JPS60219501A - Detection gauge for detecting deformation amount of living body - Google Patents

Detection gauge for detecting deformation amount of living body

Info

Publication number
JPS60219501A
JPS60219501A JP59075125A JP7512584A JPS60219501A JP S60219501 A JPS60219501 A JP S60219501A JP 59075125 A JP59075125 A JP 59075125A JP 7512584 A JP7512584 A JP 7512584A JP S60219501 A JPS60219501 A JP S60219501A
Authority
JP
Japan
Prior art keywords
resistance element
elastic
base
gauge
deformation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075125A
Other languages
Japanese (ja)
Inventor
Kazuo Tsuchiya
和夫 土屋
Masaharu Morimoto
森本 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59075125A priority Critical patent/JPS60219501A/en
Publication of JPS60219501A publication Critical patent/JPS60219501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To make it possible to simply measure the large deformation amount of a living body, by detecting the deformation amount of the living body from the elastic base body adhered to the living body and the elastic electronic resistance element extending and contracting in integral relation to said base body. CONSTITUTION:A linear elastic electric resistance element 3 comprising a highly extensible conductive polymer material is adhered to an elastic base body 2 comprising an electric insulating and highly extensible long rectangular thin plate shaped polymer material by an adhesive, so that the base body 2 and the resistance element 3 integrally extend and contract, to constitute a deformation amount detection gauge 1. Then, this detection gauge is adhered to a part to be measured such as the human body so as to allow the longitudinal direction of the base body 2 to match with the extending and contracting direction of said part to be measured. Next, the change in the resistance value of the resistance element 3 extending and contracting along with the extension and contraction of the part to be measured such as the human body is measured to detect the deformation amount of the part to be measured. In this case, the connection of the gauge 1 to an electric resistance meter is performed by grasping the terminal part 5 of the resistance element 3 by the chip 6 connected to a lead wire. Therefore, simple measurement can be performed.

Description

【発明の詳細な説明】 イ0発明の目的 〔産業上の利用分野〕 本発明は生体の大きな変形量を検出するゲージに関し、
特に医療の目的をもって人体の伸縮運動、関節の屈曲角
度等を検出する生体変形量検出ゲージに関する。
DETAILED DESCRIPTION OF THE INVENTION A.Objective of the Invention [Field of Industrial Application] The present invention relates to a gauge for detecting a large amount of deformation of a living body;
In particular, the present invention relates to a biological deformation detection gauge that detects the expansion and contraction movement of the human body, the bending angle of joints, etc. for medical purposes.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

人体、特に四肢の運動機能の障害等において、その障害
度及び治療による回復経過を把握するために、障害部の
可能運+11JJ前の山1]定を治■に伴って行うこと
が必要である。
In order to understand the degree of disability and the progress of recovery due to treatment for disorders of the motor function of the human body, especially of the limbs, it is necessary to perform a determination of the affected area along with treatment. .

従来工学的物体の変形量の測定には一般に公知の歪み計
が用いられている。この歪み計は伸縮性を弔する合成樹
脂等の丞板に張力又は圧縮力を力[1えると電気抵抗が
変化する金属等の電気抵抗素子を固着したもので、前記
基板を被測定物体に貼着し、物体の変形(歪み)と共に
伸縮する電気抵抗素子の電気抵抗の変化を測定すること
によって物体の変形量が検出される。この棟の歪み計で
は剛性の大きい金属や半導体を電気抵抗素子としている
ため、測定可能な変毎量は10−4のオーダであって前
記人体の1O−1以上にも達する大きな変形量を検出す
るには不適当である。
Conventionally known strain gauges are generally used to measure the amount of deformation of engineering objects. This strain meter is made by attaching an electric resistance element made of metal or other material whose electric resistance changes when the tensile or compressive force is applied to an elastic plate made of synthetic resin or the like. The amount of deformation of the object is detected by measuring the change in electrical resistance of the electrical resistance element that is attached and expands and contracts with the deformation (distortion) of the object. The strain gauges in this building use highly rigid metals or semiconductors as electrical resistance elements, so the amount of variation that can be measured is on the order of 10-4, and large deformations reaching more than 1O-1 of the human body can be detected. It is inappropriate to do so.

そこで従来、人体の変形量を測定するものでは関節の屈
曲角度を計測する三次元関節角度計が提案されている。
Therefore, three-dimensional joint angle meters that measure the bending angle of joints have been proposed for measuring the amount of deformation of the human body.

該角度計は正確に人体の三次元角度を計測するために平
行リンク機構を必要とし、関節の屈曲角度を三次元直角
座標糸の各軸まわシの角度変位量に分解してその変位」
1を電気的に検出するものであって、構造が初雑で高価
であり、しかも計測部の側方への突出部分が大きいため
に人体の運動を妨げ易く、長期間に亘る日常生活動作中
のfil測は困賭でめり、かつ四肢の関節の屈曲角度の
ととく比較的大きな部分の屈曲角度しか計測できないと
いう欠点がある。
This angle meter requires a parallel link mechanism to accurately measure the three-dimensional angle of the human body, and calculates the angular displacement of each axis of the three-dimensional rectangular coordinate thread by decomposing the bending angle of the joint into the angular displacement of each axis of the three-dimensional rectangular coordinate thread.
1 electrically, the structure is crude and expensive, and the measuring part has a large lateral protrusion, which tends to interfere with human body movement and can be used during daily activities over a long period of time. The fil measurement is difficult and difficult, and has the disadvantage that it can only measure the bending angle of a relatively large portion of the joints of the limbs.

本発明は上記従来の欠点に鑑みてなされ、工学的物体に
比し、比較的大きな生体の変形量ケ、屈曲角度に限らず
容易かつ迅速に検出でさ、しかも構造が簡単で、側方へ
の突出部が殆んどなく、人体の運動を妨けずに長期間の
日常生活動作中の計測も容易に行える廉価、な生体変形
量検出ゲージを提供することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the conventional art.Compared to engineering objects, it is possible to easily and quickly detect relatively large amounts of deformation and bending angles of living organisms, and it has a simple structure and can be easily and quickly detected. An object of the present invention is to provide an inexpensive biological deformation detection gauge that has almost no protruding parts and can easily measure the amount of human body deformation during long-term daily activities without interfering with the movement of the human body.

口0発明の栴成 〔問題点を解決するための手段〕 上記目的を達成するために本発明による生体変形量検出
ゲージでは生体に添着する電気絶縁性でかつ伸縮4件の
犬な昼分子材料で成る弾性基体と、該基体と一体に伸動
する導′亀性でかつ伸縮性の大な商分子相料で成る弾性
電子抵抗素子とから生体変形量検出ゲージを栴成するも
のである。
[Means for solving the problems] In order to achieve the above object, the biological deformation detection gauge according to the present invention uses an electrically insulating and stretchable diurnal material that is attached to the living body. A biological deformation amount detection gauge is constructed from an elastic base made of an elastic substrate and an elastic electronic resistance element made of a highly conductive and highly elastic commercial molecular phase material that stretches together with the base.

〔実施例〕〔Example〕

以下本発明の実施例について添付図面を診照して胱#i
Aする。
Hereinafter, referring to the attached drawings regarding the embodiments of the present invention, bladder #i will be described.
A.

0実施例1 第1図及び第2図は線方向の伸縮を検出する基本型の生
体変形量検出ゲージの実施例を示す。
0 Example 1 FIGS. 1 and 2 show an example of a basic biological deformation amount detection gauge for detecting expansion and contraction in the linear direction.

第1図に斥す第1の実施例は、電気絶縁性でかつ伸縮性
の大な長矩形薄板状高分子拐料(例えばゴム系材料)で
成る弾性基体2に、導電性でかつ伸縮性の大な篩分子材
料で成るii、 m状の弾性電気抵抗素子3を同じく弾
性を有する接着材(例えばゴム系接看剤)で強固に接着
し、弾性基体2と弾性電気抵抗素子3とが一体に伸翁白
するようにして変形量検出ゲージlを描成する。
The first embodiment shown in FIG. ii. An m-shaped elastic electrical resistance element 3 made of a large sieve molecular material is firmly adhered with an adhesive having elasticity (for example, a rubber adhesive), and the elastic base 2 and the elastic electrical resistance element 3 are bonded together. The deformation amount detection gauge l is drawn so as to extend as a whole.

上記の弾性電気抵抗素子3は、例えばコム系の高分子材
量の母材に適当な電気抵抗素子有する導電性フィラー(
?lJえはニッケル・クロム台金倣粉禾、導′亀性カー
ボン等ンを適当な重度で分散させて製造することができ
る。この実施例では上記′電気抵抗素子3の一端(l′
i参俸2に金属製リベット4で止められ、他端5は基1
+2より外方へやや延出烙れている。
The above-mentioned elastic electrical resistance element 3 is made of, for example, a conductive filler having an appropriate electrical resistance element in a base material of a com-based polymer material (
? IJ can be manufactured by dispersing nickel/chromium base metal imitation powder, conductive carbon, etc. in an appropriate weight. In this embodiment, one end (l') of the electrical resistance element 3 is
It is fixed to the base 2 with a metal rivet 4, and the other end 5 is attached to the base 1.
It extends slightly outward from +2.

0作用 この変形量検出ゲージ1を用いて人体等の変形tを測定
するには、該ゲージ1の基体2の長手方向を人体等の被
測定部の伸縮方向に沿わせて添着する。そして人体等の
被測定部の伸縮と共に伸縮する電気抵抗素子3の抵抗唾
変化を、例えばホイートストンブリッジのごとき電気抵
抗計によって測定することによって被測定部の変形域f
検出される。該ゲージ1の電気抵抗計への接続は、例え
ば第1図に示すごときリード線に接続されたクリップ6
を電気抵抗素子3の端部5に接着して行う。
In order to measure the deformation t of a human body or the like using this deformation amount detection gauge 1, the base 2 of the gauge 1 is attached so that the longitudinal direction of the base body 2 is along the direction of expansion and contraction of the part to be measured such as the human body. Then, by measuring the resistance change of the electric resistance element 3 that expands and contracts with the expansion and contraction of the part to be measured such as a human body using an electric resistance meter such as a Wheatstone bridge, the deformation area f of the part to be measured is measured.
Detected. The connection of the gauge 1 to the electrical resistance meter is, for example, using a clip 6 connected to a lead wire as shown in FIG.
This is done by adhering to the end portion 5 of the electrical resistance element 3.

0実施例2 第2図に示す第2の実施例は、前記実施例と同様の材料
で成る長矩形薄板状の弾性基体2′に、前記実施例と同
様の材料で成るU字状の電気抵抗素子3′を接着して変
形被検出ゲージ1′を構成したものである。
Embodiment 2 The second embodiment shown in FIG. A deformable detection gauge 1' is constructed by bonding a resistance element 3'.

0作用 該ゲージ1′による被測定部の変形量の測定法は前記第
1の実施例と同様である。この実施例によれは、電気抵
抗素子3′は第1の実施例と同様の感度を有しながらゲ
ージ1′の長さを約イに短縮し得る。
The method for measuring the amount of deformation of the part to be measured using the gauge 1' is the same as in the first embodiment. According to this embodiment, the length of the gauge 1' can be shortened to approximately A while the electric resistance element 3' has a sensitivity similar to that of the first embodiment.

0実施例3 第3図に示す第3の実施例は、被測定部の判断方向の変
形量を検出するもので、前記実施例と同様の材料で成る
長矩形薄板状基体2〃に、前記実施例と同様の材料で成
る直線状の電気抵抗素子3〃を基体2〃に対してバイア
ス方向にk %tして変形量検出ゲージlNを構成する
Embodiment 3 The third embodiment shown in FIG. 3 detects the amount of deformation of the part to be measured in the judgment direction. A linear electrical resistance element 3 made of the same material as in the embodiment is moved k%t in the bias direction with respect to the base 2 to constitute a deformation detection gauge IN.

0作用 該ゲージ17Fによる変形量の測定は、測定しようとす
る被測定部の剪断変形方向に対して基板2〃の長手方向
を直角にして被測定部にケージ1〃を添着し、前記実施
例と同様にゲー・ジ1〃ヲ亀気抵抗計に接続して電気抵
抗素子3〃の抵抗匝震化を計測して行う。
The measurement of the amount of deformation using the gauge 17F is performed by attaching the cage 1 to the part to be measured with the longitudinal direction of the substrate 2 perpendicular to the shear deformation direction of the part to be measured. Similarly, connect gauge 1 to a resistance meter and measure the resistance change of electrical resistance element 3.

上述の第1.第2.第3の実施例のゲージl。1 above. Second. Gauge l of the third embodiment.

1’、1#は人体の胸部あるいは四肢の赤面に周方向に
箔着し、胸部るるいは四肢の筋肉の緊張、弛緩の活動状
態を検出することができる。
1' and 1# are applied circumferentially to the chest or limbs of the human body, and the active state of tension or relaxation of the muscles of the chest or limbs can be detected.

第4図及び第7図は人体等の関節の屈曲角度を測定する
だめの変形を検出ゲージの実施例を示す。
FIGS. 4 and 7 show an embodiment of a deformation detecting gauge for measuring the bending angle of a joint of a human body or the like.

0実施例4 第4図に示す第4の実施例は、基体が中心軸線を含む一
平面に沿って屈曲する屈曲(以下−次元屈曲と称す)角
度を検出する変形量測定ゲージで、弾性基体12は前記
実施例と同様に電気絶縁性で、かつ伸縮性の犬な高分子
材料により断面略方形の杆状に形成される。又弾性電気
抵抗素子P1 + Qt +几1+S1はやはシ前記実
施例と同様に導電性でかつ伸縮性の犬な高分子材料によ
り4条1組の直線状に形成される。そして01記杆状の
弾性基体12の対向する平行2面の谷面に2条ずつの電
気抵抗素子P1 + Qt及び几l。
Embodiment 4 The fourth embodiment shown in FIG. 4 is a deformation measurement gauge that detects the bending angle (hereinafter referred to as -dimensional bending) in which the base body is bent along a plane including the central axis. The reference numeral 12 is made of an electrically insulating and stretchable polymeric material and has a rod shape with a substantially rectangular cross section, as in the previous embodiment. Also, the elastic electrical resistance elements P1 + Qt + 1 + S1 are formed in a set of 4 straight lines from a conductive and stretchable polymeric material as in the previous embodiment. Then, two electric resistance elements P1 + Qt and two electric resistance elements P1 + Qt and L are provided on the two parallel valley surfaces of the rod-shaped elastic substrate 12.

Slが軸方間に並列され、弾性基体12に同じく弾性を
有す接層剤で強固に接着され、弾性基体12と一体に伸
縮するようにして変形−t +x出ゲージ11が構成さ
れる。
The deformation −t +

0作用 このゲージ11は、基体12が被測定部の屈曲に伴って
その対向する平行2面12 a 、 12a’に垂直な
平面に沿って屈曲(−次元屈曲)するとき、屈曲の内側
にある電気抵抗素子が短縮され、屈曲の外側にある電気
抵抗素子が伸張され、それらの電気抵抗値をり・化させ
る。従ってそれらの電気抵抗1直をB士測することによ
って、予めキャリプレートしておいた電気抵抗11σと
一次元屈曲角吸との関係から被測定部の一次元加曲角度
が検出される。
0 action This gauge 11 is located on the inside of the bend when the base body 12 bends along a plane perpendicular to the two opposing parallel surfaces 12a and 12a' (-dimensional bending) as the part to be measured is bent. The electrical resistance elements are shortened and the electrical resistance elements on the outside of the bend are stretched, causing their electrical resistance to change. Therefore, by measuring the electrical resistance 11sigma, the one-dimensional bending angle of the part to be measured can be detected from the relationship between the electrical resistance 11σ and the one-dimensional bending angle, which has been calibrated in advance.

第5図はホイートストンブリッジ10によって前記電気
抵抗素子Pt +Ql、a+ 181のV(抗1111
変化をg1°辿IL、−次元)田曲角吸を検出する場合
の結線図を示している。箪気抵a素子P1 r Ql 
+11.1.S1相互間の接続は第6図に一例全ボずよ
うに一方の′電気抵抗素子から他方の電気抵抗素子へ基
体を通して金属針14を挿通することによって簡単にな
され、リード線は金属針】4にハンダ付けされる。
FIG. 5 shows that the electric resistance element Pt + Ql, a +
A wiring diagram is shown in the case of detecting a change in g1° (IL, -dimension). Minimum resistance a element P1 r Ql
+11.1. The connection between S1 is easily made by inserting the metal needle 14 from one electric resistance element to the other electric resistance element through the base, as shown in FIG. is soldered to.

0実施例5 第7図に示す第5の実施例は、基体が中1シ・相JIv
lI金含むすべての半面に沿う方向に屈曲する。#+1
曲(以下二次元屈曲と称すン角度を61す定する変形縫
検出ゲージで、前記実施例の基体と同様の材料で成る断
面円形の杆状弾性基体12’の周面に、i11記実施例
の弾性電気抵抗素子と同様の材料で成る4条を1組とす
る弾性電気抵抗素子の2組PI+Qt +ル1+SI及
びP2+Q2+几2 、S2が夫々軸方向に、並タリし
て配設されて変形量検出ゲージ11′が構成さ牡る。そ
して一方の組の荀:気抵抗素子のPt+QtとU、、S
lは基体12’の−直径線上に略対向され、他方の組の
電気損わ’L素子P2.(=hとR2,82は一方の組
の電気抵抗系子P 1 r Ql + R1r 81が
配設される(1径線と半直に父わる直径線上に略対向さ
れて配設される。この両組の電気抵抗素子P!+Qx 
、Rt 、St 及びP2 lQ2 + ”4 + S
mは夫々別個に2イ1んのホイートストンブリッジの回
路に第5図に示したと同様に結脚嘔れる。
0 Example 5 In the fifth example shown in FIG.
It bends in the direction along all half planes including lI gold. #+1
This is a deformed seam detection gauge that defines a bending angle (hereinafter referred to as two-dimensional bending) of 61, and is made of a rod-shaped elastic base 12' having a circular cross section and made of the same material as the base of the previous embodiment. Two sets of elastic electric resistance elements, each consisting of four strips made of the same material as the elastic electric resistance elements of PI+Qt+RU1+SI and P2+Q2+几2, S2, are arranged side by side in the axial direction and deformed. A quantity detection gauge 11' is constructed.And one set of resistance elements Pt+Qt and U, S.
L elements of the other set P2 . (=h and R2, 82 are arranged as one set of electric resistance elements P 1 r Ql + R1r 81 (disposed substantially opposite to the first diameter line on the father diameter line). Both sets of electrical resistance elements P!+Qx
, Rt , St and P2 lQ2 + "4 + S
Each of m is connected separately to a 2-1 Wheatstone bridge circuit in the same manner as shown in FIG.

0作用 このゲージ11’は、被測定部に離着した基体1zが被
測定部の屈曲に伴って二次元屈曲をするとき、屈曲の内
側にある電気抵抗素子が短縮され、屈曲の外側にある電
気抵抗素子が伸張され、それらの電気抵抗喧を変化させ
る。従ってそれらの電気抵抗値を2個のホイトストンブ
リッジによって計測することによって、予めキャリプレ
ートしておいた両電気抵抗値と二次元屈曲角度との関係
から被測定部の二次元屈曲角度が検出される。
0 action In this gauge 11', when the base 1z detached from the part to be measured bends two-dimensionally in accordance with the bending of the part to be measured, the electrical resistance element on the inside of the bend is shortened, and the electric resistance element on the outside of the bend is shortened. Electrical resistance elements are stretched, changing their electrical resistance. Therefore, by measuring these electrical resistance values with two Wheatstone bridges, the two-dimensional bending angle of the part to be measured can be detected from the relationship between the two electrical resistance values and the two-dimensional bending angle, which have been calibrated in advance. Ru.

0実施例6 第8図に示す第6の実施例は、前記二次元屈曲角度と中
心$111線の曲りの捻り角度とを同時に検出する変形
¥−検出ゲージで、前d己実施例の基体と同様の材料で
成る断面円形の杆状弾性基体12’に、二次元屈曲角度
検出用の4条i1組とする弾性電気抵抗素子の2組P 
1 + Q、t l R1r J及びP2 +QI 、
R2,82と、捻り!4度検出用の1組の弾性電気抵抗
素子Ps + Qs 、 R3+ 83が組込まれて変
形量検出ゲージ11〃が構成される。二次元屈曲角度検
出用の電気抵抗索子P1 + Ql rRl + 81
及びPx + Qs ) Rs H82は前記第5の実
施例と同様、一方の組の電気抵抗素子のP1+Qtと几
1.81は基体12”の−直径線上に略対向されて埋込
み配設され、他方の組の電気抵抗素子P2 + Qlと
g2.s=は一方の組の電気抵抗素子P1+Ql + 
I′t+ + Ssが配設される直径線と垂直に交わる
直径線上に略対向されて夫々基体12#の軸方向に埋込
み配設される。捻り角度検出用の電気抵抗素子”3 r
 Ql 、 R3、83は各2条の電気抵抗系子Ps+
Qsと几3.S3とが互いに逆方向の螺旋状に、かつ等
間隔に、又基体12Nの横−1面に対して45朋の進み
角度をもって埋込み配設される。これらの′電気抵抗系
子の重合部には互いに接触しないよう基体12〃自体又
は絶縁材が介在される。これら3組の電気抵抗素子Pl
 r Qt HルI +SI % p、 rQ2 +R
4、sz%P s r Qs−几31 BMは夫々別個
に3個のホイートストンブリッジの回路に第5図に示し
たと同様に結線される。
Embodiment 6 The sixth embodiment shown in FIG. 8 is a deformation detection gauge that simultaneously detects the two-dimensional bending angle and the twist angle of the bend of the center line. Two sets P of elastic electrical resistance elements each having one set of 4 strips i for two-dimensional bending angle detection are mounted on a rod-shaped elastic base 12' having a circular cross section and made of a material similar to the above.
1 + Q, t l R1r J and P2 + QI,
R2,82 and twist! A deformation amount detection gauge 11 is constructed by incorporating a set of elastic electrical resistance elements Ps + Qs and R3+ 83 for detecting 4 degrees. Electrical resistance cable P1 + Ql rRl + 81 for two-dimensional bending angle detection
and Px + Qs ) Rs H82 is similar to the fifth embodiment, P1 + Qt and 1.81 of the electrical resistance elements of one set are embedded and disposed substantially opposite to each other on the -diameter line of the base 12'', and the other set is embedded. The set of electrical resistance elements P2 + Ql and g2.s= is one set of electrical resistance elements P1 + Ql +
The I't+ + Ss are embedded in the axial direction of the base body 12# so as to be substantially opposed to each other on a diameter line perpendicular to the diameter line on which the I't+ + Ss are arranged. Electrical resistance element for twist angle detection"3r
Ql, R3, 83 are each two electrical resistance elements Ps+
Qs and 几3. S3 are embedded spirally in opposite directions, at regular intervals, and at an advancing angle of 45 degrees with respect to the -1 horizontal plane of the base body 12N. The base 12 itself or an insulating material is interposed between the overlapping parts of these electric resistance elements so that they do not come into contact with each other. These three sets of electrical resistance elements Pl
rQt HruI +SI% p, rQ2 +R
4. sz%P s r Qs-31 BM are separately connected to three Wheatstone bridge circuits in the same manner as shown in FIG.

0作用 このゲージlINは、被…り足部に添着し71c基体1
2#が被画定部の屈曲及び捻りに伴って屈曲及び捻りが
与えられるとき、各組の電気抵抗素子P+ +Qt +
Rt +8ss P2 1Q2 ALz 182及びP
SrQs + Rs 、 Sgが夫々伸長又は短縮して
それらの電気抵抗値を変化させる。9ニーってそれらの
m気抵抗値を3個のホイートストンブリッジによって計
測することによって、予めキャリプレートしておいた3
神の電気抵抗値と二次元屈曲角1α並ひに捻り角度との
関係から被6111定部の二次元ル)曲角度と捻り角度
とが検出される。
0 action This gauge lIN is attached to the covered foot part 71c base 1
When 2# is bent and twisted as the defined portion is bent and twisted, each set of electrical resistance elements P+ +Qt +
Rt +8ss P2 1Q2 ALz 182 and P
SrQs + Rs and Sg expand or shorten, respectively, changing their electrical resistance values. 9 knees were calibrated in advance by measuring their resistance values with three Wheatstone bridges.
The two-dimensional bending angle and twisting angle of the fixed part of the target 6111 are detected from the relationship between the electrical resistance value, the two-dimensional bending angle 1α, and the twisting angle.

前記第1乃至第6の実施例において′電気す(抗素子の
外面に当該ゲージl、 1′、 1#、 l I 、i
t’。
In the first to sixth embodiments, the gauges l, 1', 1#, l I , i
t'.

11”と一体に伸靴(する電気小Ilt性のカバー7゜
7’、 7’、 l 3 、13’、 l 3’を夫々
水密に級漬して防水構造とすることにより、電気抵抗系
子が4電性の皮膚に接触して測定誤差を生じるのを防止
すると共に、水泳、入浴時における運動憬口ちの伸j定
も司症となる。
11" and the electrical resistance covers 7゜7', 7', l3, 13', and l3' are respectively watertightly immersed to create a waterproof structure. This prevents the child from coming into contact with the 4-electroconductor skin and causing measurement errors, and also helps to control movement during swimming and bathing.

〕\1発明の効果 以上評細に説明したように本発明によれは、生体に離着
する電気絶縁性でかつ伸縮性の大な昼分子材料で成る弾
性基体と、該基体と一体に伸縮する導電性でかつ伸縮性
の大な高分子桐材で成る弾性電気抵抗素子とから生体変
形量検出ゲージを構成したことにより、従来工学的物体
の変形量の測定に用いられた歪み計では計測し得ない生
体の大きな変形量を簡便に測定することがoJ能となる
。そして従来の人体の関節屈曲角度全計測する関節角度
計に較べ、関節の屈曲角度のみならす、胸部あるいは四
肢の筋肉の緊張、弛緩等の活動状態の計測等その応用範
囲は広く、かつ軽量コンパクトであるため、従来の関節
角度計では測定できない指等の人体の小部分の屈曲角度
の検出も可能であり、しかも81; 1+II+に提供
でき、人体の四肢の運#機能の障害等の治療に貞献する
こと犬である。
]\1 Effects of the Invention As explained in detail above, the present invention has an elastic base made of an electrically insulating and highly stretchable diurnal material that adheres to a living body, and an elastic body that stretches and contracts integrally with the base. By constructing the biological deformation detection gauge with an elastic electrical resistance element made of polymeric paulownia material, which is conductive and highly elastic, strain gauges conventionally used to measure the deformation of engineering objects are unable to measure the deformation of engineering objects. The ability to easily measure large amounts of deformation in living organisms that cannot be measured becomes oJ capability. Compared to conventional joint goniometers that measure all joint flexion angles of the human body, it has a wider range of applications, including measuring not only the flexion angle of joints, but also activity states such as tension and relaxation of muscles in the chest or limbs, and is lightweight and compact. Therefore, it is possible to detect the bending angle of small parts of the human body such as fingers, which cannot be measured with conventional joint angle meters. It is a dog to dedicate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々線方向の伸縮を検出する本発明
の第1及び第2の実施例を示す斜視図、第3図は剪断方
向の変形量を検出する本発明の第3の実施例を示す斜視
図、第4図は中心軸線を宮む一平面に沿う屈曲角度を検
出する本発明の第4の実施例の斜視図、第5図はホ8ス
トンブリッジによって電気抵抗素子の抵抗値変化を計n
+すする場合の結線図、第6図は電気抵抗素子相互間の
結線方法の一例を示す横断面図、第7図は中心軸線を含
むすべての平面に沿う屈曲角度を4突出する本発明の第
5の実施例を示す斜視図、第8図は中心軸線を含むすべ
ての平面に沿う屈曲角度と中心軸線の囲りの捻り角度と
を同時に検出する本発明の第6の実施例を示す斜視図で
ある。
1 and 2 are perspective views showing the first and second embodiments of the present invention, respectively, which detect expansion and contraction in the linear direction, and FIG. 3 is a perspective view showing the third embodiment of the present invention, which detects the amount of deformation in the shear direction. FIG. 4 is a perspective view of a fourth embodiment of the present invention that detects a bending angle along a plane surrounding the central axis; FIG. Total resistance change
6 is a cross-sectional view showing an example of a method of connecting electrical resistance elements to each other, and FIG. 7 is a wiring diagram of the present invention, which has four bending angles along all planes including the central axis. A perspective view showing a fifth embodiment, and FIG. 8 is a perspective view showing a sixth embodiment of the present invention, which simultaneously detects bending angles along all planes including the central axis and twisting angles around the central axis. It is a diagram.

Claims (5)

【特許請求の範囲】[Claims] (1) 生体に添着する電気絶縁性でかつ伸縮性の大な
高分子材料で成る弾性基体と、該基体と一体に伸縮する
導′祇性でかつ伸縮性の犬な高分子材料で成る弾性電気
抵抗素子とから構成されたことを%徴とする生体変形量
検出ゲージ。
(1) An elastic base made of an electrically insulating and highly stretchable polymer material that adheres to the living body, and an elastic base made of a conductive and stretchable polymer material that expands and contracts together with the base. A biological deformation amount detection gauge whose % characteristic is that it is composed of an electric resistance element.
(2)前記弾性基体は杆状に形成され、niJ記弾性電
気抵抗素子は基体外面を和J方向に並列する4条1組の
素子で構成され、その谷2条ずつの素子がMU記基体の
直径線上に互いに対向配設されたことを特徴とする特許
請求の範囲第1Jj4記載の生体変形量検出ゲージ。
(2) The elastic substrate is formed in a rod shape, and the niJ elastic electrical resistance element is composed of a set of four strips parallel to each other in the sum J direction on the outer surface of the base, and the elements in each two valleys are arranged on the MU substrate. The biological deformation amount detection gauge according to claim 1Jj4, characterized in that the gauges are arranged opposite to each other on the diameter line of the body.
(3) 前記弾性基体は杆状に形成され、前記lP性電
気抵抗素子は基体外面を軸方向に並列する4条を1組と
する素子02組で構成され、その各組の素子は互いに垂
直に交わる基体の直径線上に2条ずつが互いに対向配設
されたことを特命とする時計6N求の範囲第1項記載の
生体変形量検出ゲージ。
(3) The elastic base is formed into a rod shape, and the IP electric resistance element is composed of 2 sets of elements each having four strips arranged in parallel in the axial direction on the outer surface of the base, and the elements of each set are perpendicular to each other. The biological deformation amount detecting gauge according to item 1 of the scope of the watch 6N requirement, wherein two strips are arranged opposite to each other on the diameter line of the base body that intersects with the diameter line of the base body.
(4) 前記弾性基体は杆状に形成され、前記弾性電気
抵抗素子は4条を1組とする素子3絹で構成され、内2
組の素子は基体を軸方向にilk列すると共にその各組
の素子は互いに垂直に又わ不基体のiic径線上に2条
ずつが互いに対向配設され、他のlaの素子は2条ずつ
が互いに逆方向の螺旋状に、かつ等間隔に、又基体の愼
V[山Jに対して45度の進み角度ケもって配設された
ことを特徴とする特′計6ff釆の範囲第1項記載の生
体変形搦恢出ゲージ。
(4) The elastic base body is formed into a rod shape, and the elastic electrical resistance element is composed of elements 3 and 3 made of silk, each consisting of 4 strips.
The elements of each set are arranged in ILK rows in the axial direction of the base, and the elements of each set are arranged perpendicularly to each other on the IIC diameter line of the non-substrate, with two threads facing each other, and the elements of the other LA are arranged in two rows each. are arranged spirally in opposite directions, at equal intervals, and at an advancing angle of 45 degrees with respect to the base V [mount J]. Biological deformation retrieval gauge as described in section.
(5) 前記電気抵抗素子の外面に当該ゲージと一体に
伸縮する電気絶縁性のカバーを破水したことを特徴とす
る特許請求の範囲第1項乃至第4項のいずれかに記載の
生体変形h1恢出ゲージ。
(5) The biological deformation h1 according to any one of claims 1 to 4, characterized in that an electrically insulating cover that expands and contracts integrally with the gauge is provided on the outer surface of the electrical resistance element. Exploration gauge.
JP59075125A 1984-04-16 1984-04-16 Detection gauge for detecting deformation amount of living body Pending JPS60219501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075125A JPS60219501A (en) 1984-04-16 1984-04-16 Detection gauge for detecting deformation amount of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075125A JPS60219501A (en) 1984-04-16 1984-04-16 Detection gauge for detecting deformation amount of living body

Publications (1)

Publication Number Publication Date
JPS60219501A true JPS60219501A (en) 1985-11-02

Family

ID=13567162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075125A Pending JPS60219501A (en) 1984-04-16 1984-04-16 Detection gauge for detecting deformation amount of living body

Country Status (1)

Country Link
JP (1) JPS60219501A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184401A (en) * 1988-01-19 1989-07-24 Japan Synthetic Rubber Co Ltd Angle sensor
JPH04233442A (en) * 1990-12-28 1992-08-21 Yamaha Corp Bending sensor
JPH04319602A (en) * 1991-04-18 1992-11-10 Yamaha Corp Bending direction detecting device
JPH04329305A (en) * 1991-05-01 1992-11-18 Yamaha Corp Bent angle detector
US5316017A (en) * 1992-10-07 1994-05-31 Greenleaf Medical Systems, Inc. Man-machine interface for a joint measurement system
US5533531A (en) * 1994-08-22 1996-07-09 Greenleaf Medical Systems Electronically aligned man-machine interface
JP2007121159A (en) * 2005-10-28 2007-05-17 Tokai Rubber Ind Ltd Device for detecting displacement amount

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037002U (en) * 1973-07-31 1975-04-18
JPS5897607A (en) * 1981-12-07 1983-06-10 Kyowa Dengiyou:Kk Strain gauge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037002U (en) * 1973-07-31 1975-04-18
JPS5897607A (en) * 1981-12-07 1983-06-10 Kyowa Dengiyou:Kk Strain gauge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184401A (en) * 1988-01-19 1989-07-24 Japan Synthetic Rubber Co Ltd Angle sensor
JPH04233442A (en) * 1990-12-28 1992-08-21 Yamaha Corp Bending sensor
JPH04319602A (en) * 1991-04-18 1992-11-10 Yamaha Corp Bending direction detecting device
JPH04329305A (en) * 1991-05-01 1992-11-18 Yamaha Corp Bent angle detector
US5316017A (en) * 1992-10-07 1994-05-31 Greenleaf Medical Systems, Inc. Man-machine interface for a joint measurement system
US5533531A (en) * 1994-08-22 1996-07-09 Greenleaf Medical Systems Electronically aligned man-machine interface
JP2007121159A (en) * 2005-10-28 2007-05-17 Tokai Rubber Ind Ltd Device for detecting displacement amount

Similar Documents

Publication Publication Date Title
US10895510B2 (en) Core-shell nanofiber textiles for strain sensing, and methods of their manufacture
ES2901131T3 (en) Supported strain and multi-region angular displacement sensors
KR101985065B1 (en) Stretchable electrically-conductive circuit and manufacturing method therefor
US3991745A (en) Curvature measurement device
US4461085A (en) Goniometer
JP3156053B2 (en) Electronic converter
EP0192694B1 (en) Electrical angular displacement sensor
JPS60219501A (en) Detection gauge for detecting deformation amount of living body
US3908279A (en) Curvature measurement device
US20180033520A1 (en) Highly stretchable wiring, and method and device for producing the same
Kim et al. A novel all-in-one manufacturing process for a soft sensor system and its application to a soft sensing glove
US7249422B2 (en) Device by gioniometric measurements
EP0691105B1 (en) Measuring instrument for detecting degrees of relaxation
CA2848430A1 (en) Coreshell nanofiber textiles for strain sensing, and methods of their manufacture
KR20210139168A (en) Strain sensor
JPH0192603A (en) Strain and stress detection sensor element
JPH0666631U (en) Biodeformation amount detection gauge
CN113483816B (en) Shape-position-force composite sensing unit and measuring method thereof
JP3896533B2 (en) Biological displacement sensor
KR102549922B1 (en) Self-powered stretchable ion gel sensor and manufacturing method thereof
Moreton et al. Investigation and characterization of a planar figure-of-eight coil as a curvature sensor
KR101896590B1 (en) Apparatus for measuring angle of multi-joint and method for measuring the same
Lin et al. Graphene kinesiology tape for monitoring distributed human movements of the ankle-foot complex
Lambert et al. Transducer for recording electrical and mechanical chronic intestinal activity
JPH01184401A (en) Angle sensor