JPS60220307A - Polarizing microscope - Google Patents

Polarizing microscope

Info

Publication number
JPS60220307A
JPS60220307A JP7656184A JP7656184A JPS60220307A JP S60220307 A JPS60220307 A JP S60220307A JP 7656184 A JP7656184 A JP 7656184A JP 7656184 A JP7656184 A JP 7656184A JP S60220307 A JPS60220307 A JP S60220307A
Authority
JP
Japan
Prior art keywords
cross
lens
aperture stop
objective lens
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7656184A
Other languages
Japanese (ja)
Inventor
Yoichi Iba
陽一 井場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP7656184A priority Critical patent/JPS60220307A/en
Publication of JPS60220307A publication Critical patent/JPS60220307A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers

Abstract

PURPOSE:To prevent degradation of an extinction factor E.F. by arranging a cross-shaped aperture stop in the pupil of an object lens or a position conjugate to it and permitting only rays, where the polarization direction is not rotated, to pass through efficiently but intercepting rays where the polarization direction will be rotated or is rotated. CONSTITUTION:When an exit pupil 23 of an object lens 16 is observed through an analyzer 19, a dark cross line 22 is observed. A harmful light which reduces the E.F. is the luminous flux which passes through a light part which is seen in the exit pupil 23 when it is observed through the analyzer 19, and the luminous flux which passes through the part of the dark cross line 22 is intercepted by the analyzer 19 and does not reduce the E.F. A cross-shaped aperture stop 13 is arranged in the conjugate position in the front of a condenser lens 14. The aperture stop 13 can be rotated around the optical axis in accordance with rotation of a polarizer 12 and the analyzer 19 so that the dark cross line 22 and the aperture of the cross-shaped aperture stop 13 coincide with each other.

Description

【発明の詳細な説明】 技術分野 本発明は、消光係数(以後E、 F、と略す。)を大き
くした高感度な偏光顕微鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a highly sensitive polarizing microscope with large extinction coefficients (hereinafter abbreviated as E and F).

従来技術 偏光顕微鏡のE、F、は無限大であることが理想である
が、実際には有限である。そのため、微弱な複屈折性し
か有さない標本の観察には限界があり、このことは従来
から大きな問題であった。E、 F、を小さくしている
主な原因は、ポラライザーとアナライザーとの間に位置
する照明光学系と対物レンズの各レンズ表面で生じる境
界複屈折により偏光方向が回転してし捷うことであった
。特に高倍の対物レンズを使用した場合に、E、 F、
が減少する傾向が強い。
Ideally, E and F of the conventional polarizing microscope should be infinite, but in reality they are finite. Therefore, there is a limit to the observation of specimens that have only weak birefringence, and this has been a major problem for a long time. The main reason why E and F are small is that the direction of polarization is rotated and shuffled due to boundary birefringence that occurs on the surfaces of the illumination optical system and objective lens located between the polarizer and analyzer. there were. Especially when using a high magnification objective lens, E, F,
There is a strong tendency to decrease.

この問題を解決した光学系として、レクチファイヤ−光
学系(0ptical rectifier )が公知
である。この光学系は第7図に示した如く通常の偏光顕
微鏡にレクチファイヤ−光学素子を組込んで成るもので
ある。即ち、lは視野絞り、2はポラライザー、3は第
一レクチファイヤ−光学素子、4はコンデンサーレンズ
、5はスライドガラス、6は対物レンズ、7は第ニレク
チファイヤー光学素子、8はコンペンセーター、9はア
ナライザー、10は接眼レンズであって、第一レクチフ
ァイヤ−光学素子3は、入射する偏光の偏光方向をコン
デンサーレンズ4で生じる偏光方向の回転とは逆方向に
同等量回転させる働きを有している零パワー(屈折率を
持たない)の光学素子である。従って、第一レクチファ
イヤ−光学素子3に入射した光線は該光学素子3により
偏光方向が回転し、コンデンサーレンズ4により偏光方
向が逆方向に回転して、再び入射時とほぼ同じ偏光面を
持つ偏光となってコンデンサーレンズ4を出射する。又
、第ニレクチファイヤー光学素子7は、対物レンズ6で
生じる偏光面の回転と逆方向に同等量偏光面の回転をも
たらす零パワーの光学素子であって、対物レンズ6で回
転した偏光面を元に戻す働きをしている。このように、
レクチファイヤ−光学系では、Eにi小さくする主な原
因に対して二つのレクチファイヤ−光学素子を用いるこ
とにより対策を施しているが、レクチファイヤ−光学素
子の基本構成が凹レンズと凸レンズと1/2波長板とか
ら成るため、複雑で高価であるという問題があった。而
も、コンデンサーレンズ毎に又は対物レンズ毎に異なる
レクチファイヤ−光学素子が必要であるため、光学系全
体が一層高価になるという問題があった。
A rectifier optical system (optical rectifier) is known as an optical system that solves this problem. This optical system, as shown in FIG. 7, is constructed by incorporating a rectifier optical element into an ordinary polarizing microscope. That is, l is a field stop, 2 is a polarizer, 3 is a first rectifier optical element, 4 is a condenser lens, 5 is a slide glass, 6 is an objective lens, 7 is a second rectifier optical element, 8 is a compensator, 9 is an analyzer, 10 is an eyepiece lens, and the first rectifier optical element 3 has the function of rotating the polarization direction of incident polarized light by the same amount in the opposite direction to the rotation of the polarization direction caused by the condenser lens 4. It is a zero power (no refractive index) optical element. Therefore, the polarization direction of the light beam incident on the first rectifier optical element 3 is rotated by the optical element 3, and the polarization direction is rotated in the opposite direction by the condenser lens 4, so that the light beam has almost the same polarization plane as that at the time of incidence. It becomes polarized light and exits the condenser lens 4. The second rectifier optical element 7 is a zero-power optical element that rotates the plane of polarization by the same amount in the opposite direction to the rotation of the plane of polarization caused by the objective lens 6, and rotates the plane of polarization rotated by the objective lens 6. It works to restore it. in this way,
In the rectifier optical system, countermeasures are taken against the main cause of reducing i by using two rectifier optical elements, but the basic configuration of the rectifier optical element is one concave lens and one convex lens. /2 wavelength plate, it is complicated and expensive. However, since a different rectifier optical element is required for each condenser lens or each objective lens, there is a problem that the entire optical system becomes more expensive.

目 的 本発明は、上記問題点に鑑み、簡単且つ廉価な光学素子
を用いるだけでE、F、を大きくし得た高感度な偏光顕
微鏡を提供せんとするものである。
Purpose In view of the above-mentioned problems, the present invention aims to provide a highly sensitive polarizing microscope in which E and F can be increased simply by using simple and inexpensive optical elements.

概要 本発明による偏光顕微鏡は、各レンズ面の光軸を含み且
つポラライザーの振動方向又はそれと垂直な方向に広が
る面を入射面(レンズ面の法線と光線の進光方向を含む
面)とする光線又はその近傍の光線はレンズ面で偏光方
向の回転を受けないことを利用し、対物レンズの瞳又は
それと共役な位置に十字形の開口絞りを配置して、偏光
方向の回転を受けない光線のみを効率良く通し且つ偏光
方向が回転してしまう光線又は回転してしまった光線を
遮断し、E、 F、の悪化を防止するようにしたもので
ある。
Overview The polarizing microscope according to the present invention uses a surface that includes the optical axis of each lens surface and extends in the vibration direction of the polarizer or in a direction perpendicular thereto as an incident surface (a surface that includes the normal to the lens surface and the traveling direction of the light ray). Taking advantage of the fact that the light ray or the light rays near it undergoes no rotation of the polarization direction on the lens surface, a cross-shaped aperture stop is placed at the pupil of the objective lens or at a position conjugate to it, so that the light ray does not undergo rotation of the polarization direction. This system is designed to efficiently pass only the light beams and block the light rays whose polarization direction is rotated or whose polarization direction has been rotated, thereby preventing deterioration of E and F.

実施例 以下、第1図及び第2図に示した一実施例に基づき本発
明の詳細な説明すれば、第1図は本発明による透過型の
偏光顕微鏡の光源部を除く光学系全体を示している。1
1はスライドガラス15上の標本面と共役な位置に配置
された視野絞りであって、標本の照明範囲を決めている
。12はアナライザー19とは振動方向が直交している
ポラライザーであって、照明光を直線偏光にする働きを
有している。13はコンデンサーレンズ14に関し対物
レンズ16の入射瞳と共役な位置に配置されていて第2
図に示した如き開口部を有する十字形の開口絞りであっ
て、その対称軸AA’はポラライザー12の振動方向と
一致している。尚、図示されてはいないが、視野絞り1
1の前側には光源と該光源が発する光束を集束するコレ
クターレンズとがあり、該コレクターレンズによシ集光
された照明光束は視野絞り11を満たした後開口絞り1
3の開口部に光源像を形成している。17は対物レンズ
16の瞳、18はコンペンセーター、20は接眼レンズ
、21は接眼レンズ20の視野絞りである。
EXAMPLE Below, the present invention will be explained in detail based on an example shown in FIGS. 1 and 2. FIG. 1 shows the entire optical system of a transmission type polarizing microscope according to the present invention, excluding the light source section. ing. 1
Reference numeral 1 denotes a field stop arranged at a position conjugate with the specimen surface on the slide glass 15, and determines the illumination range of the specimen. Reference numeral 12 is a polarizer whose vibration direction is orthogonal to that of the analyzer 19, and has the function of converting illumination light into linearly polarized light. Reference numeral 13 is located at a position conjugate with the entrance pupil of the objective lens 16 with respect to the condenser lens 14;
It is a cross-shaped aperture stop having an opening as shown in the figure, and its axis of symmetry AA' coincides with the vibration direction of the polarizer 12. Although not shown, the field stop 1
1 has a light source and a collector lens that focuses the light beam emitted by the light source, and the illumination light beam focused by the collector lens fills the field diaphragm 11 and then passes through the aperture diaphragm 1.
A light source image is formed at the aperture 3. 17 is a pupil of the objective lens 16, 18 is a compensator, 20 is an eyepiece, and 21 is a field stop of the eyepiece 20.

本発明による偏光顕微鏡の光学系は上述の如く構成され
ているが、十字形の開口絞り13の代りに円形開口絞り
を配置すればケーラー照明による通常の透過型の偏光顕
微鏡と構成が全く同じであり、十字形の開口絞り13を
除く各部の作用も通常の透過型の偏光顕微鏡の場合と全
く同じなので、これらの細部の作用説明は省略し、E、
 F、が大きくなる原理について説明する。
The optical system of the polarizing microscope according to the present invention is configured as described above, but if a circular aperture stop is placed in place of the cross-shaped aperture stop 13, the configuration can be exactly the same as that of a normal transmission type polarizing microscope using Koehler illumination. The functions of each part except the cross-shaped aperture diaphragm 13 are exactly the same as those of a normal transmission type polarizing microscope, so we will omit a detailed explanation of these functions and refer to E.
The principle of increasing F will be explained.

そこで、まず従来の偏光顕微鏡のE、F、が伺故小さい
かを説明するために、十字形の開口絞り130代りに通
常の偏光顕微鏡に用いられる円形の開口絞り(明るさ絞
り)を配置した場合について考える。この場合、ポララ
イザー12を出た直線偏光は、コンデンサーレンズ14
.対物レノズ16を通ってアナライザー19に至る間に
一部の光束の偏光方向が回転してしまう。そして、この
偏光方向が回転した光束は、その偏光方向がアナライザ
ー19の振動方向と直交していないのでアナライザー1
9を通り抜け、E、 F、を小さくしてしまう。
First, in order to explain why the E and F of conventional polarizing microscopes are so small, we placed a circular aperture diaphragm (brightness diaphragm) used in ordinary polarizing microscopes in place of the cross-shaped aperture diaphragm 130. Think about the case. In this case, the linearly polarized light exiting the polarizer 12 is transferred to the condenser lens 14.
.. While passing through the objective lens 16 and reaching the analyzer 19, the polarization direction of some of the light beams is rotated. The light beam whose polarization direction has been rotated is not perpendicular to the vibration direction of the analyzer 19, so the analyzer 19
9 and makes E and F smaller.

特にこの傾向は、高倍率の対物レンズを使用した場合に
大きくなる。偏光方向の回・転け、主にコンデンサーレ
ンズ14と対物レンズ16の各表面で生じる。レンズ面
の各点に入射する子午光線の入射面は光軸とその入射点
を含む平面であり、この平面と偏光方向が直角又は平行
でない場合は偏光成分をP成分とS成分に分解出来るが
、それぞれの成分のレンズ表面での反射率に差があるか
ら透過率にも差が出来、その結果二成分を合成してまる
偏光成分が回転するのである。即ち、第3図に示した如
く、各レンズ面の光軸との交点を中心としてそこからポ
ラライザー12の振動方向又はそれと直交する方向へ伸
びるレンズ面の十字領域へ入射する子午光線は、レンズ
面で偏光方向の回転は生じないが、その他の領域へ入射
する光線は、レンズ面で偏光方向の回転が生じる。又、
球欠光線についても、上記十字領域の近傍へ入射した時
に偏光面の回転が最も小さくなり、その他の領域へ入射
した時は偏光面の回転が太きい。そのため、対物レンズ
16の射出瞳をアナライザー19を通して観察すると、
第4図に示した如き暗十字線(アイソジャイヤー)22
が観察され、このことは公知である。但し、第3図及び
第4図において、23は対物レンズ16の射出瞳、24
はポラライザー12の振動方向、25は射出瞳23内の
偏光の振動方向である。
This tendency becomes particularly strong when a high-magnification objective lens is used. Rotation and rotation of the polarization direction mainly occurs on each surface of the condenser lens 14 and the objective lens 16. The plane of incidence of the meridional rays that enter each point on the lens surface is a plane that includes the optical axis and its point of incidence, and if this plane and the polarization direction are not perpendicular or parallel, the polarization component can be separated into the P component and the S component. Since there is a difference in the reflectance of each component on the lens surface, there is also a difference in transmittance, and as a result, the two components are combined and the total polarized light component is rotated. That is, as shown in FIG. 3, meridional rays that are incident on the cross area of the lens surface that extend from the point of intersection with the optical axis of each lens surface in the vibration direction of the polarizer 12 or in a direction perpendicular to the vibration direction of the polarizer 12 are However, for light rays incident on other regions, rotation of the polarization direction occurs on the lens surface. or,
Regarding the spherical ray, the rotation of the plane of polarization is the smallest when it is incident near the cross area, and the rotation of the plane of polarization is large when it is incident on other areas. Therefore, when the exit pupil of the objective lens 16 is observed through the analyzer 19,
Dark crosshair (isogyer) 22 as shown in Figure 4
has been observed and this is known. However, in FIGS. 3 and 4, 23 is the exit pupil of the objective lens 16, and 24 is the exit pupil of the objective lens 16.
is the vibration direction of the polarizer 12, and 25 is the vibration direction of the polarized light within the exit pupil 23.

尚、暗十字線22の位置は必ずしも対物レンズ16の射
出瞳面と一致しているわけではなく、対物レンズ16の
後続のレンズに関しコンデンサーレンズ14及び対物レ
ンズ16の各レンズ面と共役な位置にそれぞれ面で生じ
た偏光方向の回転による暗十字線の像が夫々形成される
。従って、対物レンズ16の射出瞳面を観察する時は、
それらを重ね合わせた像を見ていることになる。しかし
、個々の暗十字線が形成される上記共役位置の多くは、
対物レンズ16の射出瞳面の近傍にあり、特にE、F:
が小さくなシ易い高倍率の対物レンズの場合には、上記
共役位置はより射出瞳面の近くにあることが多い。何故
なら、高倍率の対物レンズをレンズ内の瞳位置を境とし
て前群と後群に分けると、高倍率対物レンズの前群パワ
ーは一般に大きく、そのためそれ以前の物空間内の共役
位置は前群の後側焦点位置即ち対物レンズの瞳位置近く
にあり、又後群は前群との距離があまりひらいていない
のが一般的であって、後群レンズは前群の後側焦点近く
に配置されている。従って、上記暗十字線が形成される
共役位置は、高倍率の対物レンズはどその対物レンズの
射出瞳の近傍にあることが多い。
Incidentally, the position of the dark cross line 22 does not necessarily coincide with the exit pupil plane of the objective lens 16, but may be located at a position conjugate with each lens surface of the condenser lens 14 and the objective lens 16 with respect to the subsequent lenses of the objective lens 16. Dark crosshair images are formed by the rotation of the polarization direction caused by each plane. Therefore, when observing the exit pupil plane of the objective lens 16,
You are looking at a superimposed image of them. However, many of the above conjugate positions where individual dark crosses are formed are
Located near the exit pupil plane of the objective lens 16, especially E and F:
In the case of a high-magnification objective lens that is small and easy to move, the conjugate position is often located closer to the exit pupil plane. This is because when a high-magnification objective lens is divided into a front group and a rear group based on the pupil position within the lens, the front group power of the high-magnification objective lens is generally large, so the conjugate position in the object space before that is the front group. The rear focal point of the group is located near the pupil position of the objective lens, and the distance between the rear group and the front group is generally not very wide, and the rear group lens is located near the rear focal point of the front group. It is located. Therefore, the conjugate position where the dark cross line is formed is often near the exit pupil of any objective lens with high magnification.

又、高倍率対物レンズの場合、個々の暗十字線像の深度
は低倍に比べて深い。何故なら、高倍率の観察では視野
絞り11は小さく絞り込んで使用される。そのため、例
えばコンデンサーレンズ14の第ルンズ表面の任意点P
に入射する光束は鋭く、P点で発生する暗十字線像の深
度は深くなる。
Furthermore, in the case of a high magnification objective lens, the depth of each dark crosshair image is deeper than that of a low magnification objective lens. This is because, in high-magnification observation, the field diaphragm 11 is used with a small aperture. Therefore, for example, an arbitrary point P on the surface of the first lens of the condenser lens 14
The light beam incident on the point P is sharp, and the depth of the dark cross line image generated at the point P becomes deep.

同時に、上記レンズ上の十字領域に入射する球欠光線の
球欠方向の開口が小さくなるので、暗十字線のコントラ
ストが上がる。仮に視野絞り11を絞り込まなくとも、
接眼レンズ20の視野絞fi21と視野絞り11とは共
役関係にあるので、視野絞り21を通して暗十字線を観
察する場合は視野絞り11を絞り込んで使用したのと同
じ効果がある。
At the same time, since the aperture in the spherical direction of the spherical rays incident on the cross region on the lens becomes smaller, the contrast of the dark cross line increases. Even if you do not narrow down the field diaphragm 11,
Since the field diaphragm fi21 of the eyepiece lens 20 and the field diaphragm 11 are in a conjugate relationship, when observing a dark cross line through the field diaphragm 21, the same effect is obtained as using the field diaphragm 11 with the field diaphragm stopped down.

以上のように、暗十字線の像は対物レンズ16の射出瞳
面に形成されていると見なして良く、特に高倍率対物レ
ンズを使用した時はそう見なして良い。
As described above, the dark crosshair image can be considered to be formed on the exit pupil plane of the objective lens 16, especially when a high magnification objective lens is used.

さて、E、F、i減少させる有害光は、アナライザー1
9を通した時に射出瞳23内に見える明部(暗十字線2
2の部分を除く部分、第4図)を通り抜けてくる光束で
ある。一方、暗十字線22の部分を通り抜けてくる光束
は、アナライザー19によって遮断されてしまう光束で
あり、E、F、’i減少させない。そこで、射出瞳23
に十字形の開口絞りをかぶせて有害光を遮光し、E、F
、を減少させない光だけを使うようにすれば、E、F、
の大きな偏光顕微鏡ができる。勿論、この十字形の開口
絞りは、射出瞳23と共役な位置であれば光学系のどこ
に配置しても同じ効果が得られる。
Now, the harmful light to be reduced by E, F, i is Analyzer 1
The bright part (dark cross line 2) visible in the exit pupil 23 when
This is the light flux that passes through the portions other than the portion 2 (Fig. 4). On the other hand, the light beam passing through the dark cross line 22 is blocked by the analyzer 19, and E, F, 'i is not reduced. Therefore, exit pupil 23
A cross-shaped aperture diaphragm is placed over the E and F to block harmful light.
If we use only light that does not reduce , then E, F,
A large polarizing microscope is possible. Of course, this cross-shaped aperture stop can provide the same effect no matter where it is placed in the optical system as long as it is conjugate with the exit pupil 23.

本実施例では、コンデンサーレンズ14の前側にある共
役位置(通常開るさ絞りが置かれている位置)に十字形
の開口絞り13を配置している。
In this embodiment, a cross-shaped aperture stop 13 is placed at a conjugate position in front of the condenser lens 14 (a position where an aperture stop is normally placed).

尚、暗十字線22と十字形の開口絞り13の開口とが一
致するように、ポラライザー12及びアナライザー19
の回転に合わせて開口絞り13も光軸を中心に回転出来
るようにすることが必要である。又、N、A、 (開口
数)の異なる対物レンズを交換して使用するには、その
瞳径に合わせて十字形の開口絞り13の開口の大きさを
変えられるようにすることが必要である。
Note that the polarizer 12 and analyzer 19 are adjusted so that the dark cross line 22 and the aperture of the cross-shaped aperture stop 13 match.
It is necessary to enable the aperture stop 13 to rotate around the optical axis in accordance with the rotation of the aperture stop 13. In addition, in order to use objective lenses with different N, A, (numerical apertures) interchangeably, it is necessary to be able to change the aperture size of the cross-shaped aperture stop 13 according to the pupil diameter. be.

かくして、本発明による偏光顕微鏡によれば、十字形の
開口絞り13という簡単且つ廉価な光学素子を用いるだ
けでE、F、を大きくし得、これにより微弱な複屈折性
しか有さない標本の観察が可能になる。
Thus, according to the polarizing microscope according to the present invention, E and F can be increased simply by using a simple and inexpensive optical element such as the cross-shaped aperture diaphragm 13, thereby making it possible to increase E and F for specimens with only weak birefringence. Observation becomes possible.

第5図は第二の実施例として反射型の偏光顕微鏡の光学
全体を示している。28は第6図に示した如き十字形の
開口絞りであって、コレクターレンズ27に関し光源2
6と共役な位置にあり、且つ照明レンズ30に関し対物
レンズ16の射出瞳と共役な位置にある。29は視野絞
りであって、照明レンズ30と対物レンズ16に関し標
本面32と共役な位置にある。ポラライザー12とアナ
ライザー19は振動方向が直交している。31はハーフ
ミラ−である。本実施例は十字形の開口絞り28の代り
に円形開口絞りを配置すれば、通常の反射型の偏光顕微
鏡と構成が全く同じであり、十字形の開口絞り28を除
く各部の作用も通常の反射型の偏光顕微鏡の場合と全く
同じである。又、第一の実施例と比較すると、コンデン
サーレンズ14の代りに照明光束が対物レンズ16を逆
進して標本を照明する点及び標本を透過する代りに標本
面32で反射する点が異っているが、E、 F、が減少
する原理も、それに対する対策を十字形の開口絞り28
で行う原理も全く同じなので、この詳細な説明は省略す
る。
FIG. 5 shows the entire optical structure of a reflective polarizing microscope as a second embodiment. 28 is a cross-shaped aperture stop as shown in FIG.
6 and is located in a position conjugate with the exit pupil of the objective lens 16 with respect to the illumination lens 30. Reference numeral 29 denotes a field stop, which is located at a position conjugate with the specimen surface 32 with respect to the illumination lens 30 and the objective lens 16. The vibration directions of the polarizer 12 and the analyzer 19 are perpendicular to each other. 31 is a half mirror. In this embodiment, if a circular aperture diaphragm is placed in place of the cruciform aperture diaphragm 28, the configuration is exactly the same as that of a normal reflection type polarizing microscope, and the functions of each part except the cruciform aperture diaphragm 28 are also normal. This is exactly the same as in the case of a reflective polarizing microscope. Also, compared to the first embodiment, the difference is that the illumination light flux travels backward through the objective lens 16 instead of the condenser lens 14 to illuminate the specimen, and that it is reflected at the specimen surface 32 instead of passing through the specimen. However, due to the principle that E and F decrease, the countermeasure against this is the cross-shaped aperture diaphragm 28.
Since the principle behind this process is exactly the same, detailed explanation thereof will be omitted.

発明の効果 上述の如く、本発明による高感^光顕微鏡は、簡単且つ
廉価な光学素子を用いるだけでE、F、i犬きくし得る
という実用上極めて重要な利点を有している。
Effects of the Invention As mentioned above, the highly sensitive light microscope according to the present invention has the extremely important practical advantage of being able to detect E, F, and i signals simply by using simple and inexpensive optical elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高感^光顕微鏡の一実施例の光学
系を示す図、第2図は上記実施例の十字形の開口絞りの
正面図、第3図はレンズ面での偏光方向の回転を示す図
、第4図は対物レンズの射出瞳中に観察される暗十字線
を示す図、第5図は第二の実施例の光学系を示す図、第
6図は上記第二の実施例の十字形の開口絞りの正面図、
第7図は従来の偏光顕微鏡の光学系を示す図である。 11・・・・視野絞り、12・・・・ポラライザー、1
3・・・十字形の開口絞り、14・・・・コンデンサー
 二レンズ、15・・・・スライドガラス、16・・・
・対物レンズ、17・・・・瞳、18・・・・コンペン
セーター19・・・・アナライザー、20・・・°接眼
レンズ、21・・・・視野絞り。 第3図 23゛ 第5図 16図
Figure 1 is a diagram showing the optical system of an embodiment of a highly sensitive light microscope according to the present invention, Figure 2 is a front view of the cross-shaped aperture stop of the above embodiment, and Figure 3 is the polarization direction on the lens surface. FIG. 4 is a diagram showing the dark cross line observed in the exit pupil of the objective lens, FIG. 5 is a diagram showing the optical system of the second embodiment, and FIG. 6 is a diagram showing the optical system of the second embodiment. A front view of the cross-shaped aperture stop of the embodiment of
FIG. 7 is a diagram showing the optical system of a conventional polarizing microscope. 11...Field diaphragm, 12...Polarizer, 1
3...Cross-shaped aperture diaphragm, 14...Two condenser lenses, 15...Slide glass, 16...
・Objective lens, 17...pupil, 18...compensator 19...analyzer, 20...° eyepiece, 21...field diaphragm. Figure 3 23 Figure 5 Figure 16

Claims (4)

【特許請求の範囲】[Claims] (1)対物レンズの瞳又はそれと共役な位置に十字形の
開口絞りを配置して成る偏光顕微鏡。
(1) A polarizing microscope comprising a cross-shaped aperture stop located at the pupil of the objective lens or at a position conjugate thereto.
(2)十字形の開口絞りが照明光学系内における対物レ
ンズの瞳と共役な位置の近傍に配置されていることを特
徴とする特許請求の範囲(1)に記載の偏光顕微鏡。
(2) The polarizing microscope according to claim (1), wherein the cross-shaped aperture stop is arranged near a position conjugate with the pupil of the objective lens in the illumination optical system.
(3)十字形の開口絞りが光軸を中心に回転可能である
ことを特徴とする特許請求の範囲(1)に記載の偏光顕
微鏡。
(3) The polarizing microscope according to claim (1), wherein the cross-shaped aperture stop is rotatable around the optical axis.
(4)十字形の開口絞りの開口の大きさが調整可能であ
ることを特徴とする特許請求の範囲(1)に記載の偏光
顕微鏡。
(4) The polarizing microscope according to claim (1), wherein the size of the aperture of the cross-shaped aperture stop is adjustable.
JP7656184A 1984-04-18 1984-04-18 Polarizing microscope Pending JPS60220307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7656184A JPS60220307A (en) 1984-04-18 1984-04-18 Polarizing microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7656184A JPS60220307A (en) 1984-04-18 1984-04-18 Polarizing microscope

Publications (1)

Publication Number Publication Date
JPS60220307A true JPS60220307A (en) 1985-11-05

Family

ID=13608654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7656184A Pending JPS60220307A (en) 1984-04-18 1984-04-18 Polarizing microscope

Country Status (1)

Country Link
JP (1) JPS60220307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247610U (en) * 1988-09-29 1990-03-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247610U (en) * 1988-09-29 1990-03-30

Similar Documents

Publication Publication Date Title
US4515445A (en) Optical system for transmitted-light microscopy with incident illumination
US4255014A (en) Edge enhancement of phase phenomena
US20210173122A1 (en) System, method and apparatus for polarization control
US2601175A (en) Interference microscope
US6137626A (en) Optical system having polarization compensating optical system
US3405990A (en) Coaxial illuminator for stereomicroscope
US5126549A (en) Automatic focusing telescope
US3052152A (en) Optical compensating system
JPH06100723B2 (en) Reflective lighting device
US2074106A (en) Metallographic illuminating system and prism therefor
US5701198A (en) Confocal incident light microscope
US3806257A (en) Operator viewing optics for a slide classification system
US5861984A (en) Confocal scanning microscope and beamsplitter therefor
US3277782A (en) Illuminating apparatus for a microscope system using polarized light
JPH07501633A (en) Epi-illumination system for microscopes
US3652163A (en) Photometer for observation instruments mainly for microscopes
US3202041A (en) Optical device for orienting monocrystals along the axis of the crystal
US3820870A (en) Photometric instuments
JPS60220307A (en) Polarizing microscope
US2655077A (en) Microscope with means for modifying contrast in optical images
JPH0763995A (en) Illuminator for microscope
JPH0235408A (en) Microscope
US2880648A (en) Half-shade devices for use with polarizing instruments
SU1125592A1 (en) Optical system for producing intermediate image in application of contrasting techniques in microscopes
US20240094130A1 (en) Raman Infrared Compound Microscope Device