JPS6022067A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPS6022067A
JPS6022067A JP12949683A JP12949683A JPS6022067A JP S6022067 A JPS6022067 A JP S6022067A JP 12949683 A JP12949683 A JP 12949683A JP 12949683 A JP12949683 A JP 12949683A JP S6022067 A JPS6022067 A JP S6022067A
Authority
JP
Japan
Prior art keywords
fuel
eddy
valve
swirl chamber
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12949683A
Other languages
Japanese (ja)
Other versions
JPH0583805B2 (en
Inventor
Hikari Morishita
光 森下
Suekichi Sugiyama
末吉 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12949683A priority Critical patent/JPS6022067A/en
Publication of JPS6022067A publication Critical patent/JPS6022067A/en
Publication of JPH0583805B2 publication Critical patent/JPH0583805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • F23D11/28Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed with flow-back of fuel at the burner, e.g. using by-pass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To permit to obtain a good atomizing characteristic even in a low flow amount area by a method wherein a fuel return path is opened at the opposite position of a nozzle in an eddy-current chamber and a fuel amount control mechanism is provided in the same path in the fuel injection valve equipped with the eddy-current chamber. CONSTITUTION:The fuel injection valve 1 in a gas turbine engine is constituted by forming the first eddy-current chamber 26 between a vortex plate 16 and a valve body 18 and the second eddy-current chamber 28 between a vortex holder 14 and the eddy-current chamber 26 in the lower part thereof while both chambers 26, 28 are communicated mutually through a nozzle 30. In this case, a relief opening 185 is formed on the wall surface opposite to the nozzle 30 in the eddy- current chamber 26 while the opening 185 is communicated with a return pipe through a reverse flow preventing valve 80, a choking member 74, a hole 20, paths 105, 106, a horizontal hole 382 or the like. The choking member 74 is provided with an orifice 741, setting the amount of fuel to be returned from the eddy-current chamber 26, at the lower end face thereof.

Description

【発明の詳細な説明】 技術分野 本発明は、燃料噴射弁、とくにガスタービンエンジン用
に適した渦流室を備えた燃料噴射弁に関する。
TECHNICAL FIELD The present invention relates to a fuel injection valve, in particular a fuel injection valve with a swirl chamber suitable for gas turbine engines.

従来技術 ガスタービンエンジンでは燃料噴射弁として渦流室を備
えたものが良く使用される。このタイプの燃料噴射弁は
微粒化性能は秀れるが使用可能な流量範囲が狭い。即ち
、噴射流量Qは前後の圧力差△pの平方根に比例する。
In prior art gas turbine engines, fuel injection valves with swirl chambers are often used. This type of fuel injection valve has excellent atomization performance, but its usable flow rate range is narrow. That is, the injection flow rate Q is proportional to the square root of the pressure difference Δp before and after.

従って、流量範囲を広げるには圧力差△pを大きくしな
ければならない。これは入口側の圧力からみれば、大流
量時の高い圧力から小流量時の低い圧力まで、広い@囲
にわたって変化させなければならないことを意味する。
Therefore, in order to widen the flow range, the pressure difference Δp must be increased. This means that the pressure on the inlet side must be varied over a wide range, from high pressure at high flow rates to low pressure at low flow rates.

しかしながら、入口側の圧力を下げると渦流室内での旋
回流の速度即ち渦の強度が低下し、これは噴口からの液
膜の厚みを増大させ噴霧の粒径を大きくする。その結果
、霧化状態が不良となり小流量時に十分に機能しないの
である。もし、燃料噴射弁の要求流量域が狭いとすれば
渦流室への流入口の寸法を小さくすれば圧力差△pを十
分大きくとることができようが、これは加]二上の制約
が大きい。いずれにしても渦流室をそなえたタイプの燃
料噴射弁は流量の少ないときの適合性に欠けるのである
However, when the pressure on the inlet side is lowered, the velocity of the swirling flow in the vortex chamber, that is, the strength of the vortex decreases, which increases the thickness of the liquid film from the nozzle and increases the particle size of the spray. As a result, the atomization state becomes poor and it does not function satisfactorily at low flow rates. If the required flow rate range of the fuel injection valve is narrow, it would be possible to make the pressure difference △p sufficiently large by reducing the size of the inlet to the swirl chamber, but this is subject to the above two restrictions. . In any case, fuel injection valves with a swirl chamber are not suitable for low flow rates.

発明の目的 本発明は上述した従来技術の欠点に鑑みてなされたもの
であり、低流量域においても十分良好な微粒化特性を行
うことができ、結果として広範な要求流量範囲に適合で
きる渦流室イ]の燃料噴射弁を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks of the prior art, and provides a vortex chamber that can provide sufficiently good atomization characteristics even in a low flow rate range, and as a result can be adapted to a wide range of required flow rates. A] object of the present invention is to provide a fuel injection valve.

発明の構成 本発明の渦流室を備えた燃料噴射弁は渦流室におりる噴
口の反対の位置に燃料戻し通路を開口さ一部、該燃料戻
し通路内に流量制御絞りを有する流量制御機構を設置し
て成る。流量制御絞りを通って渦流室から一部の燃料が
リターンされ、要求される噴射量を得るにはその分流入
燃料量を増加しなければならず、それだけ流速を上げる
ことができる。その結果渦流室内の旋回流は相対的に強
まり微粒化を良好にすることが実現する。
Structure of the Invention The fuel injection valve equipped with a swirl chamber of the present invention has a fuel return passage opened at a position opposite to the nozzle that enters the swirl chamber, and a flow rate control mechanism having a flow rate control throttle in the fuel return passage. It is made by installing. A portion of the fuel is returned from the swirl chamber through the flow control restriction, and in order to obtain the required injection amount, the amount of incoming fuel must be increased by that amount, and the flow rate can be increased accordingly. As a result, the swirling flow within the vortex chamber is relatively strengthened and atomization can be improved.

実施例 以下実施例を説明すると、第1図で1は燃料噴射弁であ
って、ガスタービンエンジンの燃焼室壁面2に取り付け
られている。燃料タンク3がらの燃料はポンプ4により
流量制御装置5に導入される。流量制御装置はエンジン
の運転条件に応じた圧力(流量)の燃料を燃料噴射弁I
にバイブロを介して導入する。7は戻しパイプで余分な
燃料をタンクに戻す。
EXAMPLE Below, an example will be described. In FIG. 1, reference numeral 1 denotes a fuel injection valve, which is attached to a wall surface 2 of a combustion chamber of a gas turbine engine. Fuel from the fuel tank 3 is introduced into a flow rate control device 5 by a pump 4. The flow control device supplies fuel at a pressure (flow rate) according to the engine operating conditions to the fuel injection valve I.
to be introduced via vibro. 7 returns excess fuel to the tank with a return pipe.

第2図は本発明の燃料噴射弁lの構造を具体的に示す。FIG. 2 specifically shows the structure of the fuel injection valve 1 of the present invention.

この第2図の実施例は大小2つの渦流室を備え、流量が
小さいときは小さい方の渦流室によって大きいときはこ
の渦流室に加え大きい方の渦流室によって夫々噴射を受
け持たせるようにしたタイプのものへの本発明の応用で
ある。図中10は本体、12はノズルホルダである。ノ
ズルボルダ12は筒状をなしていて、ポルテックスボル
ダ14、ポルテックスプレート16、バルブボディ18
及び、バルブプレー1・20が順次挿入される。この挿
入状態で本体1oが0リング22を介してノスル本体1
2に挿入され、外筒24によって相互に締結状態となる
。外筒24のフランジ241が燃焼室壁面への取付部と
なる。
The embodiment shown in Fig. 2 has two large and small vortex chambers, and when the flow rate is small, the smaller vortex chamber takes charge of the injection, and when the flow rate is large, this vortex chamber and the larger vortex chamber take charge of the injection. This is an application of the present invention to the type. In the figure, 10 is a main body, and 12 is a nozzle holder. The nozzle boulder 12 has a cylindrical shape, and includes a portex boulder 14, a portex plate 16, and a valve body 18.
Then, valve plays 1 and 20 are sequentially inserted. In this inserted state, the main body 1o is inserted into the nostle main body 1 through the O ring 22.
2 and are mutually fastened by the outer cylinder 24. The flange 241 of the outer cylinder 24 serves as a mounting portion to the wall surface of the combustion chamber.

第4図に拡大して示すように、ポルテックスプレー1−
16とバルブボディ18との間に第1の渦流室26が形
成され、この第1の渦流室26の下方においてポルテッ
クスプレート16とボルナ・7クスホルダ14との間に
第2の渦流室28が形成される。第1の渦流室26は第
1の噴口30によって第2の渦流室28に開口している
。亦、第2の渦流室は第2の噴口32によってガスター
ビンエンジンの燃焼室に開口する。第1の噴口30は第
2の噴口32を臨むようにその上方に位置している。
As shown enlarged in Figure 4, Portex Spray 1-
A first swirl chamber 26 is formed between the portex plate 16 and the valve body 18 , and a second swirl chamber 28 is formed between the portex plate 16 and the Borna 7x holder 14 below the first swirl chamber 26 . It is formed. The first swirl chamber 26 opens into the second swirl chamber 28 by a first jet orifice 30 . Additionally, the second swirl chamber opens into the combustion chamber of the gas turbine engine by means of a second jet orifice 32 . The first nozzle 30 is located above the second nozzle 32 so as to face it.

第2図において34は、燃料供給コネクタ36及び燃料
戻しコネクタ38を持ったプレー!・であり、キャップ
40によって、0リング41を介して本体10に固定さ
れている。キヤ・ノブ40は本体10の孔101に嵌合
される筒状部401を備えており、その節状部401内
に逆流防止弁42が設置される。この逆流防止弁42は
玉弁として形成され、筒状部401内に嵌挿したバルブ
シート44とスプリングシート46との間に配置される
。ばね48は弁42をして富時バルブシート44を閉鎖
するような付勢力を発揮している。バルブシート44の
弁孔はキャップ40内のたて孔402、よこ孔403を
介して燃料供給コネクタ36の燃料孔361に連通して
いる。逆流防止弁42の下流に形成される燃料室50は
、本体10内の通路102、本体10とノズルホルダ1
2間の環状通路52、バルブボディ18とバルブプレー
ト20とノズルボルダ12間の環状通路54、バルブボ
ディ18内の燃料孔181、バルブボディ1Bとボルナ
・ツクスプレー116間の環状通路56及び第1の流入
口58を介して第1の渦流室26に開口している(第4
図参照)。
In FIG. 2, reference numeral 34 indicates a play plate having a fuel supply connector 36 and a fuel return connector 38. - and is fixed to the main body 10 by the cap 40 via the O-ring 41. The can knob 40 includes a cylindrical portion 401 that is fitted into the hole 101 of the main body 10, and a check valve 42 is installed within the knot portion 401. This check valve 42 is formed as a ball valve and is disposed between a valve seat 44 fitted into the cylindrical portion 401 and a spring seat 46. The spring 48 exerts a biasing force that causes the valve 42 to close the valve seat 44 when in use. The valve hole of the valve seat 44 communicates with the fuel hole 361 of the fuel supply connector 36 via a vertical hole 402 and a horizontal hole 403 in the cap 40. A fuel chamber 50 formed downstream of the check valve 42 includes a passage 102 in the main body 10, a passage 102 in the main body 10, and a passage between the main body 10 and the nozzle holder 1.
an annular passage 52 between the valve body 18, the valve plate 20, and the nozzle bolder 12; a fuel hole 181 in the valve body 18; an annular passage 56 between the valve body 1B and the Borna Tsux spray 116; It opens into the first swirl chamber 26 via the inlet 58 (the fourth
(see figure).

第2図において、60は制御弁であり、玉状弁として構
成される。制御弁60はばね62の力を受註ノるアダプ
タ64によって、バルブプレート20に形成されるバル
ブシート202に着座するような付勢力を受けている。
In FIG. 2, 60 is a control valve, which is configured as a ball valve. The control valve 60 is biased to seat on a valve seat 202 formed in the valve plate 20 by an adapter 64 that receives the force of a spring 62 .

バルブシート202の弁孔はバルブプレート20内の孔
204を介して環状通路54に開口し、ここからの燃料
供給を受ける。
The valve hole in the valve seat 202 opens into the annular passage 54 through a hole 204 in the valve plate 20 and receives fuel supply therefrom.

バルブシーI・の上方の空間66はバルブプレート内の
通路206、バルブボディ18内の燃料通路184、ポ
ルテックスプレート16内の通路16j。
The space 66 above the valve seat I is a passage 206 in the valve plate, a fuel passage 184 in the valve body 18, and a passage 16j in the portex plate 16.

ポルテックスプレートとポルテックスホルダ間の環状通
路67及び第2の流入ロア0を介して第2の渦流室28
に開口している(第4図参照)。
The second vortex chamber 28 via the annular passage 67 between the portex plate and the portex holder and the second inflow lower 0
(See Figure 4).

第1の渦流室26へ第1の流入口58は第5図に略示す
るようにその接線方向に開口している。
A first inlet 58 into the first swirl chamber 26 opens tangentially thereto, as schematically shown in FIG.

同様に第2の渦流室28への第2の流入ロア0もその接
線方向に開口している。このような接線方向におL3る
、流入口58又は70の、渦流室26又は28への開口
によって、渦流室26又は28内の旋回流が生ずること
は周知の通りである。
Similarly, the second inflow lower 0 into the second swirl chamber 28 is also open in the tangential direction thereof. It is well known that such a tangential L3 opening of the inlet 58 or 70 into the swirl chamber 26 or 28 causes a swirling flow in the swirl chamber 26 or 28.

本発明によれば、流量が小さいときの噴射を受け持つ渦
流室26は噴口30と反対側の壁面においてリリーフ開
口185が設けられる。開口185はポルテックスプレ
ート16内に穿設され、1&述のように渦流室26から
一部の燃料を帰還する。噴口2Gと反対側に設置するこ
とで、渦流室26内での旋回流の流れに少しも影響を与
えることなく、燃料の一部帰還を行うことができる。渦
流室26は、開口185、及び絞り部材74、バルブプ
レート20内の孔207、本体10とバルブプレート2
0との間の環状通路76、本体10内の通路105.1
06 、及び燃料戻しコネクタ38内のたて孔38工、
よこ孔382を介して、第1図のパイプ7に連結されて
いる。第2図に示すように絞り部材74はカップ状に形
成され、本体18のボア187内にねじ込まれ固定され
る。絞り部材74はその下端面にオリフィス741を持
ち、これは渦流室26から戻ずべき燃料量を設定する。
According to the present invention, the vortex chamber 26 which takes charge of injection when the flow rate is small is provided with a relief opening 185 in the wall surface on the opposite side from the jet port 30. An opening 185 is drilled in the portex plate 16 to return some fuel from the swirl chamber 26 as described in 1 & above. By installing it on the side opposite to the nozzle 2G, part of the fuel can be returned without affecting the swirling flow within the swirl chamber 26 in the slightest. The vortex chamber 26 has an opening 185, a throttle member 74, a hole 207 in the valve plate 20, a main body 10, and a valve plate 2.
annular passage 76 between 0 and 105.1 in the body 10;
06, and 38 vertical holes in the fuel return connector 38,
It is connected to the pipe 7 in FIG. 1 via a horizontal hole 382. As shown in FIG. 2, the restricting member 74 is formed into a cup shape and is screwed into the bore 187 of the main body 18 and fixed therein. The restrictor member 74 has an orifice 741 on its lower end surface, which sets the amount of fuel to be returned from the swirl chamber 26.

第1渦流室26に開口する連通孔185は第2の逆流防
止弁80を備え、この弁80は、ばね82によってアダ
プタ84を介して、連通孔185に近接したバルブシー
ト188を當時は塞ぐよろな付勢力を発揮している。
The communication hole 185 that opens into the first swirl chamber 26 is provided with a second non-return valve 80 which, by means of a spring 82 and via an adapter 84, is prevented from closing the valve seat 188 adjacent to the communication hole 185. It is exerting a strong urging force.

以上述べた本発明の装置の作動を述べると、流量制御装
′y15からの燃料はバイブロより燃料噴射弁1の燃料
供給コネクタ36に導入され、通路361、孔403,
402より逆流防止弁42を押し開け、燃料室50内に
入る。室50から燃料は通路102゜52、54.18
.56に入り、第1の流入口58より第1の渦流室26
に接線方向に導入され、その中で旋回流を生ずる。旋回
性をイ」与された燃料流は第1の噴口30より第2の噴
口32を経て燃焼室に円錐状の薄い液膜F(第7図)を
なして噴霧される。
To describe the operation of the device of the present invention described above, fuel from the flow control device y15 is introduced from the vibro to the fuel supply connector 36 of the fuel injection valve 1, and the fuel is introduced into the fuel supply connector 36 of the fuel injection valve 1 through the passage 361, the hole 403,
The check valve 42 is pushed open from 402 and enters the fuel chamber 50. From the chamber 50, fuel flows through passages 102°52, 54.18
.. 56 and enters the first swirl chamber 26 from the first inlet 58
is introduced tangentially into the flow, creating a swirling flow therein. The swirling fuel flow is sprayed from the first nozzle 30 through the second nozzle 32 into the combustion chamber in the form of a thin conical liquid film F (FIG. 7).

このように薄く形成された円錐状の液膜は域る飛翔距離
達すると、Gのように良好に微粒化される。
When the conical liquid film formed thinly in this way reaches a certain flight distance, it becomes finely atomized as shown in G.

この第1の渦流室26からの噴霧は流量制御装置5から
の燃料の圧力が小さいとき、即ち低流量域での噴霧を分
担するものであり、その流量特性は入口圧力(即ち流量
制御装置からの燃料圧力)pに対して第6図の実線7!
1をもって表わされる。面この、圧力状態では制御弁6
0に作用する燃料圧力は小さいことから、これは閉とな
り第2の渦流室28に燃料は供給されない。
The spray from the first vortex chamber 26 is responsible for spraying when the pressure of the fuel from the flow control device 5 is low, that is, in the low flow region, and its flow rate characteristics are determined by the inlet pressure (i.e., from the flow control device 5). Solid line 7 in Figure 6 for fuel pressure) p!
It is represented by 1. In this pressure state, the control valve 6
Since the fuel pressure acting on 0 is small, it is closed and no fuel is supplied to the second vortex chamber 28.

燃料圧力が設定値p1に達すると、制御弁60に働く燃
料圧力はばね62に打ち勝ち弁60は弁座202より離
れ、燃料は通路206,184,161.67を介して
第2の流入ロア0に至り、この第2の流入ロア0より第
2の渦流室28に接線方向に導入される。そのため第2
の渦流室28内に燃料の旋回流が生じ、噴口32より燃
焼室に噴霧される。この場合も噴霧は第7図で説明した
ように円錐状の薄い液膜流として形成される。このよう
に高圧力時には、第2の渦流室28からの噴霧が第1の
渦流室26からの噴霧に加えて生ずることになり、流量
特性は、第6図において第1の渦流室26からの流量特
性に第2の渦流室28からの流量特性を重畳した12の
如き曲線になる。
When the fuel pressure reaches the set value p1, the fuel pressure acting on the control valve 60 overcomes the spring 62 and the valve 60 moves away from the valve seat 202, and the fuel flows through the passages 206, 184, 161.67 to the second inlet lower 0. , and is tangentially introduced into the second swirl chamber 28 from this second inflow lower 0. Therefore, the second
A swirling flow of fuel is generated in the vortex chamber 28 and is sprayed from the nozzle 32 into the combustion chamber. In this case as well, the spray is formed as a thin conical liquid film stream as explained in FIG. In this manner, at high pressure, the spray from the second swirl chamber 28 is generated in addition to the spray from the first swirl chamber 26, and the flow rate characteristics are as shown in FIG. A curve like 12 is obtained by superimposing the flow rate characteristic from the second swirl chamber 28 on the flow rate characteristic.

第1の渦流室26内に供給される燃料圧力は玉80に作
用しこれをばね82に抗して弁座188より変位させる
。即ち、第1の渦流室26は、連通路185、オリフィ
ス741、通路207,105,106 、孔381.
382を介し戻しバイブ7に連通している。この際の戻
し流量はオリフィス741の径によって決められる。こ
のように、第1の渦流室26からは常に燃料が流出して
いることから、この室26へ導入される流量、即ち圧力
pは大きくしないと噴口30からの所期の噴射量が得ら
れないことになる。その結果、噴射量の小さい領域にあ
っても渦流室26内に十分な旋回流量強度を実現するこ
とができ、この領域でも十分な微粒化を行うことができ
る。従来では、このよ・うな戻り配管系は設置されてお
らずこのときの第1渦流室26からの噴霧量特性は第6
図m+の通りとなる。同一の噴霧量、例えばglに対し
本発明では渦流室入口への圧力はp!、一方従来ではp
mである。結果として、渦流室2 fi内での流速は本
発明より小さく、これが延いては微粒化の悪化となって
あられれていたのである。
The fuel pressure supplied in the first swirl chamber 26 acts on the ball 80 and displaces it from the valve seat 188 against the spring 82. That is, the first swirl chamber 26 includes the communication passage 185, the orifice 741, the passages 207, 105, 106, the hole 381.
It communicates with the return vibe 7 via 382. The return flow rate at this time is determined by the diameter of the orifice 741. As described above, since fuel is always flowing out from the first swirl chamber 26, the desired injection amount from the nozzle 30 cannot be obtained unless the flow rate introduced into this chamber 26, that is, the pressure p is increased. There will be no. As a result, even in a region where the injection amount is small, sufficient swirling flow rate intensity can be achieved in the swirl chamber 26, and sufficient atomization can be achieved even in this region. Conventionally, such a return piping system was not installed, and the spray amount characteristics from the first swirl chamber 26 at this time were as follows.
As shown in Figure m+. For the same spray volume, for example gl, in the present invention the pressure at the inlet of the swirl chamber is p! , while conventionally p
It is m. As a result, the flow velocity within the swirl chamber 2 fi was lower than in the present invention, which in turn led to worsening of atomization.

尚、逆流防止弁42 、60は燃料供給停止後人々ばね
48 、82によって閉鎖位置に戻る。これによって、
停止中に燃料が逆流すること及びノズルからボタ落ちす
ることが防止される。ばね48 、82はごのような逆
流防止機能は発揮しつつ、しかし作動時の燃料の円滑な
流通は阻害しないよう適当な弱い力に設定される。
Note that the check valves 42, 60 are returned to the closed position by the springs 48, 82 after the fuel supply is stopped. by this,
Fuel is prevented from flowing back and dripping from the nozzle during a stop. The springs 48 and 82 are set to have a suitably weak force so as to perform a similar backflow prevention function, but not to impede the smooth flow of fuel during operation.

第8,9図に示す第2の実施例は、燃料噴射弁1の構成
は第2,3図と同様である。これに加えて・第1図の戻
しバイブ7に相当するパイプ7′内に第2の流量制御装
置80が設置される。この流量制御装置80は、パイプ
7′内の戻し流量を大流量域では零とするか又は減少さ
せる弁装置として構成される。このような流量制御装置
を設定することによって、第6図の破線で示すように、
大流量域での特性I12’は従来の絞りのないもの(m
z)と同等にしかつ小流量域lI′では絞りを設置した
本発明の特性(7!+)と同等にすることができる。高
流量域でリリーフさせない分第1図のポンプ4の圧力を
下げることができ、ポンプ動力の減少を図ることができ
る。
In the second embodiment shown in FIGS. 8 and 9, the structure of the fuel injection valve 1 is the same as that in FIGS. 2 and 3. In addition to this, a second flow control device 80 is installed within the pipe 7' corresponding to the return vibe 7 in FIG. The flow rate control device 80 is configured as a valve device that makes the return flow rate in the pipe 7' zero or decreases in a large flow rate region. By setting such a flow rate control device, as shown by the broken line in Fig. 6,
The characteristic I12' in the large flow range is that of the conventional one without restriction (m
z), and in the small flow rate region lI', it can be made equivalent to the characteristic (7!+) of the present invention in which a throttle is installed. The pressure of the pump 4 shown in FIG. 1 can be lowered by not providing relief in the high flow rate range, and the pump power can be reduced.

第10図は更に別の実施例の燃料噴射弁1′であって、
この場合、単一の渦流室26のみ設けられる点が前の実
施例との相異になる。この単一の渦流室は絞り部材74
−tA介して戻り配管に接続され、これによって低噴射
量域であっても入口圧力を高く維持し、微粒化特性を良
好とするようにした点は共通である。また第11図は単
一の渦流室26を持つ実施例であって第8,9図の実施
例と同様、戻り流量を制御する装置80を持っている。
FIG. 10 shows a fuel injection valve 1' of still another embodiment,
In this case, the difference from the previous embodiment is that only a single swirl chamber 26 is provided. This single swirl chamber is formed by the throttle member 74.
-tA to the return pipe, which maintains the inlet pressure high even in the low injection amount region and improves the atomization characteristics. Further, FIG. 11 shows an embodiment having a single swirl chamber 26, and like the embodiments of FIGS. 8 and 9, it has a device 80 for controlling the return flow rate.

発明の効果 渦流室内の一部の燃料を戻り配管に戻すことで、小流量
域にあっても入口圧力を高くすることができ、この領域
での噴域性能を改良することができ結果的に適用流量範
囲を拡張することができる。
Effects of the invention By returning part of the fuel in the swirl chamber to the return pipe, the inlet pressure can be increased even in a small flow rate region, and the injection area performance in this region can be improved. The applicable flow rate range can be expanded.

また渦流室への流入孔径を大きくできることから加工が
容易となる。
Further, since the diameter of the inflow hole to the swirl chamber can be increased, processing becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料噴射弁を含む装置の全体概略構成
図 第2図は第1図の燃料噴射弁の詳細断面図第3図は第2
図の上面図 第4図は第1図の部分拡大図 第5図は渦流室の平面図 第6図は本発明の燃料噴射弁の流量特性図第7図はノズ
ルからの噴霧の様子を示す説明図第8図、第9図は本発
明の第2の実施例を示す第2図、第3図と同様な図 第10図、第11図は夫々第3.第4の実施例を示す第
2図又は第8図と同様な図 ■、1′・・・燃料噴射弁、7・・・戻りパイプ、26
゜28・・・渦流室、30 、’ 32・・・噴口、7
4・・・絞り部材、741・・・オリフィス。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木 朗 弁理士西舘和之 弁理士三井孝夫 弁理士 山 口 昭 之 第1図 第2図 第3図 第4図 第 7図 第8図
FIG. 1 is a schematic diagram of the overall configuration of a device including the fuel injection valve of the present invention. FIG. 2 is a detailed sectional view of the fuel injection valve of FIG. 1.
FIG. 4 is a partially enlarged view of FIG. 1. FIG. 5 is a plan view of the swirl chamber. FIG. 6 is a flow rate characteristic diagram of the fuel injector of the present invention. FIG. 7 shows the state of spray from the nozzle. Explanatory drawings FIGS. 8 and 9 are similar to FIGS. 2 and 3 showing a second embodiment of the present invention. FIGS. 10 and 11 are similar to FIGS. Diagrams similar to FIG. 2 or FIG. 8 showing the fourth embodiment ■, 1'...Fuel injection valve, 7...Return pipe, 26
゜28... Vortex chamber, 30,' 32... Spout, 7
4... Aperture member, 741... Orifice. Patent Applicant Toyota Motor Corporation Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Takao Mitsui Patent Attorney Akira Yamaguchi Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、渦流室を備えた燃料噴射弁において、渦流室におげ
ろ噴口の反対の位置に燃料戻し通路を開1」させ、該燃
料戻し通路内に流量制御絞りを有する流量制御機構を設
置して成る燃料噴射弁。 2、 前記流量制御機構は固定寸法の絞りと固定絞りを
通る戻し流量を押えるか又は零とする制御装置を有して
いる特許請求の範囲第1項の燃料噴射弁。 3、渦流室は大小の2つの渦流室より成り、燃料戻し通
路が設けられるのは小さい方の渦流室である4を許請求
の範囲第1項の燃料噴射弁。
[Claims] 1. In a fuel injection valve equipped with a swirl chamber, a fuel return passage is opened in the swirl chamber at a position opposite to the nozzle, and a flow rate control throttle is provided in the fuel return passage. A fuel injection valve equipped with a control mechanism. 2. The fuel injection valve according to claim 1, wherein the flow rate control mechanism includes a throttle having a fixed size and a control device for suppressing or reducing the return flow rate through the fixed throttle. 3. The fuel injection valve according to claim 1, wherein the swirl chamber is composed of two large and small swirl chambers, and the fuel return passage is provided in the smaller swirl chamber.
JP12949683A 1983-07-18 1983-07-18 Fuel injection valve Granted JPS6022067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12949683A JPS6022067A (en) 1983-07-18 1983-07-18 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12949683A JPS6022067A (en) 1983-07-18 1983-07-18 Fuel injection valve

Publications (2)

Publication Number Publication Date
JPS6022067A true JPS6022067A (en) 1985-02-04
JPH0583805B2 JPH0583805B2 (en) 1993-11-29

Family

ID=15010912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12949683A Granted JPS6022067A (en) 1983-07-18 1983-07-18 Fuel injection valve

Country Status (1)

Country Link
JP (1) JPS6022067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204595A1 (en) * 2008-12-30 2010-07-07 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151810A (en) * 1980-04-11 1981-11-25 Webasto Werk Baier Kg W Nozzle for pressure spray burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151810A (en) * 1980-04-11 1981-11-25 Webasto Werk Baier Kg W Nozzle for pressure spray burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204595A1 (en) * 2008-12-30 2010-07-07 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery
US8316875B2 (en) 2008-12-30 2012-11-27 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery

Also Published As

Publication number Publication date
JPH0583805B2 (en) 1993-11-29

Similar Documents

Publication Publication Date Title
WO2005045232A3 (en) Fuel injector with reduced sauter-mean-diameter fuel atomization spray by fluidic metering orifice disc and methods
US6042028A (en) Direct injection fuel injector spray nozzle and method
JP2601977B2 (en) Electromagnetic fuel injection valve
CA2147008C (en) Gas/liquid mixing apparatus
US4685432A (en) Method and device for forming mixture gas in direct injection type internal combustion engine
US4862837A (en) Fuel injection of coal slurry using vortex nozzles and valves
US3095153A (en) Variable area spray nozzle
US5119792A (en) Electromagnetic fuel injector with central air blow and poppet valve
US10995655B2 (en) Fuel injection device
JPS5854264B2 (en) Constant pressure fuel injection valve
JPS6022067A (en) Fuel injection valve
JPS60240871A (en) Fuel jet nozzle
JP3572591B2 (en) Fluid injection nozzle and electromagnetic fuel injection valve using the same
US5823443A (en) Poppet nozzle for fuel injection
JPS6022069A (en) Fuel injection valve
JPH0583806B2 (en)
JP3165552B2 (en) Fluid injection nozzle
US5411212A (en) Fuel injection valve
JPH06317231A (en) Electromagnetic fuel injection valve and fuel injection device
JPS6017260A (en) Fuel injection system of carburetor
US5597121A (en) Fuel injection valve
JPS58101264A (en) Valve
CN214499281U (en) Fuel injector body of diesel engine
SU1079873A1 (en) Atomizer
JPH0699106A (en) Spray device