JPS60219972A - Fine moving device utilizing laminated piezoelectric elements - Google Patents

Fine moving device utilizing laminated piezoelectric elements

Info

Publication number
JPS60219972A
JPS60219972A JP59076784A JP7678484A JPS60219972A JP S60219972 A JPS60219972 A JP S60219972A JP 59076784 A JP59076784 A JP 59076784A JP 7678484 A JP7678484 A JP 7678484A JP S60219972 A JPS60219972 A JP S60219972A
Authority
JP
Japan
Prior art keywords
laminated piezoelectric
voltage
shaft
piezoelectric elements
cylindrical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59076784A
Other languages
Japanese (ja)
Other versions
JPH0522473B2 (en
Inventor
Kunio Yamada
邦雄 山田
Sadayuki Takahashi
高橋 貞行
Keiji Nakamura
中村 圭次
Atsushi Hara
敦史 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59076784A priority Critical patent/JPS60219972A/en
Priority to US06/662,881 priority patent/US4570096A/en
Publication of JPS60219972A publication Critical patent/JPS60219972A/en
Publication of JPH0522473B2 publication Critical patent/JPH0522473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/023Inchworm motors

Abstract

PURPOSE:To drive with a low voltage by employing a small-sized high performance laminated piezoelectric element for a clamping element. CONSTITUTION:Cylindrical piezoelectric elements 10, 11 having a shaft 9 and electrodes coated independently on the inner and outer peripheral surfaces and made of laminated piezoelectric elements engaged at an interval on the outer periphery of the shaft 9, holding members 12, 14 adhesively bonded to the outer peripheral surfaces of the elements 10, 11, and a hollow piezoelectric element 14 made of a laminated piezoelectric elements bonded at the end to the members 12, 13 are provided. Thus, when the clamping element having the same shape as the conventional clamping element is formed of the laminated piezoelectric elements, the performance of the same degree as the conventional clamping element can be obtained with the voltage of 1/10 of the conventional one.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学機器の位置決め、精密機器コントロール等
に用いられる超微小位置決め装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultra-fine positioning device used for positioning optical equipment, controlling precision equipment, and the like.

(従来技術) この種の微動装置としては、米国特許第3902’08
4号およ゛び第3902085号に公開されている尺取
虫型微動装置がよく知られておシ、実用に供されている
。その構成を第1図に示す概略図を用いて説明する。第
1図において1. 3. 4は圧電材料からなる円筒状
素子であシ、おのおのの素子の内外面には電極がコーテ
ィングされている。この電極を介して素子の印加電圧を
増減したとき、素子1は軸方向に伸縮し、素子3,4は
クランプ用素子で径方向に伸縮して、縮んだ場合はシャ
フト2の位置を拘束することができる。6はノ・クラン
プでセンタ素子1を保持部材7を介して格納固定する。
(Prior art) As this type of fine movement device, US Patent No. 3902'08
Inchworm-type fine movement devices disclosed in No. 4 and No. 3902085 are well known and are in practical use. The configuration will be explained using the schematic diagram shown in FIG. In Figure 1, 1. 3. 4 is a cylindrical element made of piezoelectric material, and the inner and outer surfaces of each element are coated with electrodes. When the voltage applied to the element is increased or decreased through this electrode, element 1 expands and contracts in the axial direction, and elements 3 and 4 are clamping elements that expand and contract in the radial direction, and when they contract, they restrict the position of shaft 2. be able to. Numeral 6 is a clamp for storing and fixing the center element 1 via a holding member 7.

結合部材8は前記素子1と素子3,4を橋渡し、各素子
と接着固定されている。Bl y Bz 、 BSは電
源、几1.ルt R3は放電用抵抗、Sly s2. 
s、はスイッチである。微動装置は、以下に述べる操作
で動作させることができる。まずスイッチS1を電源側
に閉じてクランプ素子3でシャフト2を拘束したあと、
スイッチS、を電源側に閉じてR3の電圧を増加させ素
子1を伸長させてシャフト2を左方向に移動させる。つ
いでスイッチS、を電源側に閉じてクランプ素子4でシ
ャ7トシを拘束したあと、スイッチS1を抵抗側に閉じ
てクランプ素子3によるシャフト2の拘束をとき、それ
からE2の電圧を減少して素子1を縮長させ、シャフト
2を左方向に移動させる。以上の各ステップを繰シ返せ
ばシャフト2は順次左方向に移動することになる。一方
右方向の移動は、上に述べた操作のうち、クランプ素子
3によるシャフトの拘束とクランプ素子4によるシャフ
トの拘束の順序を逆にすることによって可能となる。以
上述べた2つの方向の移動を用いてシャフト部に連結さ
れた負荷を所要の位置に設定することができる。
The coupling member 8 bridges the element 1 and the elements 3 and 4, and is adhesively fixed to each element. Bly Bz, BS is the power supply, 几1. R3 is a discharge resistor, Sly s2.
s is a switch. The fine movement device can be operated by the operation described below. First, after closing the switch S1 to the power supply side and restraining the shaft 2 with the clamp element 3,
Switch S is closed to the power supply side to increase the voltage of R3, extend element 1, and move shaft 2 to the left. Next, switch S is closed to the power supply side to restrain the shaft 7 with the clamp element 4, and then switch S1 is closed to the resistance side to restrain the shaft 2 by the clamp element 3, and then the voltage of E2 is decreased to restrain the shaft 7. 1 and move the shaft 2 to the left. By repeating each of the above steps, the shaft 2 will be sequentially moved to the left. On the other hand, movement in the right direction is possible by reversing the order of restraining the shaft by the clamp element 3 and restraining the shaft by the clamp element 4 among the operations described above. The two directions of movement described above can be used to set the load connected to the shaft part in the desired position.

実際の装置においては、以上述べたスイッチおよび電圧
の増減等の制御はコンピュータ等を用いて行われ、高速
動作も可能である。
In an actual device, the above-mentioned switches and control of voltage increase/decrease, etc. are performed using a computer or the like, and high-speed operation is also possible.

(従来技術の問題点) 以上、述べた構成を有する尺取虫型微動装置の開発にお
いて問題となるのは、圧電材料の伸重量を大きくする上
での技術上の制約である。圧電材料の伸縮率は電界強度
にはは比例するため、セラミック素子の肉厚を大きくし
て伸縮量を稼ごうとすれば大きな電圧を必要とする。従
って圧電素子3.4の寸法は上に述べた印加電圧のほか
、機械的強度、セラミック素子3,4とシャフト2の均
一なかみ合いを得るだめの容易さ等を勘案して定められ
、内径11iui、肉厚1+wのセラミック素子に60
0■程度の電圧を印加して2〜3μの内径の変化を得て
いる。すなわち第1図において、セラミック素子3およ
び4は600■程度の電圧を印加したとき、径方向に縮
小してシャフトを拘束することになる。その場合2〜3
μしか縮小しないため、該セラミック素子3,4および
シャフト2のサイズのバラツキの許容範囲は小さく、セ
ラミック素子3,4とシャフト2の均一なかみ合いを得
るための加工、組立等の製造技術は限界に近いものがあ
る。
(Problems with the Prior Art) A problem in the development of the inchworm-type fine movement device having the above-mentioned configuration is the technical restriction in increasing the elongated weight of the piezoelectric material. Since the expansion/contraction rate of piezoelectric material is proportional to the electric field strength, if the thickness of the ceramic element is increased to increase the amount of expansion/contraction, a large voltage is required. Therefore, the dimensions of the piezoelectric element 3.4 are determined by taking into consideration the above-mentioned applied voltage, mechanical strength, ease of obtaining uniform engagement between the ceramic elements 3 and 4 and the shaft 2, and an inner diameter of 11 iui. , 60 for a ceramic element with a wall thickness of 1+w
By applying a voltage of about 0.5 μm, a change in the inner diameter of 2 to 3 μm was obtained. That is, in FIG. 1, when a voltage of about 600 mm is applied to the ceramic elements 3 and 4, the ceramic elements 3 and 4 contract in the radial direction and restrain the shaft. In that case 2-3
Since only μ is reduced, the tolerance for variations in the sizes of the ceramic elements 3, 4 and the shaft 2 is small, and manufacturing techniques such as processing and assembly to obtain uniform engagement between the ceramic elements 3, 4 and the shaft 2 are at their limits. There is something close to.

次にセンター素子1への電界付与手段に着目すると、円
筒上素子の内外周面に電極を設けその肉厚方向に電圧を
印加し、印加方向と直角なる軸方向にセンター素子1を
伸縮せんとするものでアシ、これは素子の横効果歪を利
用せんとするものである。一般に圧電セラミックの性質
として同一電界強度のもとでは、横効果歪は縦効果歪の
1/2の大きさの関係が成立し、このことは特開昭49
−86816の明細書中でも詳しく述べられている。従
って横効果歪を利用することは、縦効果歪を利用する場
合の2倍の電界強度を必要とすることになシ効率が悪い
、この欠点を解決するために、第2図に示すように円筒
状素子の両端面に電極29を構成し、縦効果歪を利用す
ることも考えられるが、前にも記したように両端面間距
離は肉厚部分の距離に比較して大きいため同一の電界強
度を得るにはよシ一層の高電圧を必要とする。従ってセ
ンター素子1の寸法も上に述べた印加電圧のほか、機械
的強度、伸縮量等を勘案して定められ、内径11m1肉
厚1鰭、長さ25.4Mのセラミック素子に600■の
電圧を印加して2μの伸縮量の変化を得ている。
Next, focusing on the means for applying an electric field to the center element 1, electrodes are provided on the inner and outer circumferential surfaces of the cylindrical element, a voltage is applied in the thickness direction, and the center element 1 is expanded and contracted in the axial direction perpendicular to the direction of application. This is an attempt to make use of the transverse effect distortion of the element. In general, as a property of piezoelectric ceramics, under the same electric field strength, the relationship holds that the transverse effect strain is 1/2 of the longitudinal effect strain, and this is shown in Japanese Patent Laid-Open No. 49
-86816 is also described in detail. Therefore, using transverse effect strain requires twice as much electric field strength as using longitudinal effect strain, which is inefficient. It is also possible to configure electrodes 29 on both end faces of the cylindrical element and utilize longitudinal effect strain, but as mentioned earlier, the distance between both end faces is larger than the distance between the thick parts, so the same A much higher voltage is required to obtain the electric field strength. Therefore, the dimensions of the center element 1 are determined by taking into account mechanical strength, amount of expansion and contraction, etc. in addition to the applied voltage mentioned above. was applied to obtain a change in the amount of expansion and contraction of 2μ.

一方、セラミック素子の印加電圧をさらに大きくして、
伸縮量を稼ぐことは、よシ高速で微動装置を動作させる
上で好ましくない。すなわち前に記した微動装置の操作
手順から判るように、微動装置をよシ高速に動作させる
ためには、スイッチSly Sat s、が高スピード
で動作することが必要でアシ、トランジスタが用いられ
る。セラミック素子の印加電圧を大きくすることは、等
測的に高電圧で高スピードで動作するトランジスタの開
発が必要である。第3図(、)および(b)は電力用の
合金形接合トランジスタの構造図で30はエミッタ、3
1はコレクタ、32はベース、33は半導体を示す。こ
こではエミッタ30、コレクタ31の電゛流面積をでき
るだけ大きくして、電流密度が過大にならないよう工夫
されている。スイッチング速度が早くなればなるほど、
表皮効果の影響で、電極表面の近傍しか電流が流れなく
なるため、さらに電極の表面積を大きくする工夫が必要
である。
On the other hand, by further increasing the voltage applied to the ceramic element,
It is not preferable to increase the amount of expansion and contraction in order to operate the fine movement device at high speed. That is, as can be seen from the operating procedure of the fine movement device described above, in order to operate the fine movement device at high speed, it is necessary that the switch Sly Sats operates at high speed, and a transistor is used. Increasing the voltage applied to ceramic elements requires the development of transistors that operate isometrically at high voltages and at high speeds. Figures 3 (,) and (b) are structural diagrams of alloy junction transistors for power use, where 30 is an emitter;
1 is a collector, 32 is a base, and 33 is a semiconductor. Here, the current area of the emitter 30 and collector 31 is made as large as possible so that the current density does not become excessive. The faster the switching speed, the
Due to the skin effect, current only flows near the electrode surface, so it is necessary to further increase the surface area of the electrode.

従って高耐圧で高耐圧のトランジスタになればなるt′
!!ど、半導体および電極の表面積も大きくなり、低耐
圧のものに比べて歩留シも悪く高価になる。
Therefore, if the transistor has a high breakdown voltage, t'
! ! However, the surface area of the semiconductor and electrodes becomes larger, and the yield is lower than that of low-voltage products, making them more expensive.

また複数個の低耐圧のトランジスタを用いて高電圧を分
割し、てスイッチングさせる方法もあるが、ディレィの
問題や各トランジスタのバランスの問題を解決するため
の調整時間を必要とする。以上述べた理由で、セラミッ
ク素子の印加電圧をさらに大きくして、伸縮量を稼ぐこ
とは、より高速で微動装置を稼ぐ上で好ましくなく、尺
取虫型モータの廉価、小型化を計る上で大きな障害とな
っている。
There is also a method of dividing a high voltage using a plurality of low voltage transistors for switching, but this requires adjustment time to solve problems of delay and balance of each transistor. For the reasons mentioned above, increasing the voltage applied to the ceramic element to increase the amount of expansion and contraction is not desirable in order to achieve a fine movement device at higher speeds, and is a major obstacle in making inchworm-type motors cheaper and more compact. It becomes.

(発明の目的) 本発明は上に述べたクランプ用素子およびセンタ素子に
積層型圧電素子を採用し、低電圧で駆動できるようにし
た微動装置を提供するものである。
(Objective of the Invention) The present invention provides a fine movement device that employs laminated piezoelectric elements for the above-mentioned clamping element and center element, and can be driven at a low voltage.

(発明の構成) 本発明は前記目的を達成するために、圧電逆効果を呈す
る積層型圧電素子からなり、軸方向に伸縮可能な第1の
円筒状素子と、該第1の円筒状素子内に電界を付与する
手段と、該第1の円筒状素子の円筒内を移動可能なシャ
フトと、第1の円筒状素子と結合部材を介して接続し、
径方向に伸縮して該シャフトの外周面を保持、固定する
ことが可能な積層型圧電素子からなる第2の円筒状素子
と、該第2の円筒状素子内に電界を付与する手段と、第
1の円筒状素子に結合部材を介して接続し、該第1の円
筒状素子を格納固定するハウジングとを具備してなるこ
とを特徴とする積層型圧電素子を利用した微動装置を得
んとするものである。
(Structure of the Invention) In order to achieve the above object, the present invention includes a first cylindrical element that is composed of a laminated piezoelectric element exhibiting a piezoelectric inverse effect and is expandable and contractible in the axial direction, and an inner part of the first cylindrical element. a shaft movable within the cylinder of the first cylindrical element; connected to the first cylindrical element via a coupling member;
a second cylindrical element made of a laminated piezoelectric element capable of expanding and contracting in the radial direction to hold and fix the outer peripheral surface of the shaft; and means for applying an electric field within the second cylindrical element; A fine movement device using a laminated piezoelectric element is provided, comprising a housing connected to a first cylindrical element via a coupling member and housing and fixing the first cylindrical element. That is.

(発明の構成に関する説明) 低電圧印加駆動による高歪発生を達成するために薄板状
素子の厚み方向の表裏面に電極を設定し、これを多数枚
積層して一体化した様子に電圧を並列に印加することに
より、一層当シの電界強度を大にして全体として高歪を
採り出す積層型圧電素子はよく知られておシ実用化もさ
れているが、各薄片をあまシ薄くすることが出来ないた
め、それでも高い駆動電圧が必要である。薄板を積層す
るのに接着剤を使用するため、生産性が悪く、コスト高
である。更に接着層が介在するだめに純粋な圧電素子と
しての一様な歪が採シ出せない。寿命等の信頼性に欠け
る。更に寸法が大きい等の理由で電子部品用素子として
は充分に満足の出来るものではなかった。しかし、電子
通信学会技術研究報告(US83−8 )にて紹介され
た超小形圧電セラミック素子は、積層セラミックコンデ
ンサの製造技術を応用することで、接着剤を使用しない
で圧電セラミック板を積層一体化して上記欠点を全て克
服した画期的な積層型圧電素子であシ、本発明はこの積
層型圧電素子を利用し、低電圧で駆動可能な微動装置を
提供するものである。
(Description of the structure of the invention) In order to achieve high strain generation through low voltage applied driving, electrodes are set on the front and back surfaces of the thin plate element in the thickness direction, and a voltage is applied in parallel to a large number of layers stacked and integrated. Laminated piezoelectric elements are well known and have been put into practical use, but they are known and have been put into practical use, increasing the field strength of the piezoelectric element even further by applying an electric field to the piezoelectric element, and producing high strain as a whole. Since this is not possible, a high driving voltage is still required. Since adhesive is used to laminate the thin plates, productivity is low and costs are high. Furthermore, due to the presence of the adhesive layer, uniform strain cannot be obtained as a pure piezoelectric element. Lack of reliability such as longevity. Further, due to its large size, etc., it was not fully satisfactory as an element for electronic parts. However, the ultra-small piezoelectric ceramic element introduced in the Technical Research Report of the Institute of Electronics and Communication Engineers (US83-8) uses the manufacturing technology of multilayer ceramic capacitors to integrate piezoelectric ceramic plates into one layer without using adhesives. This is an innovative laminated piezoelectric element that overcomes all of the above-mentioned drawbacks.The present invention utilizes this laminated piezoelectric element to provide a fine movement device that can be driven at low voltage.

(実施例) 以下、本発明を実施の一例に基いて詳細に説明する。第
4図は本発明による微動装置の概略図、第5図は径方向
断面図、第6図は本発明の装置に使用する中空状積層型
圧電素子の概略図である。
(Example) Hereinafter, the present invention will be explained in detail based on an example of implementation. FIG. 4 is a schematic diagram of a fine movement device according to the present invention, FIG. 5 is a radial cross-sectional view, and FIG. 6 is a schematic diagram of a hollow laminated piezoelectric element used in the device of the present invention.

第4図、第5図、第6図に示した本発明の実施例は、−
シャフト9と、内外周面上に各々独立して被着せしめら
れた電極を有し、シャフトの外周面上に各々距離を隔て
て嵌着された積層型圧−11f、素子からなる円筒状圧
電素子10.11とこの円筒状素子10.11のそれぞ
れの外周面上に接着固定された保持部材12.13と、
この保持部材と端部を接着固定され保持部材間で橋渡し
態様に保合保持される積層型圧電素子からなる中空状圧
電素子14とこの中空状圧電素子をハウジング15内に
格納保持するだめに介在する結合部材16.17と一端
を前記ハウジングエ5に圧入固着され前記シャフト9の
端部に圧入固着された案内部側18に設けられたU字型
切込みを嵌着案内するL字形棒部材19と、前記3つの
圧電素子に電圧を供給するためのリード線群20とケー
プA/21と前記ハウジング15に裸子結合されるケー
ス22.23と前記シャフトの一端に圧入固着され一端
に対象物を保持するための結合手段を有する棒状部材2
4とを含む。
The embodiments of the present invention shown in FIGS. 4, 5, and 6 are as follows:-
A cylindrical piezoelectric element comprising a shaft 9 and a laminated piezoelectric element having electrodes independently attached to the inner and outer circumferential surfaces thereof and fitted at a distance from each other on the outer circumferential surface of the shaft. an element 10.11 and a holding member 12.13 adhesively fixed onto the outer peripheral surface of each of the cylindrical element 10.11;
A hollow piezoelectric element 14 consisting of a laminated piezoelectric element whose end portions are adhesively fixed to the holding member and held in a bridging manner between the holding members, and a housing 15 for storing and holding the hollow piezoelectric element an L-shaped rod member 19 that fits and guides a U-shaped notch provided on the guide portion side 18 whose one end is press-fitted into the housing part 5 and which is press-fitted and fixed to the end of the shaft 9. , a group of lead wires 20 for supplying voltage to the three piezoelectric elements, a cape A/21, a case 22, 23 which is connected to the housing 15, and a case 22, 23 which is press-fitted to one end of the shaft and has an object attached to one end. Rod-shaped member 2 having coupling means for holding
4.

中空状積層型圧電素子10.11は第6図を参照すると
、多数の内部電極層25がセラミック内″部に層状に埋
め込まれておシ、素子端面で露出している。この露出し
ている内部電極層を一層おきに絶縁体26で覆いこの上
から外部電極27.28が被着せしめられているため、
各内部電極層は互に電気的に並列に接続されることにな
る。またこれらの素子はその厚み方向に分極処理が施さ
れているために、外部電極間に電圧が印加されるとその
厚み方向に電圧の大きさに比例して伸びる。この時径方
向には縮み、この径方向の縮みでシャフトを拘束する。
Referring to FIG. 6, the hollow laminated piezoelectric element 10.11 has a large number of internal electrode layers 25 embedded inside the ceramic in a layered manner and exposed at the end face of the element. Since every other internal electrode layer is covered with an insulator 26 and external electrodes 27 and 28 are applied from above,
Each internal electrode layer will be electrically connected to each other in parallel. Furthermore, since these elements are polarized in the thickness direction, when a voltage is applied between the external electrodes, they expand in the thickness direction in proportion to the magnitude of the voltage. At this time, it contracts in the radial direction, and this radial contraction restrains the shaft.

積層型圧電素子の電極間隔は100μなので従来の肉厚
が1nの圧電素子を用いた場合の印加電圧600vの1
/10の電圧で内じ歪率が得られる。また機械的強度お
よびシャフトとの均一なかみ合いを得るだめの容易さも
従来の素子とほとんど変わらない。従って従来のクラン
プ素子と内じ形状のクランプ素子を積層型圧電素子で作
成すれば従来の印加電圧の1/10の電圧で、従来のク
ランプ素子と同程度の性能を得ることができる。一方セ
ンター素子の形状は従来のものと同じ内径11m111
.肉厚ll111、長さ25.4龍であるが、積層型圧
電素子の電極間隔は100μであシかつ縦効果を利用し
ているため印加電圧が1/10になっても12倍の伸縮
量となシ、尺取シ虫型微動装置として用いた場合高速で
動作するメリットがある。
Since the electrode spacing of the laminated piezoelectric element is 100μ, the applied voltage is 1 of 600V when using a conventional piezoelectric element with a thickness of 1n.
The same distortion factor can be obtained with a voltage of /10. Also, the mechanical strength and ease of achieving uniform engagement with the shaft are almost the same as with conventional elements. Therefore, if a clamp element having the same shape as a conventional clamp element is made of a laminated piezoelectric element, performance comparable to that of the conventional clamp element can be obtained with a voltage that is 1/10 of the conventional applied voltage. On the other hand, the shape of the center element is the same as the conventional one, with an inner diameter of 11 mm and 111 mm.
.. Although the wall thickness is 111mm and the length is 25.4mm, the electrode spacing of the laminated piezoelectric element is 100μ, and because it utilizes the longitudinal effect, it can expand and contract 12 times even if the applied voltage is reduced to 1/10. It has the advantage of operating at high speed when used as a shakutori shimushi type fine movement device.

本発明による微動装置では、サブミクロンレベルの極め
て微小な変位量を精度よく生じせしめる必要から少なく
とも直接移動に関与する部材、例えばシャフト9、保持
部材12.13および結合部材16.17は好ましくは
圧電素子14および積層型10.11と同等あるいは近
似の低熱膨張係数を有するセラミック材料がよい。また
上記3種類の部材は、直接電極に接するため、少なくと
もその表面は非導電性材料であることが必要であシ、加
えてシャフト9は円筒状圧電素子10.11の収縮力を
受けまた摺動する部材であることから、やはシ前記セラ
ミック材料で構成することが好ましい。円筒状素子10
.11は、電圧の印加状態を解けば元の形状、寸法に復
帰する。電圧を印加していない状態での、シャフト外周
面と素子内周面の間隔は、ラジアルガタの防止および素
子の収縮に伴うグリップ力を考慮してtjはゼロ嵌合に
なるよう各寸法を設定すればよい。保持部材12a。
In the fine movement device according to the present invention, since it is necessary to accurately produce extremely small displacements on the submicron level, members directly involved in movement, such as the shaft 9, the holding member 12.13, and the coupling member 16.17, are preferably piezoelectric. A ceramic material having a low thermal expansion coefficient equivalent to or similar to that of the element 14 and the laminated type 10.11 is preferable. In addition, since the three types of members mentioned above are in direct contact with the electrodes, at least their surfaces must be made of non-conductive material. Since it is a moving member, it is preferably made of the above-mentioned ceramic material. Cylindrical element 10
.. 11 returns to its original shape and dimensions when the voltage application is removed. When no voltage is applied, the distance between the shaft outer circumferential surface and the element inner circumferential surface should be set so that tj is zero fitting, taking into consideration the prevention of radial play and the grip force associated with the contraction of the element. Bye. Holding member 12a.

12b、12c、は扇状形状(第5図参照、13も同様
)を有し、円筒状圧電素子10.11のそれぞれの外周
面上に120°づつ隔てて接着固定され、中空状圧電素
子14をその端部で接着保持する。結合部材16.17
は前記圧電素子14の軸方向中央の外周面にそれぞれ1
800隔てて接着固定され、自らはハウジング15の内
部に設けられた段差の肩部で位置決めされ接着固定され
る。棒状部材24は対象物との結合手段を有し、対象物
に力を伝達し、位置決めするという機能上、低熱膨張係
数を有する金属部材が好ましい。L字形棒状部材19は
シャフト9の回転防止機能を有する。
12b and 12c have a fan-like shape (see FIG. 5, 13 is the same), and are adhesively fixed on the outer circumferential surface of each of the cylindrical piezoelectric elements 10 and 11 at a distance of 120°, and Glue and hold at its ends. Coupling member 16.17
are respectively 1 on the outer circumferential surface of the piezoelectric element 14 at the center in the axial direction.
They are fixed with adhesive at a distance of 800 mm, and are positioned and fixed with adhesive at the shoulder of the step provided inside the housing 15. The rod-shaped member 24 has a coupling means with the object, and is preferably a metal member having a low coefficient of thermal expansion for the purpose of transmitting force to the object and positioning it. The L-shaped bar member 19 has a function of preventing rotation of the shaft 9.

本発明による微動装置の動作シーケンスは従来技術の項
で述べたものと相違なく、第1図のスイッチS1+S2
およびS、は耐圧70Vのトランジスタが用いられ、コ
ンピュータ制御されている。本実施例では電極間隔が1
00μの積層圧電素子を用いたが、電極間隔がさらに小
さい積層型圧電素子を用いてさらに低電圧駆動すること
も可能である。
The operation sequence of the fine movement device according to the present invention is the same as that described in the section of the prior art, and the switches S1+S2 in FIG.
and S, transistors with a withstand voltage of 70V are used and are controlled by a computer. In this example, the electrode spacing is 1
Although a laminated piezoelectric element with a diameter of 00μ was used, it is also possible to drive at an even lower voltage by using a laminated piezoelectric element with an even smaller electrode spacing.

(発明の効果) 本発明は以上説明したように、クランプ作用をする素子
に小形高性能な積層型圧電素子を採用した構成によシ (1)低電圧駆動でかつ高スピード化が可能である。
(Effects of the Invention) As explained above, the present invention has a configuration in which a compact and high-performance laminated piezoelectric element is used as an element that performs a clamping action. (1) Low voltage drive and high speed are possible. .

(2)一体焼成タイブの積層素子のだめ、量産性。(2) Multi-layered element of monolithic firing type, mass production possible.

信頼性が筒い。Extremely reliable.

(3)上記理由によシ装置、駆動回路の小型化、コンパ
クト化が可能である。
(3) For the above reasons, the device and drive circuit can be made smaller and more compact.

等の効果があシ、その経済的、機能的、信頼性的波及効
果は甚大である。
The economic, functional, and reliability ripple effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は尺取虫型微動装置を説明するだめの構成図、第
2図は縦来例において縦効果を利用せんとした場合の伸
縮素子の斜視図、第3図は電力用の合金形接合トランジ
スタの構成図、第4図は本発明の実施例を示す微動装置
の側面断拘図、第5図は同径方向断面図、第6図は本発
明に使用される積層型圧電素子の断面概略図である。 1、3.4・・・円筒状圧電素子 2,9・・・シャフ
ト6.15・・・ハウジング 7,16,17・・・結
合部材7、8.12.13・・・保持部材 10.11.14・・・中空状積層型圧電素子20・・
・リード線群 21・・・ケーブル22.23・・・ケ
ース 24・・・棒状部材25・・・内部電極層 26
・・・絶縁体27、28・・・外部電極 29・・・電
極 30・・・エミッタ31・・・コレクタ 32・・
・ベース33・・・半導体 第2図 第3図 j <b) 第4図 ′)f 第5図 76図 5
Figure 1 is a schematic diagram to explain the inchworm-type fine movement device, Figure 2 is a perspective view of a telescopic element in the case where the vertical effect is not used in the conventional example, and Figure 3 is an alloy type junction transistor for electric power. , FIG. 4 is a side cutaway view of a fine movement device showing an embodiment of the present invention, FIG. 5 is a radial cross-sectional view, and FIG. 6 is a schematic cross-sectional view of a laminated piezoelectric element used in the present invention. It is a diagram. 1, 3.4... Cylindrical piezoelectric element 2, 9... Shaft 6.15... Housing 7, 16, 17... Coupling member 7, 8. 12.13... Holding member 10. 11.14...Hollow laminated piezoelectric element 20...
・Lead wire group 21... Cable 22. 23... Case 24... Rod-shaped member 25... Internal electrode layer 26
...Insulators 27, 28...External electrodes 29...Electrodes 30...Emitter 31...Collector 32...
・Base 33...Semiconductor Fig. 2 Fig. 3 j <b) Fig. 4') f Fig. 5 76 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 圧電逆効果を呈する積層圧電素子からなシ、軸方向に伸
縮可能な第1の円筒状素子と、該第1の円筒状素子に電
界を付与する手段と、該第1の円筒状素子の円筒内を移
動可能なシャフトと、第1の円筒状素子と結合部材を介
して接続し、径方向に伸縮して該シャフトの外周面を保
持、固定することが可能な積層圧電素子からなる第2の
円筒状素子と、該第2の円筒状素子内に電界を付与する
手段と、第1の円筒状素子に結合部材を介して接続し、
該第1の円筒状素子を格納固定するハウジングとを具備
してなることを特徴とする積層型圧電素子を利用した微
動装置。
A first cylindrical element capable of expanding and contracting in the axial direction, means for applying an electric field to the first cylindrical element, and a cylinder of the first cylindrical element a second cylindrical element that is connected to the first cylindrical element via a coupling member and that is capable of expanding and contracting in the radial direction to hold and fix the outer peripheral surface of the shaft; a cylindrical element, a means for applying an electric field within the second cylindrical element, connected to the first cylindrical element via a coupling member,
A fine movement device using a laminated piezoelectric element, comprising a housing for storing and fixing the first cylindrical element.
JP59076784A 1983-10-27 1984-04-17 Fine moving device utilizing laminated piezoelectric elements Granted JPS60219972A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59076784A JPS60219972A (en) 1984-04-17 1984-04-17 Fine moving device utilizing laminated piezoelectric elements
US06/662,881 US4570096A (en) 1983-10-27 1984-10-19 Electromechanical translation device comprising an electrostrictive driver of a stacked ceramic capacitor type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076784A JPS60219972A (en) 1984-04-17 1984-04-17 Fine moving device utilizing laminated piezoelectric elements

Publications (2)

Publication Number Publication Date
JPS60219972A true JPS60219972A (en) 1985-11-02
JPH0522473B2 JPH0522473B2 (en) 1993-03-29

Family

ID=13615225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076784A Granted JPS60219972A (en) 1983-10-27 1984-04-17 Fine moving device utilizing laminated piezoelectric elements

Country Status (1)

Country Link
JP (1) JPS60219972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017820A (en) * 1990-04-23 1991-05-21 Rockwell International Corporation Piezoelectric rotary union system
US5068566A (en) * 1990-06-04 1991-11-26 Rockwell International Corporation Electric traction motor
US5136201A (en) * 1990-04-27 1992-08-04 Rockwell International Corporation Piezoelectric robotic articulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017820A (en) * 1990-04-23 1991-05-21 Rockwell International Corporation Piezoelectric rotary union system
US5136201A (en) * 1990-04-27 1992-08-04 Rockwell International Corporation Piezoelectric robotic articulation
US5068566A (en) * 1990-06-04 1991-11-26 Rockwell International Corporation Electric traction motor

Also Published As

Publication number Publication date
JPH0522473B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
US4570096A (en) Electromechanical translation device comprising an electrostrictive driver of a stacked ceramic capacitor type
US3902085A (en) Electromechanical translation apparatus
US6208065B1 (en) Piezoelectric transducer and actuator using said piezoelectric transducer
EP1726049B1 (en) Wide frequency range electromechanical actuator
US20120153774A1 (en) Vibrating body of vibratory drive unit and vibratory drive unit
JPS60219972A (en) Fine moving device utilizing laminated piezoelectric elements
JPS60121784A (en) Laminated type piezoelectric body
JPH0522474B2 (en)
JPS6285682A (en) Piezoelectric drive mechanism
JPS6115382A (en) Clamp element
JPS59177979A (en) Piezoelectric actuator
JPH03183371A (en) Multilayer piezoelectric actuator
JPS60234476A (en) Finely moving device utilizing laminated piezoelectric element
JPH02291184A (en) Laminated actuator
JPS60209285A (en) Piezoelectric vibration generator
JPS6285681A (en) Piezoelectric drive mechanism
JP3173261B2 (en) Electrostatic actuator
JPS6127689A (en) Cylindrical piezoelectric ceramic element
JPH0786652A (en) Laminated electrostrictive transducer
JPH0431832Y2 (en)
Shutov et al. Electrostatic actuators with long range translation
Knowles et al. QT bimorph activation for precision delivery guidance systems
JPS61137113A (en) Aligner
JPH0334871B2 (en)
JPS6095271A (en) Fine adjustment device