JPS60220142A - Furnace floor structure of continuous activated carbon regeneration furnace - Google Patents

Furnace floor structure of continuous activated carbon regeneration furnace

Info

Publication number
JPS60220142A
JPS60220142A JP59075330A JP7533084A JPS60220142A JP S60220142 A JPS60220142 A JP S60220142A JP 59075330 A JP59075330 A JP 59075330A JP 7533084 A JP7533084 A JP 7533084A JP S60220142 A JPS60220142 A JP S60220142A
Authority
JP
Japan
Prior art keywords
furnace
activated carbon
regeneration
regeneration furnace
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59075330A
Other languages
Japanese (ja)
Other versions
JPH0378134B2 (en
Inventor
Tsunetaka Imabayashi
今林 恒隆
Kazunori Murakami
村上 和徳
Kazuhide Imayama
今山 和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Tekko KK
Original Assignee
Showa Tekko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Tekko KK filed Critical Showa Tekko KK
Priority to JP59075330A priority Critical patent/JPS60220142A/en
Publication of JPS60220142A publication Critical patent/JPS60220142A/en
Publication of JPH0378134B2 publication Critical patent/JPH0378134B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to effectively regenerate activated carbon, by providing a large number of furnace floor blocks each having a discharge electrode in a state connected in series to constitute a regeneration furnace and separately controlling the discharge current of the electrode of each block. CONSTITUTION:A large number of furnace floor blocks B are fixed to a base plate 15 right and left side edge parts and a machine frame upper surface plate 13 in series through bolts 30 and mutually connected by connection bolts 31 to integrally from a regeneration furnace A. A bordering frame 32 is provided to the peripheral edge of the opening part provided to the upper surface of the regeneration furnace A and the opening part provided to the upper surface of the frame 32 is closed in a freely openable and calosable state by an opening and closing lid 33 and temp. sensors 35 are arranged to the rising parts 34 formed to the right and left side surfaces of the frame 32 at every furnace floor block B. Activated carbon, of which the adsorbing capacity was lowered, is flowed toward the discharge port 2 in the regeneration furnace A under stirring and, during this period, regenerared and activated by spark discharge voltage applied to right and left conductive electrodes 4, 4' from a power source part 28.

Description

【発明の詳細な説明】 この発明は、火花放電による活性炭連続再生装置の炉床
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hearth structure for a continuous activated carbon regeneration device using spark discharge.

吸着力が低下した活性炭を、火花放電により連続して再
生するだめの活性炭再生炉は、開戸の活性炭入口と、出
口とでは、温度差が著しく、炉床の損傷は専ら出口付近
に集中するものであるが、従来の再生炉では、炉床が同
炉全体にわたって一体に構成されていたため、炉床の出
口付近のみが損傷した場合でも、炉床全体の交換を要す
るので不経済的であり、交換作業も大掛りで、作業時間
、作業量が増加するという欠点があり、また、火花放電
が一対の電極によって行われていたため、炉内各部を再
生処理進行状態に適した温度分布に制御することができ
なかった。
In an activated carbon regeneration furnace, which continuously regenerates activated carbon whose adsorption power has decreased by spark discharge, there is a significant temperature difference between the activated carbon inlet and the outlet with an open door, and damage to the hearth is concentrated near the outlet. However, in conventional regeneration furnaces, the hearth was integrally constructed throughout the furnace, so even if only the area around the hearth outlet was damaged, the entire hearth would have to be replaced, which was uneconomical. , the replacement work was also a large-scale work, which had the disadvantage of increasing work time and work volume.Also, since the spark discharge was performed by a pair of electrodes, it was difficult to control the temperature distribution in each part of the furnace to suit the progress of the regeneration process. I couldn't.

この発明では、炉床及び、放電電極を有するブロックを
、多数直列的に連設して再生炉を構成し、各ブロックの
電極の族m電流を個別に制御づることにより、炉床の部
分交換を可能とし、交換作業時間及び作業量を減少させ
ると共に、炉内温度分布を、再生プロセスに適するもの
として、杼流的かつ効果的な活性炭再生を行うことがで
きる火花放電による連続活性炭再生装置の炉床構造を提
供せんとするものである。
In this invention, a regeneration furnace is constructed by connecting a large number of blocks having a hearth and discharge electrodes in series, and the hearth can be partially replaced by controlling the group m current of the electrodes of each block individually. A continuous activated carbon regeneration device using spark discharge that enables efficient activated carbon regeneration in a shuttle-like manner, reducing the replacement work time and amount of work, and changing the temperature distribution in the furnace to suit the regeneration process. The purpose is to provide a hearth structure.

この発明の実施例を図面にもとずき詳12ツれば、(A
>は活性炭の再生炉を示し、活性炭の受入れ口(1)を
上方に、排出口(2)を下方にした傾斜状態に支持し、
振動機構〈3)により開戸(A)を振動させ、開戸<A
)中の活性炭(C)を受入れ口〈1)から排出口(2)
方向に流動させつつ、開戸(A)左右炉壁内面に対向状
態に配設した左右放電電極(4)、(4)=から活性炭
(C)に放電電圧を印加して、火花放電を発生させ、同
火花放電により活性炭が吸着した有機物等を除去して、
吸着力を賦活せしめるように構成している。
If the embodiment of this invention is described in detail based on the drawings, (A
> indicates an activated carbon regeneration furnace, which is supported in an inclined state with the activated carbon receiving port (1) facing upward and the discharge port (2) facing downward;
The vibration mechanism <3) vibrates the opening door (A), and the opening door <A
) from the receiving port (1) to the discharge port (2).
While flowing in the direction, a discharge voltage is applied to the activated carbon (C) from the left and right discharge electrodes (4), (4), which are arranged facing each other on the inner surfaces of the left and right furnace walls of the open door (A), to generate a spark discharge. The organic matter adsorbed by the activated carbon is removed by the same spark discharge.
It is configured to activate adsorption power.

この火花放電による再生作用は、火花放電がカーボン粒
子に印加されると、活性炭は、超高速加熱され、活性炭
に吸着された有機物が炭化される。
The regeneration effect of spark discharge is such that when spark discharge is applied to carbon particles, the activated carbon is heated at an ultra-high speed, and the organic matter adsorbed on the activated carbon is carbonized.

これにより、粒子圏の火花放電の発生が著しく増大して
、ジュール熱の発生が少なくなり効率よく吸着物質の脱
離が行い得るものである。
As a result, the generation of spark discharge in the particle sphere is significantly increased, the generation of Joule heat is reduced, and the adsorbed substance can be efficiently desorbed.

更に、火花放電の印加と共に、活性炭粒子に揺動運動を
付加することにより、火花放電の発生、従って吸着物質
の離脱作用が一層促進される。
Furthermore, by applying a rocking motion to the activated carbon particles together with the application of spark discharge, the generation of spark discharge and, therefore, the detachment effect of the adsorbed substance is further promoted.

なお、同再生炉(△)に供給される吸着力が低下した活
性炭は、遠心脱水機及び乾燥機等により、所定の含水率
にまで乾燥され、定量フィーダー(5)により所定量づ
つ一定の速さで、再生炉(A)の受入れ口(1)に供給
されるものであり、再生炉(A)で吸着力゛が賦活した
活性炭は、排出口(2)から洗滌冷却装置く6)に排出
され、同装置(6)により水洗冷却されて再使用に供さ
れるものである。
The activated carbon with reduced adsorption power supplied to the regeneration furnace (△) is dried to a predetermined moisture content using a centrifugal dehydrator, dryer, etc., and then fed in a predetermined amount at a constant rate using a quantitative feeder (5). Now, the activated carbon is supplied to the receiving port (1) of the regeneration furnace (A), and the activated carbon whose adsorption power has been activated in the regeneration furnace (A) is sent from the discharge port (2) to the washing cooling device 6). It is discharged, washed with water and cooled by the same device (6), and then provided for reuse.

再生炉(A)は、基台〈7)上面に設けた振動機構〈3
)により、活性炭の受入れ口〈1)を上方に、排出口(
2)を下方にした傾斜状態に支持されており、振動機構
〈3)は、基台(7)と再生炉(A>下部の基枠(8)
との間に介設した上下偏心軸(9)、(9Mを、モータ
(10)で駆動し、同偏心軸(9)、<9)=は、歯付
ベルト(11)により同期しているので、再生炉(△)
各部は、上記傾斜状態を保持しつつ、円形軌跡を画いて
振動しており、同振動により、再生炉(A)中の活性炭
(C)を撹拌流動せしめて、受入れ【]〈1)から排出
口(2)へと搬送するものである。
The regeneration furnace (A) consists of a vibration mechanism (3) installed on the top of the base (7).
), the activated carbon receiving port <1) is placed upward and the discharge port (
The vibration mechanism (3) is supported in an inclined state with 2) facing downward, and the vibration mechanism (3) is connected to the base (7) and the regeneration furnace (A>lower base frame (8)
The vertical eccentric shafts (9), (9M) interposed between the two are driven by the motor (10), and the eccentric shafts (9), <9) are synchronized by the toothed belt (11). Therefore, regeneration furnace (△)
Each part vibrates in a circular trajectory while maintaining the above-mentioned tilted state, and the vibration causes the activated carbon (C) in the regeneration furnace (A) to stir and flow, and is discharged from the receiving [ ] <1). It is conveyed to the exit (2).

図中(12)は、共振スプリングを示し、同スプリング
(12)は、再生炉(A)の略重心位置を下方から支持
して、同モータ(10)にかかる起動トルクと、動力を
蛙減するためのものである。
In the figure, (12) indicates a resonant spring, which supports the approximate center of gravity of the regeneration furnace (A) from below and reduces the starting torque and power applied to the motor (10). It is for the purpose of

再生炉(A>は、複数個の炉床ブロック(B)を活性炭
(C,)の流動方向に直列状態に連結して構成されてお
り、同ブロック(B)は、耐火物質によりなる左右炉!
!(18)、(18M及び、同炉壁(18)、(18)
′内面下部の間に介設された炉床底板(19)により断
面略U字状に構成されおり、その内部(17)に使用済
再生活性炭(C)を収納すべく構成している。また、左
右炉壁(18)、(18)′外側面及び炉床底板(19
)外底面は、左右断熱材(20)、(20)′及び底部
断熱材(21)を介して左右側板(16)、(16)′
及び基板(15)に支持されている。
The regeneration furnace (A>) is composed of a plurality of hearth blocks (B) connected in series in the flow direction of activated carbon (C,), and the blocks (B) have left and right furnaces made of refractory material. !
! (18), (18M and the same reactor wall (18), (18)
'The hearth bottom plate (19) interposed between the lower inner surfaces has a substantially U-shaped cross section, and the spent recycled activated carbon (C) is housed inside the hearth bottom plate (17). In addition, the left and right hearth walls (18), (18)' outer surfaces and the hearth bottom plate (19)
) The outer bottom surface is connected to the left and right side plates (16), (16)' via the left and right insulation materials (20), (20)' and the bottom insulation material (21).
and is supported by a substrate (15).

なお、左右側板(16)、(16)′、左右炉壁(18
)、(18) ′及び左右断熱材<20>。
In addition, the left and right side plates (16), (16)', the left and right furnace walls (18)
), (18) ′ and left and right insulation materials <20>.

(20)=は、前後2本の締結ボルト(22)により、
一体に構成され、左右側板(16)、(16)′の下端
は、機枠(8)に、上面板(13)取付部(14)、基
板〈15)を介して固設されており、かかる取付構造に
より炉床ブロック<8>の炉床底板(19)は、上面か
ら見て前後二段の略鋸歯形状に形成されており、前後二
段とも同形状であり、そのうちの一段について説明すれ
ば、同段の略中央部に、同ブロック(B)を機枠(8)
に取付けた傾斜状態において水平状態となるように水平
部(23)を設け、同水平部〈23)には、窒化硅素を
素材とした高級セラミックよりなる保護板く24)が耐
熱セメントを介して貼設されており、同水平部(23)
の後側面は、上方向に延設されて垂直部(25)を形成
し、更に垂直部(25)上端は、後方に配設した他の水
平部(23)の弯曲前側面(26)に連続されて、かか
る垂直部(25)と水平部(23)と弯曲状前側曲技 (26)とにより炉床底〜(19)の上側面を構成して
いるものである。
(20) = is due to the two fastening bolts (22) in the front and back,
The lower ends of the left and right side plates (16), (16)' are fixed to the machine frame (8) via the top plate (13) attachment part (14) and the board (15). Due to this mounting structure, the hearth bottom plate (19) of the hearth block <8> is formed into a substantially sawtooth shape with two stages, front and rear, when viewed from the top.The two stages, both front and rear, have the same shape. Then, insert the same block (B) into the machine frame (8) approximately in the center of the same stage.
A horizontal part (23) is provided so that it will be in a horizontal state when installed in an inclined state, and a protective plate (24) made of high-grade ceramic made of silicon nitride is installed in the horizontal part (23) with heat-resistant cement interposed therebetween. It is pasted on the same horizontal part (23)
The rear side surface extends upward to form a vertical section (25), and the upper end of the vertical section (25) is connected to the curved front side surface (26) of another horizontal section (23) arranged at the rear. The vertical part (25), the horizontal part (23) and the curved front acrobatics (26) are connected to form the upper side of the hearth bottom (19).

略鋸歯形状の水平部(23)の左右側方プなわら、炉床
ブロック(B)の断面略U字状の内部(17)における
左右炉壁(18)、(18)”内側面には、略矩形状の
左右放電電極(4)。
On the left and right side surfaces of the approximately sawtooth-shaped horizontal portion (23), on the left and right hearth walls (18), (18)'' inner surfaces of the approximately U-shaped cross-sectional interior (17) of the hearth block (B). , substantially rectangular left and right discharge electrodes (4).

(4)′が対向状態に配設されており、同電極(4)、
(4)′はそれぞれ左右炉壁(18)。
(4)' are arranged in a facing state, and the same electrodes (4),
(4)' are the left and right furnace walls (18), respectively.

(18)′、左右断熱材(20)、(20)−及び左右
側板(16)、(16)′を挿通した左右導通ボルト(
27)、(27)′を介して電源部(28)に接続され
ており、電源部〈28)は、再生炉(A)を構成した炉
床ブロック(B)の左右電極<4)、(4)′に印加す
べき放f!IN圧及び同電流を、同ブロック(B)ごと
に個別に制御可能としている。
(18)′, left and right conduction bolts (
27), (27)' are connected to the power supply unit (28), and the power supply unit (28) is connected to the left and right electrodes of the hearth block (B) that constitute the regeneration furnace (A). 4) Radiation f to be applied to ′! The IN pressure and current can be controlled individually for each block (B).

上記のように構成された炉床ブロック(B)は、同ブロ
ック(B)複数個が基板(15)左右側縁部を、機枠上
面板(13)に取付ボルト〈30)を介して、直列状態
に固定されており、更に、前後相隣る同ブロック(B)
は連結ボルト(31)により相互に連結されて、再生炉
(A)を一体に構成している。
In the hearth block (B) configured as described above, a plurality of the blocks (B) are attached to the left and right side edges of the base plate (15) to the machine frame top plate (13) via mounting bolts (30). The blocks are fixed in series, and the same block (B) that is adjacent to the front and rear
are interconnected by connecting bolts (31) to integrally constitute the regeneration furnace (A).

再生炉(A)上面開口部の周縁には、縁取り枠〈32)
が設けられており、周枠(32)上面開口部は、開閉蓋
(33)により開閉自在に閉塞されており、縁取り枠(
32)左右側面の立上り部(34)には、開戸(A)内
部温度を検出するための温度センサー(35)が炉床ブ
ロック(B)ごとに配設されており、同センサー(35
)は、立上り部(34)側壁を外部から挿通したセンサ
ー支持管(35)−1の内側端に設けた接続金具(35
)−2を介して下方向に垂設され、同センサー(35)
下端が、炉床ブロック<8)の水平部(23)上面とは
所定間隔を保持し、しかも、流動する活性1512 (
C)中に位置すべく取付けられており、同センサー(3
5)は、電源部(28)の制御装置(36)に接続され
ている。特に、同センサー(35)を固定部分たる縁取
り枠(32)側面に配設することにより、従来、閉塞蓋
(33)に同センサーを取付【プたために生じた、開閉
蓋(33)開閉時に同センサーが炉内壁に接触破損づる
とう事故を未然に防止している。
There is a edging frame (32) around the top opening of the regeneration furnace (A).
The upper surface opening of the surrounding frame (32) is closed by an opening/closing lid (33), and the surrounding frame (32) is provided with a
32) Temperature sensors (35) for detecting the internal temperature of the opening door (A) are arranged on the rising parts (34) of the left and right sides for each hearth block (B).
) is a connecting fitting (35) provided at the inner end of the sensor support tube (35)-1, which is inserted through the side wall of the rising portion (34) from the outside.
)-2, and the same sensor (35)
The lower end maintains a predetermined distance from the upper surface of the horizontal part (23) of the hearth block <8), and the flowing active material 1512 (
C) and is installed to be located inside the sensor (3).
5) is connected to the control device (36) of the power supply section (28). In particular, by arranging the sensor (35) on the side of the edging frame (32), which is a fixed part, the sensor (35) is installed on the closing lid (33). This sensor prevents accidents caused by contact with the inner wall of the furnace.

再生炉(△)の最上部に当る位置の縁取り枠(32)に
は、漏斗状の活性炭受入れD (1)が設けられており
、同受入れ目(1)周辺は、水平カバー(37)により
閉塞されている。
A funnel-shaped activated carbon receiving hole D (1) is provided in the edging frame (32) at the top of the regeneration furnace (△), and the area around the receiving hole (1) is covered by a horizontal cover (37). It's blocked.

また、再生炉(A)の最下部には、排出口(2)が設け
られており、同排出口(2)には、内部に傾斜状態に張
設した篩網(38)を有する排出カバー(39)が取付
けられており、再生炉(A)から排出される再生活性炭
から、微粉を除去し、活性炭は篩網(38)上面と連通
した活性炭排出口(40)から、微粉は同網(38)下
面と連通した微粉排出口(41)からそれぞれ炉外に排
出され、活性炭には微粉が含まれていないので、洗滌冷
却装置(6)の水消費を節減している。
Further, a discharge port (2) is provided at the lowest part of the regeneration furnace (A), and a discharge cover having a sieve screen (38) stretched in an inclined state is attached to the discharge port (2). (39) is installed to remove fine powder from the recycled activated carbon discharged from the regeneration furnace (A). (38) The activated carbon is discharged to the outside of the furnace from the fine powder outlet (41) communicating with the lower surface, and since the activated carbon does not contain fine powder, the water consumption of the washing cooling device (6) is reduced.

この発明の実施例は上記のように構成されているもので
あり、定量フィーダー(5)から受入れ口(1)に供給
された吸着力が低下した活性炭は、再生炉(A)中を排
出口(2)方向に撹拌されつつ流動して行く間に、電源
部(28)から左右放電電極(4)、<4)′に印加し
た火花放電電圧及び同電流により発生した火花放電によ
り、活性炭が吸着した有機物等が除去されて再生賦活す
るものである。
The embodiment of the present invention is constructed as described above, and the activated carbon whose adsorption power has decreased is supplied from the quantitative feeder (5) to the receiving port (1), and is passed through the regeneration furnace (A) to the discharge port. (2) While flowing while being stirred in the direction, the activated carbon is caused by the spark discharge generated by the spark discharge voltage and current applied from the power supply section (28) to the left and right discharge electrodes (4), <4)'. Adsorbed organic substances are removed and reactivated.

特に、火花放電を発生させるための左右ri極(4)、
(4) ′が各炉床ブロック(B)ごとに二対づつ独立
して電源部(28)により制御されており、炉内温度検
出のための温度センサー(35)もまた各炉床ブロック
(B)ごとに配設されているので、開戸(A)内温度分
布を、活性炭の再生処理進行状態に適したものに制御す
ることが可能となっている。
In particular, left and right ri poles (4) for generating spark discharge;
(4) ' are independently controlled by the power supply unit (28) in two pairs for each hearth block (B), and temperature sensors (35) for detecting the temperature inside the furnace are also connected to each hearth block (B). B), it is possible to control the temperature distribution inside the opening door (A) to be suitable for the progress state of the activated carbon regeneration process.

再生炉は、使用しているうちに、熱によって炉床が損耗
するものであるが、炉床ブロック(B)の最も傷み易い
水平部(23)には、耐熱性及び、熱衝撃に優れた耐性
を有する窒化硅素セラミックの保護板(24)が貼設さ
れており、炉床ブロック(B)の寿命を延長している。
The hearth of a regeneration furnace is worn out by heat during use, but the horizontal part (23) of the hearth block (B), which is the most susceptible to damage, is equipped with a material with excellent heat resistance and thermal shock resistance. A durable silicon nitride ceramic protection plate (24) is attached to extend the life of the hearth block (B).

更に、損耗が進行して炉床ブロック(B)の交換を要す
る場合でも、再生炉(A)全体の炉床ブロック(B)が
一様に損耗するのではなく、最も高温の排出口(2)付
近の炉床ブロック(B)が最も傷み易いものであり、同
再生炉(A>は、多数の炉床ブロック(B)で構成され
ているので、損傷部分の炉床ブロック(B)のみ交換す
ればよく、交換作業及び時間も僅少ですむものである。
Furthermore, even if the hearth block (B) has to be replaced due to progressive wear, the hearth block (B) of the entire regeneration furnace (A) will not be worn out uniformly, but only at the highest temperature outlet (2). ) The hearth block (B) near ) is the most susceptible to damage, and since the regeneration furnace (A>) is composed of many hearth blocks (B), only the damaged hearth block (B) All you have to do is replace it, and the replacement work and time will be minimal.

尚排出口(2)に篩網(38)を設けたことで、別途篩
別装置を設置しなくても微粉を除去することができ、洗
滌冷却装置(6)の水消費を節減できるものである。
Furthermore, by providing the sieve screen (38) at the discharge port (2), fine powder can be removed without installing a separate sieving device, and the water consumption of the washing and cooling device (6) can be reduced. be.

また、温度センサー(35)を縁取り枠(32)側面に
設けたことで、点検等のための開閉蓋(33)IFII
閉時の同センサー(35)の破損を防止している。
In addition, by providing a temperature sensor (35) on the side of the border frame (32), the lid (33) can be opened and closed for inspection, etc.
This prevents the sensor (35) from being damaged when it is closed.

この発明によれば、部分炉床及び放電電極で構成した炉
床ブロックを、直列的に多数連設して活性炭の再生炉を
構成することにより、各ブロックの放電電流を個別に制
御可能として、再生炉内温度分布を、活性炭の再生進行
状態に適したものとすると共に、損傷した炉床の部分交
換を可能とするという効果がある。
According to this invention, by configuring an activated carbon regeneration furnace by arranging a large number of hearth blocks constituted by partial hearths and discharge electrodes in series, the discharge current of each block can be individually controlled. This has the effect of making the temperature distribution in the regeneration furnace suitable for the state of progress of regeneration of activated carbon, and also making it possible to partially replace a damaged hearth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による炉床構造を有づる活性炭連続再
生炉の全体側面図 第2図は、第1図i−I断面図 第3図は、第2図■−■断面図 (A):再生炉 (B):炉床ブロック (4)、(4)′:左右放電電極 (17):断面略U字形状内部 特許出願人 昭和鉄工株式会社 代理人 松 尾 憲 −部
FIG. 1 is an overall side view of an activated carbon continuous regeneration furnace having a hearth structure according to the present invention. FIG. 2 is a sectional view taken along line i-I in FIG. ): Regeneration furnace (B): Hearth block (4), (4)': Left and right discharge electrodes (17): Approximately U-shaped cross section Internal Patent applicant: Showa Tekko Co., Ltd. Agent Ken Matsuo - Department

Claims (1)

【特許請求の範囲】 1) 炉床ブロック(B)を多数前装に連結して再生炉
(A)を構成すると共に、同炉床ブロック(B)は断面
略U字状に形成して、その内部(17)に使用済再生活
性炭を収納すべく構成し、U字状内部の左右側面に一対
の左右放電電極(4)。 (4)′を配設してなる活性炭連続再生炉の炉床構造。
[Scope of Claims] 1) A regeneration furnace (A) is constructed by connecting a large number of hearth blocks (B) to a front mounting, and the hearth blocks (B) are formed to have a substantially U-shaped cross section, The interior (17) is configured to store used recycled activated carbon, and a pair of left and right discharge electrodes (4) are provided on the left and right sides of the U-shaped interior. (4) A hearth structure of an activated carbon continuous regeneration furnace equipped with .
JP59075330A 1984-04-14 1984-04-14 Furnace floor structure of continuous activated carbon regeneration furnace Granted JPS60220142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075330A JPS60220142A (en) 1984-04-14 1984-04-14 Furnace floor structure of continuous activated carbon regeneration furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075330A JPS60220142A (en) 1984-04-14 1984-04-14 Furnace floor structure of continuous activated carbon regeneration furnace

Publications (2)

Publication Number Publication Date
JPS60220142A true JPS60220142A (en) 1985-11-02
JPH0378134B2 JPH0378134B2 (en) 1991-12-12

Family

ID=13573137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075330A Granted JPS60220142A (en) 1984-04-14 1984-04-14 Furnace floor structure of continuous activated carbon regeneration furnace

Country Status (1)

Country Link
JP (1) JPS60220142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732490A (en) * 2017-01-16 2017-05-31 湖北君集水处理有限公司 A kind of Powdered Activated Carbon modularized combination type regenerating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732490A (en) * 2017-01-16 2017-05-31 湖北君集水处理有限公司 A kind of Powdered Activated Carbon modularized combination type regenerating furnace

Also Published As

Publication number Publication date
JPH0378134B2 (en) 1991-12-12

Similar Documents

Publication Publication Date Title
JPH0725529B2 (en) Energizing device for activated carbon material
CA1166850A (en) Glass melting method using cullet as heat recovery and particulate collection medium
CN212058135U (en) Weaving drying device for textile production
JPS60220142A (en) Furnace floor structure of continuous activated carbon regeneration furnace
CN215962557U (en) Tail gas recycling device of activated carbon activation furnace
MY122472A (en) Charging material preheater with replaceable shaft wall portions
CN209470512U (en) A kind of regeneration aluminum melt standing furnace
JPH03207989A (en) Method and device for charging material containing metal in metallic furnace
CN206339022U (en) A kind of circular vibration fluid bed
JPH0143166Y2 (en)
CN212538680U (en) Drying device is used in production of blast furnace ferronickel slag powder
JP4147617B2 (en) Graphitized electric furnace
CN209101793U (en) A kind of novel energy-saving environment-friendly electric furnace
WO1982003619A1 (en) Apparatus for regenerating activated carbon
JP4677667B2 (en) Graphitization apparatus and graphitization method
CN217432595U (en) Soil preheating furnace device for recycling waste heat of thermal desorption high-temperature flue gas
JPH08208210A (en) Production of graphite powder and production unit therefor
CN211987423U (en) Dewatering screen
CN115007630A (en) Soil preheating furnace device for recycling waste heat of thermal desorption high-temperature flue gas
CN213287652U (en) Mullite refining and screening device
CN218078377U (en) Funnel-shaped magnetic separator for slag materials
RU2089632C1 (en) Method of regeneration of products with soldered parts and device for its embodiment
CN218231089U (en) Quartz sand loading attachment
CN218673104U (en) Particle smelting furnace mechanism for industrial processing
CN213687805U (en) Can get rid of hot melt jar for metallurgy of solid-state impurity