JPS60220413A - Active/reactive power controller using self-arc extinguishing element - Google Patents

Active/reactive power controller using self-arc extinguishing element

Info

Publication number
JPS60220413A
JPS60220413A JP59076365A JP7636584A JPS60220413A JP S60220413 A JPS60220413 A JP S60220413A JP 59076365 A JP59076365 A JP 59076365A JP 7636584 A JP7636584 A JP 7636584A JP S60220413 A JPS60220413 A JP S60220413A
Authority
JP
Japan
Prior art keywords
self
phase
switch circuit
thyristor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59076365A
Other languages
Japanese (ja)
Other versions
JPH0619687B2 (en
Inventor
Toyoji Himei
姫井 豊治
Shigeyuki Funabiki
船曳 繁之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denken KK
Original Assignee
Sanyo Denken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denken KK filed Critical Sanyo Denken KK
Priority to JP59076365A priority Critical patent/JPH0619687B2/en
Publication of JPS60220413A publication Critical patent/JPS60220413A/en
Publication of JPH0619687B2 publication Critical patent/JPH0619687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To control the active power and the reactive power of advance/delay phase by connetcting a switch circuit between the neutral point of a 3-phase power supply and an intermediate tap of a reactor serving as a load. CONSTITUTION:The phase voltages 1-3 of a 3-phase power supply are rectified by a full-wave rectifier using thyristors 4-9, and these output voltages are connected to a reactor 10 serving as a load. A switch circuit 11 using a self-arc extinguishing element is connected between the neutral point of the 3-phase power supply and an intermediate tap of the reactor 10. Then the active power and the reactive power of advance/delay phase are controlled by the switching action of the circuit 11.

Description

【発明の詳細な説明】 本発明は従来より少ない個数かつ小容量の自己溝弧形素
子を用いた三相電力制御装置に係り、特に有効および進
・遅相無効電力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-phase power control device using self-groove arc elements having a smaller number and smaller capacity than conventional ones, and particularly relates to an effective and leading/lag phase reactive power control device.

逆阻止三端子サイリスタ素子(以下、サイリスタと呼ぶ
)を用いた三相全波整流回路の負荷としてリアクトルを
接続した回路においてサイリスタを全て自己消弧形半導
体素子(以下、自己溝弧形素子と呼ぶ。例えば、GTO
等)に置換えて、コンデンサを並列に接続することなし
に、進相および遅相の無効電力を制御できるものは発表
されている(例えば、電流型PWMコンバータを用いた
無効電力補償装置 昭和56年電気学会全国大会606
)。
In a circuit in which a reactor is connected as the load of a three-phase full-wave rectifier circuit using reverse-blocking three-terminal thyristor elements (hereinafter referred to as thyristors), the thyristors are all self-extinguishing semiconductor elements (hereinafter referred to as self-groove arc elements). For example, GTO
etc.), devices that can control leading and lagging phase reactive power without connecting capacitors in parallel have been announced (for example, a reactive power compensator using a current-type PWM converter in 1982). Institute of Electrical Engineers of Japan National Conference 606
).

これはコンバータ回路のサイリスタを全て自己溝弧形素
子に置換えるため、単位構成では6個の自己溝弧形素子
が必要となり、コストおよび信頼性の点で不利となる。
Since all the thyristors in the converter circuit are replaced with self-groove arc elements, six self-groove arc elements are required in a unit configuration, which is disadvantageous in terms of cost and reliability.

本発明は少ない個数、小容量の自己溝弧形素子を用いて
、有効および進・遅相無効電力を制御しようとするもの
である。第1図が本発明による装置の構成を示す。1.
2.3は三相電源の各相電圧(1:A相、2:B相、3
:C相)、4.5.6.7.8.9はサイリスタ、10
は中間タップを持つリアクトル、11は自己溝弧形素子
からなるスイッチ回路である。第2図に、このスイッチ
回路11の構成例を示す。同図(a)はスイッチ回路を
三相電源の中性点とりアクドルの中点との間に配置した
もので、12.13はダイオード、14.15はサイリ
スタ、16は自己溝弧形素子、17.18は直流電圧源
である。同図(b)はスイッチ回路を三相電源の中性点
とりアクドルの中間タップとの間に配置したもので、1
9.20は自己消弧形素子、21.22は直流電圧源で
ある。
The present invention attempts to control effective, leading and lagging phase reactive power using a small number of self-groove arc elements of small capacity. FIG. 1 shows the configuration of an apparatus according to the present invention. 1.
2.3 is the voltage of each phase of the three-phase power supply (1: A phase, 2: B phase, 3
:C phase), 4.5.6.7.8.9 is thyristor, 10
1 is a reactor having an intermediate tap, and 11 is a switch circuit consisting of a self-groove arc element. FIG. 2 shows an example of the configuration of this switch circuit 11. In the same figure (a), a switch circuit is arranged between the neutral point of the three-phase power supply and the center point of the accelerator, in which 12.13 is a diode, 14.15 is a thyristor, 16 is a self-grooved arc element, 17.18 is a DC voltage source. In the same figure (b), the switch circuit is placed between the neutral point of the three-phase power supply and the center tap of the accelerator.
9.20 is a self-extinguishing element, and 21.22 is a DC voltage source.

第3図に、回路動作例として第1図に示した装置で第2
図(a)のスイッチ回路を用いた場合のサイリスタおよ
び自己消弧形素子の導通タイミングと電圧・電流波形を
示している。この図で回路は制御角α=−72度(第3
図参照)で動作しており、発生している無効電力は進み
の無効電力であり、CO8φ=0.13である。ただし
、φは電源電圧と電流の基本波の位相角である。回路動
作をサイリスタ4が点弧された時刻から説明する。
Figure 3 shows an example of circuit operation when the device shown in Figure 1 is connected to a second
It shows the conduction timing and voltage/current waveforms of the thyristor and the self-extinguishing element when the switch circuit shown in FIG. 3(a) is used. In this figure, the circuit has a control angle α = -72 degrees (3rd
(see figure), and the generated reactive power is leading reactive power, and CO8φ=0.13. However, φ is the phase angle between the power supply voltage and the fundamental wave of the current. The circuit operation will be explained starting from the time when the thyristor 4 is fired.

時刻T】で自己消弧形素子16が消弧し、サイリスタ4
が点弧されると、これまて三相電源の中点からスイッチ
回路11を通って流れていた電流は流れなくなり、電流
は入相電圧lからサイリスタ4、リアクトル10、サイ
リスタ8を通ってB相電圧2へ流れ、A相からB相に電
流が流れる。次に、時刻T2でサイリスタ14を点弧し
、自己消弧形素子16を導通させると、直流電圧源17
、サイリスタ8に逆バイアス電圧として印加され、サイ
リスタ8は消弧し、電流はサイリスタ4とリアクトル1
0とスイッチ回路のダイオード12、自己消弧形素子1
6、直流電圧源17、サイリスタ14を通って流れる。
At time T], the self-arc extinguishing element 16 extinguishes the arc, and the thyristor 4
When ignition occurs, the current that has been flowing from the middle point of the three-phase power supply through the switch circuit 11 stops flowing, and the current flows from the input phase voltage l through the thyristor 4, reactor 10, and thyristor 8 to B. Current flows to phase voltage 2, and current flows from A phase to B phase. Next, when the thyristor 14 is ignited at time T2 and the self-extinguishing element 16 is made conductive, the DC voltage source 17
, is applied to the thyristor 8 as a reverse bias voltage, the thyristor 8 is turned off, and the current flows between the thyristor 4 and the reactor 1.
0, switch circuit diode 12, self-extinguishing element 1
6, flows through the DC voltage source 17 and the thyristor 14.

Δを時間、自己消弧形素子を導通させ、時刻T3で自己
消弧形素子を消弧させると同時にサイリスタ7を点弧す
ると、スイッチ回路を流れていた電流は流れなくなり、
電流はサイリスタ4とリアクトル10とサイリスタ7を
通って環流する。この回路動作状態(以下、環流モート
と呼ぶ)を環流モート角γの駅間だけ設定し、時刻T4
でサイリスタ14を点弧し、自己消弧形素子16を導通
させると、直流電圧源17がサイリスタフに逆バイアス
電圧として印加さね、サイリスタ7は消弧し、電流はサ
イリスタ4とリアクトル10とスイッチ回路のダイオー
ド12、自己消弧形素子16、直流電圧源17、サイリ
スタ14を通って流れる。Δを時間、自己消弧形素子を
導通させ、時刻T5で自己消弧形素子を消弧させると同
時にサイリスタ9を点弧すると、スイッチ回路を流れて
いた電流は流れなくなり、電流はサイリスタ4とリアク
トル10とサイリスタ9を通って、A相からC相に流れ
る。以下、同様の動作により任意の時刻に転流動作を行
い、電源を流れる電流を制御する。また、この転流動作
を行うためには直流電圧it!17.18の電圧の大き
さは三相電源の相電圧より大きいものであればよい。
When the self-arc-extinguishing element is made conductive for the time Δ, and the self-arc-extinguishing element is extinguished at time T3, the thyristor 7 is fired at the same time, the current flowing through the switch circuit stops flowing.
The current circulates through the thyristor 4, the reactor 10, and the thyristor 7. This circuit operating state (hereinafter referred to as circulation moat) is set only between stations with circulation moat angle γ, and time T4
When the thyristor 14 is ignited and the self-extinguishing element 16 is made conductive, the DC voltage source 17 no longer applies a reverse bias voltage to the thyristor, the thyristor 7 is extinguished, and the current flows between the thyristor 4 and the reactor 10. It flows through the diode 12 of the switch circuit, the self-extinguishing element 16, the DC voltage source 17, and the thyristor 14. When the self-extinguishing element is made conductive for the time Δ, and the self-extinguishing element is extinguished at time T5, the thyristor 9 is fired at the same time, the current that was flowing through the switch circuit stops flowing, and the current flows through the thyristor 4. It passes through the reactor 10 and the thyristor 9 and flows from the A phase to the C phase. Thereafter, similar operations are performed to perform commutation operations at arbitrary times to control the current flowing through the power supply. Also, in order to perform this commutation operation, the DC voltage it! The magnitude of the voltages 17 and 18 may be greater than the phase voltage of the three-phase power supply.

このようにして、制御角αと環流モード角γを変えるこ
とにより、進みの無効電力を制御することができる。尚
、スイッチ回路には、電流はΔtの訪問のみ流れ、これ
は非常に短い時間であるためスイッチ回路の容量は小さ
くてよい。
In this way, by changing the control angle α and the circulation mode angle γ, the leading reactive power can be controlled. Note that the current flows through the switch circuit only during the visit of Δt, which is a very short time, so the capacity of the switch circuit may be small.

遅れの無効電力も進みの無効電力と同様にスイッチ回路
を動作させて、制御角αと環流モード角γを変えること
により制御することができる。また、遅れの無効電力の
制御は、スイッチ回路を動作させることなしに、サイリ
スタ4.5.6.7.8.9だけを動作させ、制御角α
と環流モード月次に、制御角αと環流モート角γを制御
したときの電力制御特性について説明する。ここで、リ
アクトルのインダクタンスL(リアクトルの中点と一方
の端の間のインダクタンス)は無限大であり、リアクト
ルが保持している磁気エネルギーは一定、リアクトルの
左右の巻線は磁気的に完全に結合しており、リアクトル
の左右の巻線間の相互インダクタンスMはM=L、自己
消弧形素子の動作時間は電流の転流が完了するだけの時
間であればよく、その時間は電源の一周期に比べて非常
に短く、Δ1=0と仮定する。
Similarly to the leading reactive power, the lagging reactive power can be controlled by operating a switch circuit and changing the control angle α and the circulation mode angle γ. In addition, to control the delayed reactive power, only the thyristor 4.5.6.7.8.9 is operated without operating the switch circuit, and the control angle α
and circulation mode Monthly, the power control characteristics when controlling the control angle α and the circulation moat angle γ will be explained. Here, the inductance L of the reactor (the inductance between the midpoint of the reactor and one end) is infinite, the magnetic energy held by the reactor is constant, and the left and right windings of the reactor are magnetically completely The mutual inductance M between the left and right windings of the reactor is M = L, and the operating time of the self-extinguishing element only needs to be the time to complete the commutation of the current, and that time is limited to the power supply. It is assumed that Δ1=0, which is very short compared to one cycle.

制御角αと環流モード角γに対する電流の基本波成分の
有効分、無効分をそれぞれIp(α、γ)、Iq(α、
γ)とすると次式で表すことができる。
The effective and reactive components of the fundamental wave component of the current with respect to the control angle α and the circulation mode angle γ are expressed as Ip (α, γ) and Iq (α,
γ), it can be expressed by the following equation.

Ip(α、γ)=21dO/π(C05(α+π/6)
−CO5(α−γ+π/2)+C05(α+π/2)−
CO5(α−γ+stt 16)) ・・・・・・・・
・・・・・・・(1)Iq(α、γ)=2 r do/
π(5IN(α−γ+π/2)=SIN(α+π/6)
+5IN(α−γ+5π/6)−5IN(α+π12)
)IILIjI+19争・LI奉φ・壷・・(2)ただ
し、IdOはりアクドルを流れる電流の平均値である。
Ip(α, γ)=21dO/π(C05(α+π/6)
-CO5(α-γ+π/2)+C05(α+π/2)-
CO5 (α-γ+stt 16)) ・・・・・・・・・
・・・・・・・・・(1) Iq(α, γ)=2 r do/
π(5IN(α-γ+π/2)=SIN(α+π/6)
+5IN(α-γ+5π/6)-5IN(α+π12)
) IILIjI+19 conflict・LI φ・Pot...(2) However, IdO is the average value of the current flowing through the acdle.

従って、有効電力P(α、γ)と無効電力Q(α、γ)
は電源の相電圧実効値をEとす゛れば、−相あたりP(
α、γ)=E◆Ip(α、γ)争φ争一番−114−φ
φφ(3)Q(α、γ)−E−1q(α、γ)・・・・
・・・・・・・・・・・(4)で表される。
Therefore, active power P (α, γ) and reactive power Q (α, γ)
If the effective value of the phase voltage of the power supply is E, then P(
α, γ) = E◆Ip (α, γ) φ dispute number one - 114 - φ
φφ(3)Q(α, γ)−E−1q(α, γ)・・・・
.........It is expressed as (4).

(3)、(4)式よりめた制御特性を第4図に示す。FIG. 4 shows the control characteristics determined from equations (3) and (4).

すなわち、制御角αを一180度から180度、環流モ
ード角γを0度から60度の範囲で制御することができ
、αおよびγを変えることにより、有効および進・遅相
の無効電力を連続的に制御できる。
In other words, the control angle α can be controlled within the range of -180 degrees to 180 degrees, and the circulation mode angle γ can be controlled within the range of 0 degrees to 60 degrees, and by changing α and γ, the effective, leading and lagging reactive power can be controlled. Can be controlled continuously.

第1図に示した装置で第2図(b)のスイッチ回路を用
いた場合の回路動作は、前述した第2図(a)のスイッ
チ回路を用いた場合と基本的には等しく、自己消弧形素
子を2個用いて、各々をリアクトルの2つの対称なタッ
プに接続したものである。このようにしてリアクトルと
スイッチ回路との接続を2つに分けることで、転流時に
スイッチ回路、リアクトルおよびサイリスタを流れる電
流を抑制しようとしたものである。すなわち第2図(a
)のスイッチ回路を用いた場合は、転流時の電流はスイ
ッチ回路を流れていない時の2倍になるが、第2図(b
)のスイッチ回路を用いた場合は、転流時の電流はりア
クドルのタップを適切に設定することにより2倍以下に
抑えることができ、前の場合よりも抑制できる。これは
構成素子の容量、特にスイッチ回路の容量を低減でき、
また転流時の不要な電流のジャンプを抑制できる。
The circuit operation when the switch circuit shown in FIG. 2(b) is used in the device shown in FIG. 1 is basically the same as when the switch circuit shown in FIG. 2(a) described above is used. Two arc-shaped elements are used, each connected to two symmetrical taps on the reactor. By dividing the connection between the reactor and the switch circuit into two in this way, it is attempted to suppress the current flowing through the switch circuit, the reactor, and the thyristor during commutation. In other words, Fig. 2 (a
), the current during commutation is twice as much as when it is not flowing through the switch circuit, but as shown in Figure 2 (b
), the current during commutation can be suppressed to less than twice by appropriately setting the tap of the accelerator, which is more suppressed than in the previous case. This can reduce the capacitance of the components, especially the capacitance of the switch circuit,
Additionally, unnecessary jumps in current during commutation can be suppressed.

以上、説明したように本発明による装置は自己消弧形素
子を一個または二個有するスイッチ回路を用いて、任意
の時刻にサイリスタを流れる電流を転流することが可能
で、有効および進・遅相の無効電力を制御でき、また使
用する自己消弧形素子の数も少なく小容量でよいことよ
り、コストおよび信頼性の点で有利である。
As explained above, the device according to the present invention can commutate the current flowing through the thyristor at any time by using a switch circuit having one or two self-extinguishing elements, and is capable of commutating the current flowing through the thyristor at any time. It is advantageous in terms of cost and reliability because the phase reactive power can be controlled and the number of self-extinguishing elements used is small and the capacity can be small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電力制御装置、第2図は自己消弧
形素子を用いたスイッチ回路の構成例、第3図は本装置
における各素子の導通タイミングと電圧・電流波形、第
4図は第3図で示した動作における電力制御特性。 1.2.3 三相電源各相 4.5.6.7.8.9.14.15 サイリスタ 10 中間タップをもつりアクドル 11 スイッチ回路 12.13 ダイオード 16.19.20 自己消弧形素子 17.18.21.22 直流電圧源 第1図
Fig. 1 shows a power control device according to the present invention, Fig. 2 shows a configuration example of a switch circuit using self-extinguishing elements, Fig. 3 shows conduction timing and voltage/current waveforms of each element in this device, and Fig. 4 is the power control characteristic in the operation shown in Fig. 3. 1.2.3 Three-phase power supply each phase 4.5.6.7.8.9.14.15 Thyristor 10 Adle with intermediate tap 11 Switch circuit 12.13 Diode 16.19.20 Self-extinguishing element 17.18.21.22 DC voltage source Figure 1

Claims (1)

【特許請求の範囲】[Claims] サイリスタを用いた三相全波整流回路の負荷としてリア
クトルを接続し、そのリアクトルの中間タップに自己溝
弧形素子を用いたスイッチ回路を接続した構成において
、このスイッチ回路のスイッチング動作により、有効お
よび進・遅相の無効電力を制御しようとした装置。
In a configuration in which a reactor is connected as the load of a three-phase full-wave rectifier circuit using a thyristor, and a switch circuit using a self-groove arc element is connected to the intermediate tap of the reactor, the switching operation of this switch circuit allows the effective and A device that attempts to control reactive power in leading and lagging phases.
JP59076365A 1984-04-16 1984-04-16 Active / reactive power controller using self-extinguishing element Expired - Lifetime JPH0619687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076365A JPH0619687B2 (en) 1984-04-16 1984-04-16 Active / reactive power controller using self-extinguishing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076365A JPH0619687B2 (en) 1984-04-16 1984-04-16 Active / reactive power controller using self-extinguishing element

Publications (2)

Publication Number Publication Date
JPS60220413A true JPS60220413A (en) 1985-11-05
JPH0619687B2 JPH0619687B2 (en) 1994-03-16

Family

ID=13603322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076365A Expired - Lifetime JPH0619687B2 (en) 1984-04-16 1984-04-16 Active / reactive power controller using self-extinguishing element

Country Status (1)

Country Link
JP (1) JPH0619687B2 (en)

Also Published As

Publication number Publication date
JPH0619687B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US4021721A (en) AC-to-DC converter
US3582756A (en) Polyphase power converter circuits having a high frequency transformer link
Borst et al. Voltage control by means of power thyristors
JPS6249831B2 (en)
JP3307962B2 (en) Power conversion method
US4555752A (en) AC Power converter with commutation circuit for reducing reactive power
US4188659A (en) Static AC/AC thyristor converter for a self-driven synchronous motor
JPS60220413A (en) Active/reactive power controller using self-arc extinguishing element
McMURRAY Power electronic circuit topology
US3337788A (en) Cyclo-converter circuits
US5340963A (en) Alternating current power source for welding
US4335424A (en) Cycling firing method for bypass operation of bridge converters
US4400629A (en) Delta-star connection
Kahlen Rectifying Single-Phase and Three-Phase AC with Forced-Commutated Converters
RU2215320C2 (en) Device for regulating and balancing three-phase voltage
US3986099A (en) Multi-purpose thyristor commutation circuit
JPS586391B2 (en) Inverter touch
SU807463A2 (en) Three-phase ac-to-dc converter
SU1264809A1 (en) A.c. to d.c. voltage converter
JPH01129779A (en) Pwm control thyristor converter
JP2645157B2 (en) Control method of cyclo converter
JPH0124644Y2 (en)
JPS5922538Y2 (en) Semiconductor device testing equipment
JPH0221224B2 (en)
JPH0559442B2 (en)