715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065158A JPS60220715A (en) 1984-04-03 1984-04-03 Continuous forming process of carbon fiber reinforced plastic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065158A JPS60220715A (en) 1984-04-03 1984-04-03 Continuous forming process of carbon fiber reinforced plastic cylinder

Publications (2)

Publication Number Publication Date
JPS60220715A true JPS60220715A (en) 1985-11-05
JPH0119335B2 JPH0119335B2 (en) 1989-04-11

Family

ID=13278789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065158A Granted JPS60220715A (en) 1984-04-03 1984-04-03 Continuous forming process of carbon fiber reinforced plastic cylinder

Country Status (1)

Country Link
JP (1) JPS60220715A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673541A (en) * 1985-03-02 1987-06-16 Agency Of Industrial Science And Technology Method and apparatus for continuous shaping of carbon-fiber-reinforced plastic tubes
EP0269197A2 (en) * 1986-11-26 1988-06-01 Industrial Technology Research Institute Method and means for making pultruded fibre reinforced articles
EP0271026A2 (en) * 1986-12-05 1988-06-15 Phillips Petroleum Company Pultrasion apparatus, process and product
US5174844A (en) * 1986-11-26 1992-12-29 Industrial Technology Research Institute Method and means for making pultruded fiber reinforced articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673541A (en) * 1985-03-02 1987-06-16 Agency Of Industrial Science And Technology Method and apparatus for continuous shaping of carbon-fiber-reinforced plastic tubes
EP0269197A2 (en) * 1986-11-26 1988-06-01 Industrial Technology Research Institute Method and means for making pultruded fibre reinforced articles
US5174844A (en) * 1986-11-26 1992-12-29 Industrial Technology Research Institute Method and means for making pultruded fiber reinforced articles
EP0271026A2 (en) * 1986-12-05 1988-06-15 Phillips Petroleum Company Pultrasion apparatus, process and product

Also Published As

Publication number Publication date
JPH0119335B2 (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US4605385A (en) Fibre reinforced plastics power transmission shaft
US2948649A (en) Method of manufacturing sections and rods of glass fibre-reinforced plastic
JP2003033984A (en) Composite structural member and its production method
WO2020007252A1 (en) High-strength carbon fiber composite bar material with resin rib on surface and preparation method therefor
JPH09267400A (en) Frp bent pipe
JPS60220715A (en) Continuous forming process of carbon fiber reinforced plastic cylinder
CA1319479C (en) Pultrusion process
CN110303694A (en) A kind of rapid molding device and method of continuous fiber reinforced composite materials pipe fitting
JP3635773B2 (en) Yarn prepreg manufacturing method and apparatus
JPH11130882A (en) Yarn prepreg and its preparation
JPS6321608B2 (en)
JPS6168232A (en) Preparation of curved pipe
JPH07329196A (en) Synthetic resin tube reinforced by fiber
JP3386158B2 (en) Molding materials and filament wound moldings
CN1072631A (en) A kind of process for making fibre-reinforced drawn-extruded
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
US6230775B1 (en) High temperature wet filament winding arrangement
JPH0333045A (en) Production of fiber reinforced resin wire rod with spiral recess
JPH0347733A (en) Lining material for reverse lining
JPS60166439A (en) Manufacture of bend made of fiber reinforced plastic
JPH09290463A (en) Tubular member
JPH0321434A (en) Manufacture of fiber reinforced plastic pipe
JP2004122683A (en) Manufacturing method of fiber reinforced thermoplastic resin ring
JPH0415731B2 (en)
JPS5888264A (en) Method of manufacturing bellows made of fiber reinforcing composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term