JPS60220264A - Aluminum alloy cylinder liner - Google Patents

Aluminum alloy cylinder liner

Info

Publication number
JPS60220264A
JPS60220264A JP7349484A JP7349484A JPS60220264A JP S60220264 A JPS60220264 A JP S60220264A JP 7349484 A JP7349484 A JP 7349484A JP 7349484 A JP7349484 A JP 7349484A JP S60220264 A JPS60220264 A JP S60220264A
Authority
JP
Japan
Prior art keywords
particles
cylinder liner
aluminum alloy
alloy
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7349484A
Other languages
Japanese (ja)
Inventor
Hideaki Miura
三浦 秀明
Katsuhisa Suzuki
勝久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP7349484A priority Critical patent/JPS60220264A/en
Publication of JPS60220264A publication Critical patent/JPS60220264A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PURPOSE:To improve the wear-resistant performance by forming an aluminum alloy cylinder liner with a material having initially crystallized Si particles of 40-80mm. particle size and eutectic Si particles of 10mm. or less particle size which occupy 60% of the particle area. CONSTITUTION:A cylinder liner is formed with an aluminum alloy in which Si constituent is 16-30wt%, Cu 0.3-7.0%, and the remainder is practically aluminum, and initially crystallized Si particles of 40-80mm. particle size and eutectic Si particles of 10mm. or less particle size occupy more than 60% of the particle area. Owing to this, the material can possess an excellent wear-resistant performance as well as mechanical strength.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、エンジン等のシリンダあるいはシリンダブ
ロックに装入されるシリンダライナに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cylinder liner that is inserted into a cylinder or cylinder block of an engine or the like.

(従来の技術) 大型エンジン等において一般に用いられ(いるシリンダ
ライナ(、L1訪包み、焼さばめ、ねじ込み法等各種取
イ」方法にJ、っ(シリンダあるいはシリンダブロック
に装入され、シリンダに代わってビス1ヘンとの1習動
壁面を113成づるものである。このためシリンダライ
ナの+’I t’Jどして、ピストンあるいはビストシ
リンダとのPPI動1’? I察−2− に対覆る耐摩耗性が要求されるのみならず、ピストンに
よる側圧、燃料の爆発圧力等の荷重を繰返してう番ノる
ため充分な機械的強度、耐荷重11が要求される。そこ
で従来、シリンダライナの+A″PJどして耐摩耗性、
機械的強度等に優れた鋼あるい(よ高級鋳鉄等が一般に
用いられていた。
(Prior art) Cylinder liners are generally used in large engines, etc., and are loaded into cylinders or cylinder blocks, and are Instead, it forms a dynamic wall surface 113 with the screw 1. Therefore, the +'I t'J of the cylinder liner causes the PPI movement 1' with the piston or the bisto cylinder. Not only is it required to have abrasion resistance that can withstand wear and tear, but also sufficient mechanical strength and load capacity11 are required because it can withstand repeated loads such as side pressure from the piston and explosion pressure of fuel.Therefore, conventionally, Wear resistance due to +A″PJ of cylinder liner,
Steel or high-grade cast iron, which has excellent mechanical strength, was generally used.

(従来技術の問題点) しかしくfがら、鋼製あるいは鋳鉄製のシリンダライJ
lcL重h)が重いため、特に大型エンジン等において
はシリンダライナの取付、交換時の取りはずし等に装ツ
る労力が人ぎいという欠点があった。また、自動車]ニ
ンジンに用いられる場合には、自動小部品の軽量化とい
う一般的要求を妨げる一因ともなっていた。
(Problems with the prior art) However, the cylinder liner J made of steel or cast iron
Since the lcL weight (h) is heavy, there is a drawback that it takes a lot of effort to install and remove the cylinder liner when replacing it, especially in large engines. In addition, when used in automobiles, it has also become a factor that hinders the general demand for weight reduction of small automobile parts.

勿論、シリンダライナの軒m化を達成づるためにtit
、シリンダライJの材質として従来既知のアルミニウム
合金鋳物やダイカス1へ品を用いること番ま容易に想到
されるところであるが、これらは逆に耐摩耗性、機械的
強度の点で問題が生じるものであった。
Of course, in order to achieve the eaves m of the cylinder liner,
It would be easy to imagine using conventionally known aluminum alloy castings or die castings 1 as the material for Cylinder Lie J, but these would conversely pose problems in terms of wear resistance and mechanical strength. Met.

−3− 〈発明の目的) この発明は、上記のJ、うな問題点を解決リイ)ことを
目的とでるしのである。即ら、シリンダライナの材質と
してアルミニウム合金を用い−(その軽量化を図ると共
にアルミニウム、合金の成分とその合金組織にJ、る(
」質改11にJ、す、ぞ11白体できわめて優れた耐厚
耗v1を右し、かつ強度にも優れていて耐7111小1
’lが良く、しかし延性、切削加工性の改善にJ、つC
1’J 造を簡易と(Jる]′ルミニウム合金製シリン
グライノを提供することを目的とづるbのである。
-3- (Objective of the Invention) The purpose of this invention is to solve the above-mentioned problems. That is, aluminum alloy is used as the material of the cylinder liner (to reduce its weight, and the composition and structure of the aluminum alloy are changed).
``J, Su, Zo 11 white body with improved quality 11 has extremely excellent wear resistance V1, and has excellent strength and resistance 7111 small 1.
'L is good, but J and C are good for improving ductility and machinability.
The purpose of this invention is to provide a shilling rhino made of aluminum alloy that is simple to construct.

(発明の構成) この発明は、シリンダライブの(A質どしく、過共晶領
域に3iを含有Jる^シリ1ンアルミニウム合金であつ
C1しかbvのIルミニウl\71−リツクス中の初晶
3i粒子及びJL晶Si粒子の粒径と分布状態をF1定
の範囲に初口11シたt)のを用いることを概要とJる
しのであり、史(4−具体的には、Siを16〜・30
w1%、Ollを0゜3〜7.Qwt%含み、あるいは
更にMOをOl−4= 3〜2.Qwt%を含み、残部が実質的にアルミニウム
であるアルミニウム合金であって、該合金のアルミニウ
ムマトリックス中に、粒径40〜OOtt mの初晶3
i粒子が全初晶3 i粒子面1^の60%以上の面積を
占めて均一に分布し、かつ粒(¥10μm以下の共晶S
i粒子が全共晶3i粒子面積中の60%以上の面積を占
めて均一に分布している材料をもって形成されているア
ルミニウム合金製シリンダライナを提供するものである
(Structure of the Invention) This invention is the first in Cylinder Live's (A-quality, 3i-containing 3i-containing hypereutectic region J^sili-1 aluminum alloy, C1 only bv Iluminium\71-ricks). The particle size and distribution state of crystalline 3i particles and JL crystalline Si particles are set to a constant range of F1. 16~・30
w1%, Oll 0°3-7. Qwt% included or further MO Ol-4 = 3-2. Q wt %, the remainder being substantially aluminum, wherein the aluminum matrix of the alloy contains 3 primary crystals with a grain size of 40 to OOtt m.
The i-particles are uniformly distributed occupying 60% or more of the total primary crystal 3 i-particle surface 1^, and the grains (eutectic
The present invention provides an aluminum alloy cylinder liner formed of a material in which i particles occupy 60% or more of the area of all eutectic 3i particles and are uniformly distributed.

(構成の具体的な説明と作用) この発明のシリンダライブに用いられる上記のようなア
ルミニウム合金は、一般的には既知の&6造法によって
鋳造される鋳塊を、更に熱間にて押出すことにより組織
を特定の範囲に制御して製造されるものである。
(Specific explanation and operation of the structure) The above-mentioned aluminum alloy used for the cylinder live of this invention is generally produced by hot extrusion of an ingot cast by the known &6 method. It is manufactured by controlling the structure within a specific range.

先ず、この発明に用いる合金の各成分の範囲限定につい
て、その理由を説明すれば次のとおりである。
First, the reason for limiting the range of each component of the alloy used in this invention is as follows.

主要な添加元素であるSiは、いうまでもな−5− く合金の耐摩耗性を向トJるのにイI効<r ’bの(
・ある。従って、一般的にはSiの含11聞が増えるに
従って耐摩耗性が向トロられるが、この発明に用いるA
ρ−Si系合金は、過共晶領域に3iを多聞に含んで、
)Iルミニウl\マトリックス中に比較的多くの初晶S
1粒子を分散せしV)るものとすることが必要である。
Needless to say, Si, the main additive element, has an effect of <r'b(
·be. Therefore, generally speaking, the wear resistance is improved as the Si content increases, but the A
The ρ-Si alloy contains a large amount of 3i in the hypereutectic region,
)Iluminurium\\Relatively many primary S crystals in the matrix
It is necessary that one particle be dispersed.

、従って、Siの含有間は少なくとも16W【%1ス十
て゛あることを要し、16W1%未満Cは、シリンダラ
イブに必要な耐摩耗性をその祠旧自体によって得ること
ができない。3iの含有間は、合金44F1の製造条件
を特殊な範囲に選ぶことにJ、って、相当多くの量にま
で増大しつるが、3QW1%をこえて含有せしめるとき
は、鋳造が著しく困Hなしのとなるため、イれ未満が許
容節回であり、R4も好適には18〜20W【%稈麻含
有uしめるのが良い。
Therefore, it is necessary that the Si content be at least 16W[%1], and if the Si content is less than 16W1%C, the wear resistance required for cylinder live cannot be obtained by the polishing itself. The content of 3i increases to a considerably large amount by selecting the manufacturing conditions for alloy 44F1 within a special range, but when the content exceeds 1% of 3QW, casting becomes extremely difficult. Since there is no cracking, the permissible turning time is less than the bending, and R4 is preferably 18 to 20 W [% culm content u].

Cu及びMoは、合金の強度の向−1−に寄りJるもの
であり、0.3wt%未満では、シリンダライナに所要
の機械的強度を44 L5ηることがC−6= さくiい。しかしCOが7wt%をこえるときは、耐食
(’lがとしく悪くなる。またMgが2wt%をこえる
場合は、上記の効果を格別増大ゼザ、む(〕ろ粗人く【
品出物を生成して機械的性質を劣化りる。実験結束から
(qられた最も好適1,7 Cuの含有量は、概ね3〜
6wt%程度であり、またMOの含有ωは0.45〜0
.65wt%程度である。
Cu and Mo contribute to the strength of the alloy, and if the content is less than 0.3 wt%, it is difficult to provide the cylinder liner with the required mechanical strength of 44L5η. However, when CO exceeds 7 wt%, the corrosion resistance ('l) deteriorates significantly. Also, when Mg exceeds 2 wt%, the above effects are greatly increased.
produce products and deteriorate mechanical properties. From the experimental results (q), the most suitable 1,7 Cu content is approximately 3~
It is about 6 wt%, and the content ω of MO is 0.45 to 0.
.. It is about 65wt%.

その他の任意的添加元素として、好ましくは例えば3r
および(または)Pが添加されうる。
As other optional additive elements, preferably, for example, 3r
and/or P may be added.

これらの元素はいずれも鋳造時に初晶3i粒子を微細化
する微細化剤として作用覆るものである点で均等物であ
り、いずれか少なくとも一方を含有ηれば足るが、それ
ぞれ0.005wt%未満では上記効果に乏しく、Q、
1wt%をこえても格別効果の増大を望めない。
All of these elements are equivalent in that they act as refining agents to refine primary 3i particles during casting, and it is sufficient to contain at least one of them, but less than 0.005 wt% of each. However, the above effects are lacking, Q,
Even if it exceeds 1 wt%, no particular increase in effect can be expected.

更に他の任意的添加元素として用いうるものどしてNi
、Fe、1ylnを挙げることができる。
Furthermore, Ni can be used as an optional additional element.
, Fe, and yln.

これらの元素は、いずれも合金の耐熱性の向上に有効に
奇LJするものであり、この作用の面か−7− らいずれも均等物ζ゛あって、少なくどbl 1重J、
たは2秒以上を含有すれぽ足りるが、各成分がQ、5w
t%未満ではト配の効果の実現性に乏しく、逆に3wt
%をこえるど切削il+が9Aシク悪くなる欠点を派生
づる。
All of these elements effectively change LJ to improve the heat resistance of the alloy, and in terms of this effect, they all have equivalents ζ゛, and at least bl 1 J,
It is sufficient if each component contains Q, 5w or more.
If it is less than 3wt%, it is difficult to realize the effect of tormentation;
%, the cutting il+ becomes worse by 9A.

上記のような成分範囲をもつこの発明に係る合金材料は
、その組織を特定範Onにll、II till する
jこめに、鋳造後押出し1−稈とを経ζ製胎されるしの
である。即ち、先す゛、に記のアルミニラlい合金を従
来の常法に従う溶解#R漬にJ、リアルミーラム合金鋳
塊に製作ザる。この鋳造T稈にJ、−)て(りられる鋳
塊に含J:れる初晶3i粒子は、。1記Srおよび(ま
たは)1〕の添加によりある稈麿微細化したものど/、
r シうるが、イれでも<Tおその粒径は、100 I
lmにb達Jるbのを含んで全体として未だ40当に人
きいしのである。41゜た、共晶3i粒子し、粒(¥3
0 /i rn程度のbのを含む全体としてかなり人さ
いしのであり、かつその形態もr1状を?=lるbのC
ある。
The alloy material according to the present invention having the above-mentioned component range is cast and then extruded to form a culm to bring its structure into a specific range. That is, the aluminum thin alloy described above is melted and soaked in #R according to the conventional method to produce a real aluminum alloy ingot. The primary crystal 3i particles contained in the ingot that is cast into this cast T culm are those that have been refined by adding Sr and (or) 1].
r The particle size is 100 I
Including those in Japan and Japan, there are still 40 people in total. 41°, eutectic 3i grain, grain (¥3
It is quite human-sized as a whole, including a b of about 0/i rn, and its shape is r1-like? =C of lb
be.

そこで、これらの比較的粗大イr初晶及び」を品−8− Si粒子を含む鋳塊を更に350〜420℃程1αの熱
間にて押出し加工づる。そして、この熱間押出しにより
、合金中に含む粗大な初晶Si杓了の一部を破壊し、そ
のほとんどすべての粒径が10〜80μmのfe囲で、
かつ40μm以−にの粒子が全初晶Si粒子面積に対し
60%以上の面積比を占める範囲に微細化し、かつその
分布を均一化uしめると共に、共晶Si粒子も、$1状
結晶を長さ方向に分断して形状を粒状化し、またこれを
ほどんどづべてが粒径15μm以下の範囲で、かつ10
μm以下の粒子が全共晶Si粒子面積に対し60%以上
の面積比を占める[[FIlに微細化せしめたものとす
る。上記に、はどんどづべてというのは、極めて稀に上
記粒径範囲を逸脱ηるbのを含むことを許容する趣旨で
あるが、好ましい製造条件が採用される場合には1,1
記粒径範囲を逸脱するような初晶Si粒子及びJt晶8
1粒子は実際上全く含まないものどづ−ることができる
Therefore, the ingot containing these relatively coarse primary crystals and Si particles is further extruded at a temperature of about 350 to 420 DEG C. at 1.alpha. Then, by this hot extrusion, a part of the coarse primary Si crystals contained in the alloy is destroyed, and almost all of the grains are in the Fe range of 10 to 80 μm.
In addition, the grains of 40 μm or more are refined to a range where they occupy an area ratio of 60% or more of the total primary Si grain area, and the distribution is made uniform, and the eutectic Si grains also have $1-like crystals. The shape is divided into granules by dividing them in the length direction, and each particle size is 15 μm or less, and 100 μm or less.
Particles of μm or less occupy an area ratio of 60% or more with respect to the total area of eutectic Si particles. In the above, "Hadondozube" means that it is possible to include particles exceeding the above particle size range in extremely rare cases, but if favorable manufacturing conditions are adopted,
Primary Si particles and Jt crystals that deviate from the specified particle size range
One particle can be virtually completely free.

このようイkO?ましい製造条件は、殊に押出し−つ 
− 条件として、ビレット潟度:350〜/120’C、ラ
ム速度:0.03〜0.2m /wain 、押出:1
0〜40に設定Jることであり、さらに好J2しくは押
出ダイスにベアリング長さ5〜15#l#Iのものを用
いること等が挙げられる。
Like this? The preferred manufacturing conditions are particularly suitable for extrusion.
- Conditions: billet latitude: 350~/120'C, ram speed: 0.03~0.2m/wain, extrusion: 1
It is preferable to set the bearing length to 0 to 40, and more preferably to use an extrusion die with a bearing length of 5 to 15#l#I.

ところで、合金相線中にお(〕る初初晶3i子の粒径が
上記のように/IO〜8011 mの範囲において60
%以上の面積11二を占めることが限)rされるのは、
40 tt m未満のbのを多く含む場合には所期する
優れた耐1葉耗1qが1!lられず、)φに80μmを
こえる粗大’J bのを多く含む場合には、その分布が
不均一かつ粗いしのと(7って耐摩耗性のばらつきを大
きくし、かつ切削11を低下させることに<rるためで
ある。また、Jξ品St粒子が粒径151.zm1ス下
でか”) 10 II m以下のものを面積比60%以
ト含むことに限定されるのは、初晶Si粒子の’FJ1
’!−を一1記のようイ「範囲にコン1〜ロールするこ
とにJ、って必然的に上記範囲に微細化されることに<
rるノこV)であり、あえてその効果を挙げるどりれば
、少イ「りと5− 10 − 」(晶Si粒子が15ttmをこえる粗大なものとしく
多く残存覆るときは、少4L <とら切削性に欠陥が派
′1してくるものと予想され、従ってその陵面効果どし
て、切削P1向−[の効果を挙げることがCさる。
By the way, as mentioned above, the grain size of the primary 3i crystals in the alloy phase line is 60 m in the range of /IO ~ 8011 m.
(limited to occupying an area of 112% or more) is
If it contains a large amount of b less than 40 tt m, the expected excellent leaf wear resistance 1q is 1! If the φ contains a large amount of coarse particles exceeding 80 μm, the distribution will be uneven and coarse (7), which will increase the dispersion of wear resistance and reduce the cutting speed. This is because the Jξ product St particles are limited to containing particles with an area ratio of 60% or less with a particle size of 151.zm or less. 'FJ1 of primary Si particles
'! - as in Section 11, J is inevitably refined to the above range.
If I were to list its effects, I would say that it is less than 5-10- (if the crystalline Si particles are coarse and larger than 15 ttm and remain in large quantities, it is less than 4L). It is expected that defects will be more common in the machinability of the torso, and therefore, the effect on the cutting surface P1 will be increased due to the ridge surface effect.

(発明の効果) このyt明によるシリンダライブ゛は、前記のJζうh
成分ど組織になる^シリコンアルミニウム合金月利をし
って形成されたものであることにJ、す、それ自身がk
A ’fj的に極めて優れた耐摩耗flを(j′lIる
と共に機械的強度にも極めて優れたbのであるh目ら、
シリンダライチどじて要求される耐摩耗性、機械的強度
、耐葡■1−1を充分に保有しつつその軽量化を実現づ
ることができる。
(Effect of the invention) The cylinder drive according to this yt light is
The structure of the composition is ^ It is known that it was formed by knowing the silicon aluminum alloy monthly rate.
A'fj has extremely excellent wear resistance fl (j'lI) and also has extremely excellent mechanical strength.
It is possible to achieve a reduction in weight while maintaining sufficient abrasion resistance, mechanical strength, and resistance (1-1) required for cylinder litchi.

従゛)て、シリンダライチの取扱いが簡便になりシリン
ダ\5シリンダブ[1ツクへの取(]i−J、取外し雪
にすνりる労ノJを軽減しくqると共に、自動中1ンジ
ン秀に用いられた場合には、一般的要求Cある部品の軽
fl+化に0効に奇与し15ノるbのとイ「る。
Therefore, the handling of the cylinder lychee becomes easier, and the labor required to remove and remove the cylinder into one cylinder is reduced, and the automatic middle engine can be installed easily. When used in an excellent manner, the general requirement C has a zero effect on the lightening of a certain part, and it becomes 15 times higher.

11− (実施例) 以下、この発明の実施例を小す、。11- (Example) Examples of the present invention will be described below.

411表 上記第1表に示づ組成のtJルミニウ13基合金につい
て、本発明祠て゛(、L、該合金を先ず溶解゛1′連続
鋳造にJ、ってr+’−i’ fy 120 mmのビ
レツI・に製し、次いでこのビレツI・を押出1&!+
(1/l 15℃、押出しラム速度Q、1m/minの
条fI (’ iI′i (Y 30 armの丸棒に
押出しlJbのI;: I e熱臂1即を施1ノてシリ
ンダライブHの供81(ハとした。
Table 411 Concerning the tJ Luminium 13-base alloy having the composition shown in Table 1 above, the present invention first melted the alloy. A billet I is made, and then this billet I is extruded 1&!+
(1/l 15°C, extrusion ram speed Q, 1 m/min column fI ('iI'i (Y Extrude lJb onto a 30 arm round bar;: I e Apply hot arm 1 immediately and cylinder live H's child 81 (ha).

−12一 本発明HにおiJる供試片においては、それに含4?初
晶S i II了1.i Jべてが10〜80μmの粒
IY範囲に属し、しかも40〜80μmの範囲の6のが
明らかに仝初晶3i粒子面積に対し60%以トの面積比
を占めているものであった。
-12-In the test piece according to the present invention H, it contains 4? First crystal S i II completion 1. All of the IJ grains belonged to the IY range of 10 to 80 μm, and moreover, the 6 grains in the 40 to 80 μm range clearly accounted for 60% or more of the area of the primary 3i grains. .

かつ共晶Si粒子す微細化され、そのづべてが少%<ど
も1511711以下の粒径範囲(゛、全共晶Si詩子
面積中60%以上の面積比を10μm以上の6ので占め
ているものであった。
In addition, the eutectic Si particles are refined, and all of them are in the particle size range of 1,511,711 or less (゛, the area ratio of 60% or more of the total eutectic Si particle area is 10 μm or more. It was something.

−/J、比較祠No、5は、耐摩耗性に優れたアルミニ
ウム合金として既知のへC8八合金であり、ぞの市阪物
を供i+tハどした。
-/J, Comparison No. 5 is a C8-8 alloy known as an aluminum alloy with excellent wear resistance, and it was supplied with Ichisaka products by I+T.

1−記の各秤アルミニウム合金材につき、本発明(Aど
同様の組成で鋳造したままのビレットとし比較して、イ
れらの耐摩耗性及びV)剛性を調べたどころ、結束は下
記第2表に示すとおりであ−)Iこ。
We investigated the abrasion resistance and rigidity of each of the weighing aluminum alloy materials according to the present invention (compared with as-cast billets of the same composition as A and V) for each of the weighing aluminum alloy materials listed in 1-1. As shown in Table 2).

[以下余白1 − 13 − 第2表 (注1):耐摩耗(II試験は、回転円板にJ、る大越
式耐1f耗試験機を用いて、摩 擦距11111 : 600 m、摩1?X速IQ:2
yn/min、相手祠: l−C−30(JIS)の試
験条イ′IC実施しIこ、1〈注2):切削T員府命は
、前りくい角:0度、横1くい角:101(1、前逃げ 角ニア11、lA逃IJ’/+’+ : 71([、a
rt +J+−14− メj角:8麿、横切刃角:0度、ノ ーズ生(Y:0痘、の諸元を有する 〃j硬バイトを使用し、9)込み深さ:0 、 1 t
nm、 mり速f口0.05am、回転数:50Orp
m、潤滑剤:石 油の切削条1′1ぐ、リノ削距l!111 : 200
7nの切削を(j−)たのら、パイ1−の逃げ面のI@
 if、幅を測定した。
[Margin below 1 - 13 - Table 2 (Note 1): Abrasion resistance (II test was conducted using an Okoshi type 1f abrasion tester with a rotating disk, friction distance 11111: 600 m, friction 1? X speed IQ: 2
yn/min, partner shrine: l-C-30 (JIS) test strip A'IC implementation, 1 (Note 2): Cutting T member's order is front angle: 0 degrees, side 1 peg. Angle: 101 (1, front relief angle near 11, lA relief IJ'/+'+: 71 ([, a
rt +J+-14- Use a hard cutting tool with the following specifications: Mechanical angle: 8 degrees, Cross cutting angle: 0 degrees, Nose raw (Y: 0 degrees, 9) Depth of cut: 0, 1 t
nm, speed f: 0.05am, rotation speed: 50Orp
m, lubricant: petroleum cutting strip 1'1g, lino cutting distance l! 111: 200
After cutting 7n (j-), I@ of the flank surface of pi 1-
if, the width was measured.

1表の耐11耗1ノFの試験結束から分るように、この
発明に係るシリンダライナ祠は、同じ合金成分をしI)
ながらし、アルミニウムマ1ヘリックス中の81品の粒
径や分布状態の異なる鋳造しIJil kl:の(A利
に較べて、明らかに優れた耐摩耗f1を保イjしつつ、
イのばらつきの減少の効果が認められるしのであり、ま
た比較材に較べて顕茗に耐摩耗f1に優れたものひあっ
た。
As can be seen from the test bundle of 11 wear resistance 1 noF in Table 1, the cylinder liner according to the present invention has the same alloy composition.
However, the 81 particles in the aluminum helix were cast with different grain sizes and distribution states, and while maintaining clearly superior wear resistance f1 compared to A,
The effect of reducing the dispersion of 1 was observed, and the abrasion resistance f1 was significantly superior to that of the comparative materials.

一方、切削工具寿命の比較におい′Ct1、本発明祠は
、坊乃したまJ、のらのに較べてW1茗な改−15− 善効宋があら1)れ、比較々41.−較べ(b僅が1.
−劣るがIll fil Tjイrいしf It IX
 +の侵れ/j切削11ヲ小覆ものであ−)Iこ、。
On the other hand, in the comparison of cutting tool life, the present invention's Ct1 showed a W1 improvement compared to Norano, and compared to 41. - Compare (b only 1.
-It's inferior, but Ill fill Tjirishif It IX
+ erosion/j cutting 11 wo small cover-)I.

J、た、本発明441.1、い・I’ 4′+ b引づ
1v強1(口ごおいて/l0Kg/−以1の11C1を
小し、比較(イの引張強磨33に9/ajJす01gれ
(おり、伸びl):’%以lの値を小しく比+Q44 
tl)$l+(F O,!+ % J、 k> b 1
.するかに帰れている1)の(゛あ−) IJ、。
J, T, Invention 441.1, I, I'4'+ b Pull 1v strong 1 (mouth/l0Kg/-, reduce 11C1 of 1, compare (A tensile strength 33 to 9 /ajJsu01gre(fold, elongation l): 'Reduce the value of l below % Ratio +Q44
tl) $l+(F O,!+ % J, k> b 1
.. 1) (゛ah-)IJ, I'm finally back home.

従って、本発明(イを用い0図IC10,−小・7.1
)M、シリンダ(1)内に装入されば)シリンダツ(,
1(2)を製作しlこ;ふ、1合(、二11、ビスI・
ンl)い)ピストンリング(/I)とU月FI躬11’
i’・隙にス・jりる充分な耐摩耗性を保イJ’ tJ
るど」ξ(、−1Iネク1イングロツド〈5)の顛さに
J、−1c’l J’るピストン(3)の側圧あるい(
、(燃料の〜光バカ雪に対する充分な機械的強10、耐
611Φ111を保イjしが)+Y崩なものに製作く゛
さるbの(”あ−) L、、 ;1. /ご、1.II
削性、tIQ ’+h性等に侵れCいることがら、加[
粘度の高いシリンダライノが古鍋に4!Iられる0ので
あっIご。
Therefore, the present invention (using A0 Figure IC10, - Small 7.1
)M, if it is charged into cylinder (1)) cylinder part (,
1 (2) was made;
piston ring (/I) and U month FI 11'
Maintains sufficient wear resistance to fit into gaps.
During the period of ξ(, -1 I n 1 ingrod <5), the lateral pressure of the piston (3) or (
, (Although it maintains sufficient mechanical strength 10 and resistance 611Φ111 against the light and snow of the fuel) .II
Addition [
High viscosity cylinder rhino in old pot 4! I'm in the middle of the day.

−16−-16-

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示−yt)ので、シリンダラ
イ−ノを使用したエンジンの概略構成を承りit而両断
面図ある。 (1)・・・シリンダ、〈2)・・・シリンダライナ、
〈3)・・・ピストン、(/I)・・・ピストンリング
、(1)・・・−]ネクディングロツド。 以上 −17−
The drawings show an embodiment of the present invention, and therefore show a schematic configuration of an engine using a cylinder rhinoceros. (1)...Cylinder, <2)...Cylinder liner,
<3)...Piston, (/I)...Piston ring, (1)...-]Next rod. Above -17-

Claims (2)

【特許請求の範囲】[Claims] (1) Siを16〜30wt%、CLIを0.3〜7
、□wt%含み、残部が実質的にアルミニウムであるア
ルミニウム合金であって、該合金のアルミニウムマトリ
ックス中に、粒径40〜80μmの初晶Si粒子が全初
晶Si粒子面積の60%以上の面積を占めて均一に分布
し、かつ粒径10μm以下の共晶3i粒子が全共晶3i
粒子面積中の60%以上の面積を占めて均一に分布して
いる材料をもって形成されていることを特徴とするアル
ミニウム合金製シリンダライナ。
(1) Si 16-30wt%, CLI 0.3-7
, □wt%, the remainder being substantially aluminum, wherein in the aluminum matrix of the alloy, primary Si particles with a particle size of 40 to 80 μm account for 60% or more of the total primary Si particle area. All eutectic 3i particles occupy the area, are uniformly distributed, and have a particle size of 10 μm or less.
An aluminum alloy cylinder liner characterized in that it is made of a material that is uniformly distributed and occupies 60% or more of the particle area.
(2) Siを16〜30wt%、Cuを0.3〜7.
0wt%、及びMgを0.3〜2.□wt%含み、残部
が実質的にアルミニウムであるアルミニウム合金であっ
て、該合金のアルミニウムマトリックス中に、粒径4o
〜80μm−1− の初晶S1粒子が全初晶Si粒子面(^の00%以上の
面積を占め(均一に分吊し、かつワ°I径104/m以
下の」ξ晶Si粒子が仝共晶S+粒子面積中の60%以
1の面(^を占めC均に分布している材料を6つC形成
されでいることを特徴とするアルミニウム合金製シリン
ダライナ。
(2) 16 to 30 wt% of Si and 0.3 to 7.0 wt% of Cu.
0 wt%, and Mg 0.3 to 2. □wt%, the balance being substantially aluminum, the aluminum matrix of the alloy having a grain size of 40
The primary crystal S1 particles of ~80 μm-1 occupy more than 00% of the total primary Si particle surface (^), and the A cylinder liner made of an aluminum alloy, characterized in that it is formed of six uniformly distributed materials occupying 60% or more of the surface area of the eutectic S+ particles.
JP7349484A 1984-04-11 1984-04-11 Aluminum alloy cylinder liner Pending JPS60220264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7349484A JPS60220264A (en) 1984-04-11 1984-04-11 Aluminum alloy cylinder liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7349484A JPS60220264A (en) 1984-04-11 1984-04-11 Aluminum alloy cylinder liner

Publications (1)

Publication Number Publication Date
JPS60220264A true JPS60220264A (en) 1985-11-02

Family

ID=13519868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7349484A Pending JPS60220264A (en) 1984-04-11 1984-04-11 Aluminum alloy cylinder liner

Country Status (1)

Country Link
JP (1) JPS60220264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014518A1 (en) * 1997-09-15 1999-03-25 Alusuisse Technology & Management Ag Cylinder liner
CN1055135C (en) * 1995-06-28 2000-08-02 戴姆勒-奔驰公司 Over cocrystallized aluminium/silicon alloy cylinder liner for casting in reciprocating piston engine crankshaft box and method for producing said cylinder liner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055135C (en) * 1995-06-28 2000-08-02 戴姆勒-奔驰公司 Over cocrystallized aluminium/silicon alloy cylinder liner for casting in reciprocating piston engine crankshaft box and method for producing said cylinder liner
WO1999014518A1 (en) * 1997-09-15 1999-03-25 Alusuisse Technology & Management Ag Cylinder liner

Similar Documents

Publication Publication Date Title
JP6255501B2 (en) Lubricant compatible copper alloy
WO2016166779A1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
CN102089450A (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP2020523475A (en) Monoclinic aluminum plain bearing alloy, method of making the same, and plain bearing made thereby
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
JP2012041571A (en) Flake graphite cast iron for large-sized casting product and method for producing the same
JPS60114545A (en) Wear resistant copper alloy
JP4341438B2 (en) Aluminum alloy excellent in wear resistance and sliding member using the same alloy
JPH0762200B2 (en) Abrasion resistant aluminum alloy casting rod for forging and its manufacturing method
KR970001410B1 (en) Cast aluminium alloys
JPS60220264A (en) Aluminum alloy cylinder liner
JP2709663B2 (en) Aluminum alloy with excellent wear resistance
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH07145440A (en) Aluminum alloy forging stock
JPH08176768A (en) Wear resistant aluminum member and production thereof
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPS62222039A (en) Aluminum alloy excellent in wear resistance and extrudability
JP7378916B2 (en) Al-Si-Mg aluminum alloy plate
JP2011106011A (en) HIGH STRENGTH Al ALLOY FORGED MATERIAL HAVING EXCELLENT CORROSION RESISTANCE AND WORKABILITY AND METHOD FOR PRODUCING THE SAME
JP2551882B2 (en) Aluminum alloy for forging
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP2007131881A (en) Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming
JPS59193254A (en) Preparation of aluminum alloy bearing
JPH09324235A (en) Hyper-eutectic aluminum-silicon alloy, hyper-eutectic aluminum-silicon alloy die-cast casting, its production and method for using the same