JPH0583805B2 - - Google Patents
Info
- Publication number
- JPH0583805B2 JPH0583805B2 JP58129496A JP12949683A JPH0583805B2 JP H0583805 B2 JPH0583805 B2 JP H0583805B2 JP 58129496 A JP58129496 A JP 58129496A JP 12949683 A JP12949683 A JP 12949683A JP H0583805 B2 JPH0583805 B2 JP H0583805B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- swirl chamber
- valve
- chamber
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 90
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- 239000007921 spray Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/24—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
- F23D11/26—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
- F23D11/28—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed with flow-back of fuel at the burner, e.g. using by-pass
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Description
【発明の詳細な説明】
技術分野
本発明は、燃料噴射弁、とくにガスタービンエ
ンジン用に適した渦流室を備えた燃料噴射弁に関
する。TECHNICAL FIELD The present invention relates to a fuel injection valve, in particular a fuel injection valve with a swirl chamber suitable for gas turbine engines.
従来技術
ガスタービンエンジンでは燃料噴射弁として渦
流室を備えたものが良く使用される。このタイプ
の燃料噴射弁は微粒化性能は秀れるが使用可能な
流量範囲が狭い。即ち、噴射流量Qは前後の圧力
差△pの平方根に比例する。従つて、流量範囲を
広げるには圧力差△pを大きくしなければならな
い。これは入口側の圧力からみれば、大流量時の
高い圧力から小流量時の低い圧力まで、広い範囲
にわたつて変化させなければならないことを意味
する。しかしながら、入口側の圧力を下げると渦
流室内での旋回流の速度即ち渦の強度が低下し、
これは噴口からの液膜の厚みを増大させ噴霧の粒
径を大きくする。その結果、霧状状態が不良とな
り小流量時に十分に機能しないのである。もし、
燃料噴射弁の要求流量域が狭いとすれば渦流室へ
の流入口の寸法を小さくすれば圧力差△pを十分
大きくとることができようが、これは加工上の制
約が大きい。いずれにしても渦流室をそなえたタ
イプの燃料噴射弁は流量の少ないときの適合性に
欠けるのである。Prior Art In gas turbine engines, fuel injection valves equipped with a swirl chamber are often used. This type of fuel injection valve has excellent atomization performance, but its usable flow rate range is narrow. That is, the injection flow rate Q is proportional to the square root of the pressure difference Δp before and after. Therefore, in order to widen the flow range, the pressure difference Δp must be increased. This means that the pressure on the inlet side must be varied over a wide range, from high pressure at high flow rates to low pressure at low flow rates. However, when the pressure on the inlet side is lowered, the speed of the swirling flow in the vortex chamber, that is, the strength of the vortex, decreases.
This increases the thickness of the liquid film from the nozzle and increases the particle size of the spray. As a result, the atomized state becomes poor and it does not function satisfactorily at low flow rates. if,
If the required flow rate range of the fuel injection valve is narrow, it would be possible to make the pressure difference Δp sufficiently large by reducing the size of the inlet to the swirl chamber, but this is subject to significant processing constraints. In any case, fuel injection valves with a swirl chamber are not suitable for low flow rates.
発明の目的
本発明は上述した従来技術の欠点に鑑みてなさ
れたものであり、低流量域においても十分良好な
微粒化特性を行うことができると共に、高流量域
においても必要な流量を容易に得ることができ、
結果として広範な要求流量範囲に適合できる渦流
室付の燃料噴射弁を提供することにある。Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks of the prior art, and it is possible to achieve sufficiently good atomization characteristics even in a low flow rate range, and to easily maintain the required flow rate even in a high flow rate range. you can get
As a result, it is an object of the present invention to provide a fuel injection valve with a swirl chamber that can be adapted to a wide range of required flow rates.
発明の構成
本発明の燃料噴射弁では、燃料供給ポンプに接
続される容積が小さい第1の渦流室と、容積が大
きい第2の渦流室とを備え、第2の渦流室と燃料
供給ポンプとの間に燃料圧力が所定値以上のとき
に開弁して第2の渦流室に燃料を導く制御弁が設
けられ、第1の渦流室及び第2の渦流室は夫々燃
料の噴射を行う噴口を有しており、第1の渦流室
のみその噴口の反対の位置に燃料戻し通路が開口
され、該燃料戻し通路内に流量制御絞りを有する
燃料制御機構が設置される。Structure of the Invention The fuel injection valve of the present invention includes a first swirl chamber with a small volume connected to a fuel supply pump and a second swirl chamber with a large volume, and the second swirl chamber and the fuel supply pump are connected to each other. A control valve is provided that opens when the fuel pressure is above a predetermined value and guides the fuel to the second swirl chamber, and the first swirl chamber and the second swirl chamber each have a nozzle for injecting fuel. A fuel return passage is opened only in the first swirl chamber at a position opposite to its nozzle, and a fuel control mechanism having a flow rate control throttle is installed in the fuel return passage.
作 用
燃料圧が所定値に達しないときは制御弁が閉で
あるため、容積が小さい第1の渦流室のみに燃料
供給ポンプから燃料が供給され、この第1の渦流
室から燃料が噴射されるが、この際第1の渦流室
に燃料供給ポンプから導入された燃料の内の一部
は燃料戻し通路より戻される。Operation When the fuel pressure does not reach a predetermined value, the control valve is closed, so fuel is supplied from the fuel supply pump only to the first swirl chamber, which has a small volume, and fuel is injected from this first swirl chamber. However, at this time, part of the fuel introduced into the first swirl chamber from the fuel supply pump is returned from the fuel return passage.
一方、燃料圧が所定値に達した後は制御弁が開
となり、容積が大きい第2の渦流室にも燃料供給
ポンプから燃料が供給され、必要量の燃料を噴射
を行うことができる。第2の渦流室には戻し通路
は設けられないため、この第2の渦流室からは燃
料の戻しは行われない。 On the other hand, after the fuel pressure reaches a predetermined value, the control valve is opened, and fuel is also supplied from the fuel supply pump to the second vortex chamber, which has a large volume, so that the necessary amount of fuel can be injected. Since the second swirl chamber is not provided with a return passage, no fuel is returned from the second swirl chamber.
実施例
以下実施例を説明すると、第1図で1は燃料噴
射弁であつて、ガスタービンエンジンの燃焼室壁
面2に取り付けられている。燃料タンク3からの
燃料はポンプ4により流量制御装置5に導入され
る。流量制御装置はエンジンの運転条件に応じた
圧力(流量)の燃料を燃料噴射弁1にパイプ6を
介して導入する。7は戻しパイプで余分な燃料を
タンクに戻す。Embodiment An embodiment will be described below. In FIG. 1, reference numeral 1 denotes a fuel injection valve, which is attached to a wall surface 2 of a combustion chamber of a gas turbine engine. Fuel from the fuel tank 3 is introduced into a flow control device 5 by a pump 4. The flow rate control device introduces fuel into the fuel injection valve 1 via the pipe 6 at a pressure (flow rate) depending on the operating conditions of the engine. 7 returns excess fuel to the tank with a return pipe.
第2図は本発明の燃料噴射弁1の構造を具体的
に示す。本発明では大小2つの渦流室を備え、流
量が小さいときは小さい方の渦流室によつて大き
いときはこの渦流室に加え大きい方の渦流室によ
つて夫々噴射を受け持たせるようにしている。図
中10は本体、12はノズルホルダである。ノズ
ルホルダ12は筒状をなしていて、ボルテツクス
ホルダ14、ボルテツクスプレート16、バルブ
ボデイ18及び、バルブプレート20が順次挿入
される。この挿入状態で本体10がOリング22
を介してノズル本体12に挿入され、外筒24に
よつて相互に締結状態となる。外筒24のフラン
ジ241が燃焼室壁面への取付部となる。 FIG. 2 specifically shows the structure of the fuel injection valve 1 of the present invention. In the present invention, two large and small swirl chambers are provided, and when the flow rate is small, the smaller swirl chamber takes charge of the injection, and when the flow rate is large, this swirl chamber and the larger swirl chamber take charge of the injection, respectively. . In the figure, 10 is a main body, and 12 is a nozzle holder. The nozzle holder 12 has a cylindrical shape, and a vortex holder 14, a vortex plate 16, a valve body 18, and a valve plate 20 are inserted in this order. In this inserted state, the main body 10 is attached to the O-ring 22.
are inserted into the nozzle body 12 via the outer cylinder 24, and are mutually fastened by the outer cylinder 24. The flange 241 of the outer cylinder 24 serves as a mounting portion to the wall surface of the combustion chamber.
第4図に拡大して示すように、ボルテツクスプ
レート16とバルブボデイ18との間に第1の渦
流室26が形成され、この第1の渦流室26の下
方においてボルテツクスプレート16とボルテツ
クスホルダ14との間に第2の渦流室28が形成
される。第1の渦流室26は第1の噴口30によ
つて第2の渦流室28に開口している。亦、第2
の渦流室は第2の噴口32によつてガスタービン
エンジンの燃焼室に開口する。第1の噴口30は
第2の噴口32を臨むようにその上方に位置して
いる。 As shown in an enlarged view in FIG. 4, a first vortex chamber 26 is formed between the vortex plate 16 and the valve body 18, and below the first vortex chamber 26, the vortex plate 16 and the vortex holder are connected. 14, a second swirl chamber 28 is formed between the two. The first swirl chamber 26 opens into a second swirl chamber 28 by a first jet orifice 30 . Also, the second
The vortex chamber opens into the combustion chamber of the gas turbine engine by a second jet orifice 32 . The first nozzle 30 is located above the second nozzle 32 so as to face it.
第2図において34は、燃料供給コネクタ36
及び燃料戻しコネクタ38を持つたプレートであ
り、キヤツプ40によつて、Oリング41を介し
て本体10に固定されている。キヤツプ40は本
体10の孔101に嵌合される筒状部401を備
えており、その筒状部401内に逆流防止弁42
が設置される。この逆流防止弁42は玉弁として
形成され、筒状部401内に嵌挿したバルブシー
ト44とスプリングシート46との間に配置され
る。ばね48は弁42をして常時バルブシート4
4を閉鎖するような付勢力を発揮している。バル
ブシート44の弁孔はキヤツプ40内のたて孔4
02、よこ孔403を介して燃料供給コネクタ3
6の燃料孔361に連通している。逆流防止弁4
2の下流に形成される燃焼室50は、本体10内
の通路102、本体10とノズルホルダ12間の
環状通路52、バルブボデイ18とバルブプレー
ト20とノズルホルダ12間の環状通路54、バ
ルブボデイ18内の燃料孔181、バルブボデイ
18とボルテツクスプレート16間の環状通路5
6及び第1の流入口58を介して第1の渦流室2
6に開口している(第4図参照)。 In FIG. 2, 34 is a fuel supply connector 36
and a fuel return connector 38, which is fixed to the main body 10 by a cap 40 via an O-ring 41. The cap 40 includes a cylindrical portion 401 that is fitted into the hole 101 of the main body 10, and a backflow prevention valve 42 is disposed within the cylindrical portion 401.
will be installed. This check valve 42 is formed as a ball valve and is disposed between a valve seat 44 fitted into the cylindrical portion 401 and a spring seat 46. The spring 48 keeps the valve 42 open and the valve seat 4 at all times.
It is exerting an urging force that closes down 4. The valve hole of the valve seat 44 is the vertical hole 4 in the cap 40.
02, fuel supply connector 3 via horizontal hole 403
It communicates with the fuel hole 361 of No. 6. Backflow prevention valve 4
The combustion chamber 50 formed downstream of 2 includes a passage 102 in the main body 10, an annular passage 52 between the main body 10 and the nozzle holder 12, an annular passage 54 between the valve body 18, the valve plate 20, and the nozzle holder 12, and an annular passage 54 in the valve body 18. the annular passage 5 between the valve body 18 and the vortex plate 16;
6 and the first swirl chamber 2 via the first inlet 58
6 (see Figure 4).
第2図において、60は制御弁であり、玉状弁
として構成される。制御弁60はばね62の力を
受けるアダプタ64によつて、バルブプレート2
0に形成されるバルブシート202に着座するよ
うな付勢力を受けている。バルブシート202の
弁孔はバルブプレート20内の孔204を介して
環状通路54に開口し、ここからの燃料供給を受
ける。バルブシートの上方の空間66はバルブプ
レート内の通路206、バルブボデイ18内の燃
料通路184、ボルテツクスプレート16内の通
路161、ボルテツクスプレートとボルテツクス
ホルダ間の環状通路67及び第2の流入口70を
介して第2の渦流室28に開口している(第4図
参照)。 In FIG. 2, 60 is a control valve, which is configured as a ball valve. The control valve 60 is connected to the valve plate 2 by an adapter 64 which receives the force of a spring 62.
The valve seat 202 is biased to sit on the valve seat 202 formed at 0. The valve hole in the valve seat 202 opens into the annular passage 54 through a hole 204 in the valve plate 20 and receives fuel supply therefrom. The space 66 above the valve seat includes a passage 206 in the valve plate, a fuel passage 184 in the valve body 18, a passage 161 in the vortex plate 16, an annular passage 67 between the vortex plate and the vortex holder, and a second inlet. It opens into the second swirl chamber 28 via 70 (see FIG. 4).
第1の渦流室26へ第1の流入口58は第5図
に略示するようにその接線方向に開口している。
同様に第2の渦流室28への第2の流入口70も
その接線方向に開口している。このような接線方
向における、流入口58又は70の、渦流室26
又は28への開口によつて、渦流室26又は28
内の旋回流が生ずることは周知の通りである。 A first inlet 58 into the first swirl chamber 26 opens tangentially thereto, as schematically shown in FIG.
Similarly, the second inlet 70 to the second swirl chamber 28 is also open tangentially. The swirl chamber 26 of the inlet 58 or 70 in such a tangential direction
or 28 by opening into the swirl chamber 26 or 28
It is well known that a swirling flow occurs within the air.
本発明によれば、流量が小さいときの噴射を受
け持つ渦流室26は噴口30と反対側の壁面にお
いてリリーフ開口185が設けられる。開口18
5はボルテツクスプレート16内に穿設され、後
述のように渦流室26から一部の燃料を帰還す
る。噴口26と反対側に設置することで、渦流室
26内での旋回流の流れに少しも影響を与えるこ
となく、燃料の一部帰還を行うことができる。渦
流室26は、開口185、及び絞り部材74、バ
ルブプレート20内の孔207、本体10とバル
ブプレート20との間の環状通路76、本体10
内の通路105,106、及び燃料戻しコネクタ
38内のたて孔381,よこ孔382を介して、
第1図のパイプ7に連結されている。開口18
5、絞り部材74のオリフイス741、孔20
7、環状通路76、通路105,106、孔38
1,382、パイプ7は本発明の燃料戻し通路を
構成する。第2図に示すように絞り部材74はカ
ツプ状に形成され、本体18のボア187内にね
じ込まれ固定される。絞り部材74はその下端面
にオリフイス741を持ち、これは渦流室26か
ら戻すべき燃料量を設定する。第1渦流室26に
開口する連通孔185は第2の逆流防止弁80を
備え、この弁80は、ばね82によつてアダプタ
84を介して、連通孔185に近接したバルブシ
ート188を常時は塞ぐような付勢力を発揮して
いる。 According to the present invention, the vortex chamber 26 which takes charge of injection when the flow rate is small is provided with a relief opening 185 in the wall surface on the opposite side from the jet port 30. opening 18
5 is bored in the vortex plate 16 and returns some of the fuel from the vortex chamber 26 as described below. By installing it on the side opposite to the nozzle 26, part of the fuel can be returned without affecting the swirling flow within the swirl chamber 26 in the slightest. Swirl chamber 26 includes opening 185 and restrictor member 74 , hole 207 in valve plate 20 , annular passage 76 between body 10 and valve plate 20 , body 10
Through the passages 105 and 106 inside, and the vertical holes 381 and horizontal holes 382 inside the fuel return connector 38,
It is connected to the pipe 7 in FIG. opening 18
5. Orifice 741 of throttle member 74, hole 20
7, annular passage 76, passages 105, 106, hole 38
1,382, pipe 7 constitutes the fuel return passage of the present invention. As shown in FIG. 2, the restricting member 74 is formed into a cup shape and is screwed into the bore 187 of the main body 18 and fixed therein. Throttle member 74 has an orifice 741 on its lower end surface, which sets the amount of fuel to be returned from swirl chamber 26 . The communication hole 185 that opens into the first swirl chamber 26 is equipped with a second check valve 80, which is normally operated by a spring 82 and an adapter 84 to prevent the valve seat 188 adjacent to the communication hole 185 from being closed. It exerts a blocking force.
以上述べた本発明の装置の作動を述べると、流
量制御装置5からの燃料はパイプ6より燃料噴射
弁1の燃料供給コネクタ36に導入され、通路3
61、孔403,402より逆流防止弁42を押
し開け、燃料室50内に入る。室50から燃料は
通路102,52,54,56に入り、第1の流
入口58より第1の渦流室26に接線方向に導入
され、その中で旋回流を生ずる。旋回性を付与さ
れた燃料流は第1の噴口30より第2の噴口32
を経て燃焼室に円錐状の薄い液膜F(第7図)を
なして噴霧される。このように薄く形成された円
錐状の液膜は域る飛翔距離達すると、Gのように
良好に微粒化される。この第1の渦流室26から
の噴霧は流量制御装置5からの燃料の圧力が小さ
いとき、即ち低流量域での噴霧を分担するもので
あり、その流量特性は入口圧力(即ち流量制御装
置からの燃料圧力)pに対して第6図の実線l1を
もつて表わされる。尚この、圧力状態では制御弁
60に作用する燃料圧力は小さいことから、これ
は閉となり第2の渦流室28に燃料は供給されな
い。 To describe the operation of the device of the present invention described above, fuel from the flow control device 5 is introduced into the fuel supply connector 36 of the fuel injection valve 1 through the pipe 6, and
61, push open the check valve 42 through the holes 403 and 402, and enter the fuel chamber 50. From chamber 50, fuel enters passages 102, 52, 54, 56 and is introduced tangentially through first inlet 58 into first swirl chamber 26, creating a swirling flow therein. The swirling fuel flow flows from the first nozzle 30 to the second nozzle 32.
The liquid is then sprayed into the combustion chamber in the form of a thin conical liquid film F (Fig. 7). When the conical liquid film formed thinly in this way reaches a certain flight distance, it becomes finely atomized as shown in G. The spray from the first vortex chamber 26 is responsible for spraying when the pressure of the fuel from the flow control device 5 is low, that is, in the low flow region, and its flow rate characteristics are determined by the inlet pressure (i.e., from the flow control device 5). (fuel pressure) p is represented by the solid line l1 in FIG. In this pressure state, the fuel pressure acting on the control valve 60 is small, so the control valve 60 is closed and no fuel is supplied to the second swirl chamber 28.
燃料圧力が設定値p1に達すると、制御弁60に
働く燃料圧力はばね62に打ち勝ち弁60は弁座
202より離れ、燃料は通路206,184,1
61,67を介して第2の流入口70に至り、こ
の第2の流入口70より第2の渦流室28に接線
方向に導入される。そのため第2の渦流室28内
に燃料の旋回流が生じ、噴口32より燃焼室に噴
霧される。この場合も噴霧は第7図で説明したよ
うに円錐状の薄い液膜流として形成される。この
ように高圧力時には、第2の渦流室28からの噴
霧が第1の渦流室26からの噴霧に加えて生ずる
ことになり、流量特性は、第6図において第1の
渦流室26からの流量特性に第2の渦流室28か
らの流量特性を重畳したl2の如き曲線になる。 When the fuel pressure reaches the set value p1 , the fuel pressure acting on the control valve 60 overcomes the spring 62, and the valve 60 moves away from the valve seat 202, and the fuel flows into the passages 206, 184, 1.
61 and 67 to a second inlet 70, from which it is introduced tangentially into the second swirl chamber 28. Therefore, a swirling flow of fuel is generated in the second vortex chamber 28, and the fuel is sprayed from the injection port 32 into the combustion chamber. In this case as well, the spray is formed as a thin conical liquid film stream as explained in FIG. In this manner, at high pressure, the spray from the second swirl chamber 28 is generated in addition to the spray from the first swirl chamber 26, and the flow rate characteristics are as shown in FIG. A curve such as l 2 is obtained by superimposing the flow rate characteristic from the second swirl chamber 28 on the flow rate characteristic.
第1の渦流室26内に供給される燃料圧力は玉
80に作用しこれをばね82に抗して弁座188
より変位させる。即ち、第1の渦流室26は、連
通路185,オリフイス741、通路207,1
05,106、孔381,382を介し戻しパイ
プ7に連通している。この際の戻し流量はオリフ
イス741の径によつて決められる。このよう
に、第1の渦流室26からは常に燃料が流出して
いることから、この室26へ導入される流量、即
ち圧力pは大きくしないと噴口30からの所期の
噴射量が得られないことになる。その結果、噴射
量の小さい領域にあつても渦流室26内に十分な
旋回流量強度を実現することができ、この領域で
も十分な微粒化を行うことができる。従来では、
このような戻り配管系は設置されておらずこのと
きの第1渦流室26からの噴霧量特性は第6図
m1の通りとなる。同一の噴霧量、例えばg1に対
し本発明では渦流室入口への圧力はpl、一方従来
ではpmである。結果として、渦流室26内での
流速は本発明より小さく、これが延いては微粒化
の悪化となつてあらわれていたのである。 The fuel pressure supplied in the first swirl chamber 26 acts on the ball 80 and forces it against the spring 82 into the valve seat 188.
Displace it more. That is, the first swirl chamber 26 includes the communication passage 185, the orifice 741, the passages 207, 1
05, 106, and communicates with the return pipe 7 through holes 381, 382. The return flow rate at this time is determined by the diameter of the orifice 741. As described above, since fuel is always flowing out from the first swirl chamber 26, the desired injection amount from the nozzle 30 cannot be obtained unless the flow rate introduced into this chamber 26, that is, the pressure p is increased. There will be no. As a result, even in a region where the injection amount is small, sufficient swirling flow intensity can be achieved in the swirl chamber 26, and sufficient atomization can be achieved even in this region. Conventionally,
Such a return piping system is not installed, and the spray amount characteristics from the first swirl chamber 26 at this time are shown in Fig. 6.
m 1 street. For the same spray volume, for example g 1 , according to the invention the pressure at the inlet of the swirl chamber is pl, whereas conventionally it is pm. As a result, the flow velocity within the vortex chamber 26 was lower than in the present invention, and this resulted in worsening of atomization.
尚、逆流防止弁42,60は燃料供給停止後
夫々ばね48,82によつて閉鎖位置に戻る。こ
れによつて、停止中に燃料が逆流すること及びノ
ズルからボタ落ちすることが防止される。ばね4
8,82はこのような逆流防止機能は発揮しつ
つ、しかし作動時の燃料の円滑な流通は阻害しな
いよう適当な弱い力に設定される。 The check valves 42 and 60 are returned to the closed position by the springs 48 and 82, respectively, after the fuel supply is stopped. This prevents fuel from flowing backwards and dripping from the nozzle during shutdown. Spring 4
8 and 82 are set to have an appropriately weak force so as to exhibit such a backflow prevention function, but not to impede the smooth flow of fuel during operation.
第8,9図に示す第2図の実施例は、燃料噴射
弁1の構成は第2,3図と同様である。これに加
えて、第1図の戻しパイプ7に相当するパイプ
7′内に第2の流量制御装置80が設置される。
この流量制御装置80は、パイプ7′内の戻し流
量を大流量域では零とするか又は減少させる弁装
置として構成される。このような流量制御装置を
設定することによつて、第6図の破線で示すよう
に、大流量域での特性l2′は従来の絞りのないも
の(m2)と同等にしかつ小流量域l1′では絞りを
設置した本発明の特性(l1)と同等にすることが
できる。高流量域でリリーフさせない分第1図の
ポンプ4の圧力を下げることができ、ポンプ動力
の減少を図ることができる。 In the embodiment of FIG. 2 shown in FIGS. 8 and 9, the structure of the fuel injection valve 1 is the same as that in FIGS. 2 and 3. In addition, a second flow control device 80 is installed in the pipe 7', which corresponds to the return pipe 7 in FIG.
The flow rate control device 80 is configured as a valve device that makes the return flow rate in the pipe 7' zero or decreases in a large flow rate region. By setting up such a flow rate control device, as shown by the broken line in Fig. 6, the characteristic l 2 ' in the large flow rate region is equal to that of the conventional device without restriction (m 2 ), and the characteristic l 2 ' in the small flow rate region is In the region l 1 ', the characteristics can be made equivalent to the characteristics (l 1 ) of the present invention in which a diaphragm is installed. The pressure of the pump 4 shown in FIG. 1 can be lowered by not providing relief in the high flow rate range, and the pump power can be reduced.
発明の効果
第1の渦流室と第2の渦流室との二つの渦流室
を設け、第2の渦流室への燃料の供給を燃料圧が
所定値より高いとき開弁する制御弁によつて行
い、かつ第1の渦流室からのみ戻し通路により燃
料の帰還を行つている。そのため、燃料流量の少
ないときは第1の渦流室から燃料の噴射を行うと
共に、燃料の戻しを行うことで第1の渦流室の圧
力を高め、流速増加により霧化を良好にすると共
に、流量の多い運転時には第2の渦流室から燃料
を噴射を行うことで、所望量の燃料の噴射をする
ことが可能であると共に、第2の渦流室からは燃
料の帰還がないため、燃料供給ポンプをそれほど
高出力化することなしに必要な流量を得ることが
できる効果が奏されるまた渦流室への流入孔径を
大きくできることから加工が容易となる。Effects of the Invention Two swirl chambers, a first swirl chamber and a second swirl chamber, are provided, and the supply of fuel to the second swirl chamber is controlled by a control valve that opens when the fuel pressure is higher than a predetermined value. The fuel is returned only from the first swirl chamber through the return passage. Therefore, when the fuel flow rate is low, fuel is injected from the first vortex chamber and the fuel is returned to increase the pressure in the first vortex chamber, improving atomization by increasing the flow rate, and increasing the flow rate. By injecting fuel from the second vortex chamber during operation with a large amount of fluid, it is possible to inject the desired amount of fuel, and since there is no return of fuel from the second vortex chamber, the fuel supply pump The effect is that the required flow rate can be obtained without increasing the output so much, and the diameter of the inflow hole to the swirl chamber can be increased, which facilitates processing.
第1図は本発明の燃料噴射弁を含む装置の全体
概略構成図、第2図は第1図の燃料噴射弁の詳細
断面図、第3図は第2図の上面図、第4図は第1
図の部分拡大図、第5図は渦流室の平面図、第6
図は本発明の燃料噴射弁の流量特性図、第7図は
ノズルからの噴霧の様子を示す説明図、第8図,
第9図は本発明の第2の実施例を示す第2図,第
3図と同様な図、第10図は第3の実施例を示す
第2図又は第8図と同様な図。
1,1′……燃料噴射弁、7……戻りパイプ、
26,28……渦流室、30,32……噴口、7
4……絞り部材、741……オリフイス。
FIG. 1 is an overall schematic configuration diagram of a device including a fuel injection valve of the present invention, FIG. 2 is a detailed sectional view of the fuel injection valve of FIG. 1, FIG. 3 is a top view of FIG. 2, and FIG. 1st
Figure 5 is a plan view of the swirl chamber, Figure 6 is a partially enlarged view of the figure.
The figure is a flow rate characteristic diagram of the fuel injector of the present invention, Figure 7 is an explanatory diagram showing the state of spray from the nozzle, Figure 8,
FIG. 9 is a diagram similar to FIGS. 2 and 3 showing a second embodiment of the present invention, and FIG. 10 is a diagram similar to FIG. 2 or 8 showing a third embodiment. 1, 1'...Fuel injection valve, 7...Return pipe,
26, 28... vortex chamber, 30, 32... nozzle, 7
4... Throttle member, 741... Orifice.
Claims (1)
1の渦流室と、容積が大きい第2の渦流室とを備
え、第2の渦流室と燃料供給ポンプとの間に燃料
圧力が所定値以上のときに開弁して第2の渦流室
に燃料を導く制御弁が設けられ、第1の渦流室及
び第2の渦流室は夫々燃料の噴射を行う噴口を有
しており、第1の渦流室のみその噴口の反対の位
置に燃料戻し通路が開口され、該燃料戻し通路内
に流量制御絞りを有する燃料制御機構が設置され
る燃料噴射弁。 2 前記流量制御機構は固定寸法の絞りと固定絞
りを通る戻し流量を押さえるか又は零とする逆流
防止弁を有している特許請求の範囲第1項の燃料
噴射弁。[Claims] 1. A first vortex chamber with a small volume connected to a fuel supply pump and a second vortex chamber with a large volume, and between the second vortex chamber and the fuel supply pump, a fuel A control valve is provided that opens when the pressure is above a predetermined value and guides the fuel to the second swirl chamber, and the first swirl chamber and the second swirl chamber each have a nozzle for injecting fuel. A fuel injection valve in which a fuel return passage is opened only in the first swirl chamber at a position opposite to its nozzle, and a fuel control mechanism having a flow rate control throttle is installed in the fuel return passage. 2. The fuel injection valve according to claim 1, wherein the flow rate control mechanism includes a throttle having a fixed size and a check valve that suppresses or eliminates the return flow rate passing through the fixed throttle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12949683A JPS6022067A (en) | 1983-07-18 | 1983-07-18 | Fuel injection valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12949683A JPS6022067A (en) | 1983-07-18 | 1983-07-18 | Fuel injection valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6022067A JPS6022067A (en) | 1985-02-04 |
JPH0583805B2 true JPH0583805B2 (en) | 1993-11-29 |
Family
ID=15010912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12949683A Granted JPS6022067A (en) | 1983-07-18 | 1983-07-18 | Fuel injection valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022067A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8316875B2 (en) | 2008-12-30 | 2012-11-27 | General Electric Company | Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151810A (en) * | 1980-04-11 | 1981-11-25 | Webasto Werk Baier Kg W | Nozzle for pressure spray burner |
-
1983
- 1983-07-18 JP JP12949683A patent/JPS6022067A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151810A (en) * | 1980-04-11 | 1981-11-25 | Webasto Werk Baier Kg W | Nozzle for pressure spray burner |
Also Published As
Publication number | Publication date |
---|---|
JPS6022067A (en) | 1985-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4629127A (en) | Intermittent swirl type injection valve | |
JP2601977B2 (en) | Electromagnetic fuel injection valve | |
JP2996525B2 (en) | Fuel injection valve | |
WO2005045232A3 (en) | Fuel injector with reduced sauter-mean-diameter fuel atomization spray by fluidic metering orifice disc and methods | |
US3443760A (en) | Fail-safe fuel injection nozzle | |
US4034917A (en) | Variable orifice fuel injection nozzle | |
US4862837A (en) | Fuel injection of coal slurry using vortex nozzles and valves | |
JPS6138349B2 (en) | ||
US3095153A (en) | Variable area spray nozzle | |
US6776353B2 (en) | Fuel injector valve seat assembly with radially outward leading fuel flow passages feeding multi-hole orifice disk | |
JPS60240871A (en) | Fuel jet nozzle | |
JPH0583805B2 (en) | ||
CN110541849B (en) | Oil return ejector and aircraft engine fuel system comprising same | |
ITRM990385A1 (en) | CARBURETOR FOR INTERNAL COMBUSTION ENGINE. | |
US5823443A (en) | Poppet nozzle for fuel injection | |
JPH0583807B2 (en) | ||
JP2811228B2 (en) | Fuel injection nozzle for internal combustion engine | |
JPH0583806B2 (en) | ||
SU1098526A3 (en) | Injection nozzle | |
JPS58101264A (en) | Valve | |
US4986240A (en) | Fuel injection device for injection carburetors | |
SU1079873A1 (en) | Atomizer | |
JPS6026163A (en) | Fuel injection valve for diesel engine | |
JPS58586B2 (en) | fuel injection valve | |
JPH03275973A (en) | Solenoid fuel injection valve |