JPH0192603A - Strain and stress detection sensor element - Google Patents
Strain and stress detection sensor elementInfo
- Publication number
- JPH0192603A JPH0192603A JP63153402A JP15340288A JPH0192603A JP H0192603 A JPH0192603 A JP H0192603A JP 63153402 A JP63153402 A JP 63153402A JP 15340288 A JP15340288 A JP 15340288A JP H0192603 A JPH0192603 A JP H0192603A
- Authority
- JP
- Japan
- Prior art keywords
- deformation
- elongated conductive
- conductive element
- stress
- elastic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 25
- 230000007423 decrease Effects 0.000 claims abstract description 13
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 7
- 230000035882 stress Effects 0.000 description 74
- 238000000034 method Methods 0.000 description 15
- 238000004804 winding Methods 0.000 description 13
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 229920002379 silicone rubber Polymers 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 239000004945 silicone rubber Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 210000001513 elbow Anatomy 0.000 description 6
- 210000003127 knee Anatomy 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000013464 silicone adhesive Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229920006311 Urethane elastomer Polymers 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006355 external stress Effects 0.000 description 3
- 210000001145 finger joint Anatomy 0.000 description 3
- 229920006289 polycarbonate film Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004199 lung function Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- SFKTYEXKZXBQRQ-UHFFFAOYSA-J thorium(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Th+4] SFKTYEXKZXBQRQ-UHFFFAOYSA-J 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歪み、応力検知センサー素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to strain and stress sensing sensor elements.
人体の肘、膝の屈曲部分のような大きな伸長、屈曲、圧
縮、ねじれ等の変形(以下伸長等の変形と称す)を電気
的に検出することが必要な場合がある。このような検出
に際して伸長等の変形によって電気抵抗値が減少する素
材を用いる方法と、伸長等変形によって電気抵抗値が増
大する素材を用いる方法の何れかを採用することが考え
られる。There are cases where it is necessary to electrically detect deformations such as large extensions, bends, compressions, twists, etc. (hereinafter referred to as "deformations such as extensions") such as in bent portions of elbows and knees of the human body. For such detection, it is conceivable to adopt either a method using a material whose electrical resistance value decreases due to deformation such as elongation, or a method using a material whose electrical resistance value increases when deformed such as elongation.
前記伸長等変形によって電気抵抗値が増大する素材とし
ては、例えばストレーンゲージがあげられる。しかしス
トレーンゲージに用いられる金属線の変形率は極めて小
さく (1%以下)、シたがって例えば人体の肘、膝等
の屈曲部分のような大きな伸長等の変形の検出に用いる
ことができない。An example of the material whose electrical resistance value increases due to deformation such as elongation is a strain gauge. However, the deformation rate of the metal wires used in strain gauges is extremely small (1% or less), and therefore cannot be used to detect deformations such as large elongations, such as those at bent parts of the human body, such as elbows and knees.
一方伸長等変形によって電気抵抗値が減少し、且つ大き
な伸長等の変形の検出に用いることのできるシートが知
られている。例えば本発明と同一の出願人によって、絶
縁性の高分子エラストマーに薄片状の形状をした導電性
フィラーを入れることにより、フィラーの面に平行な方
向で伸長した際に、伸長方向の導電性が向上するシート
が提案されている(特開昭61−80708号公報参照
)。又、本発明と同一の出願人によってシート状物を構
成する糸の交絡部分および交絡部分間についての電気導
通性又は電気絶縁性を下記の条件を満たすように形成す
ることによって任意の方向に伸長等の変形を加えた場合
にその電気抵抗値が変化する変形感電性編織物が提案さ
れている(特開昭61=201045号公報参照)。On the other hand, sheets are known whose electrical resistance value decreases due to deformation such as elongation, and which can be used to detect deformation such as large elongation. For example, by the same applicant as the present invention, by putting a conductive filler in the shape of a flake into an insulating polymer elastomer, when the filler is stretched in a direction parallel to the plane of the filler, the conductivity in the stretching direction is increased. A sheet with improved performance has been proposed (see Japanese Unexamined Patent Publication No. 80708/1983). In addition, by the same applicant as the present invention, the intertwined parts of the threads constituting the sheet-like product and the electrical conductivity or electrical insulation between the intertwined parts are formed so as to satisfy the following conditions, so that the threads can be stretched in any direction. A deformed electrically sensitive knitted fabric whose electrical resistance value changes when subjected to such deformations has been proposed (see Japanese Patent Laid-Open No. 61/201045).
■ 編織物の所定の面積中における全交絡部分の中で、
電気的に絶縁状態にある交絡部分の数をβ、とし、電気
的に導通状態にある交絡部分の数を12とした場合にそ
の比1r/Ilzの値が一平方インチ当りの測定値で1
/9以上であること;■ 前記編織物を構成するそれぞ
れの糸の長手方向一定長での隣り合う複数の交絡部分間
について、電気的に絶縁状態である交絡部分間の数をm
、とし、電気的に導通状態である交絡部分間の数をm2
とした場合に、その比m1/m2の値が1インチ当りの
測定値で1/9以上であること。■ Among all intertwined parts in a given area of knitted fabric,
When the number of electrically insulated intertwined parts is β and the number of electrically conductive interlaced parts is 12, the value of the ratio 1r/Ilz is 1 in the measured value per square inch.
/9 or more; ■ Between a plurality of adjacent intertwined parts in a constant length in the longitudinal direction of each yarn constituting the knitted fabric, the number of intertwined parts that are electrically insulated is m
, and the number of intertwined parts that are electrically conductive is m2
In this case, the value of the ratio m1/m2 shall be 1/9 or more as measured value per inch.
前述のように伸長等の変形を加えた際に電気抵抗値が減
少するシート状物を伸長導電性シートと称する。又この
ような伸長導電性シートを用いて被験体の伸長等の変形
挙動を検知するために、伸長導電性シートの任意の2点
に電極を取りつけた素子を伸長導電素子と称する。As mentioned above, a sheet-like material whose electrical resistance value decreases when deformed such as elongation is applied is referred to as an elongated conductive sheet. Further, in order to detect deformation behavior such as elongation of a subject using such an elongated conductive sheet, an element in which electrodes are attached to arbitrary two points of the elongated conductive sheet is referred to as an elongated conductive element.
本発明と同一の出願人は又、前記伸長導電素子を組み込
んで、被験体への接着固定手段を有し、被験体の動きを
電気的信号に変換させる素子(以下センサー素子と称す
る)を提案している(特開昭61−259103号公報
参照)。The same applicant as the present inventor has also proposed an element (hereinafter referred to as sensor element) that incorporates the elongated conductive element and has means for adhesively fixing it to the subject, converting the movement of the subject into an electrical signal. (See Japanese Unexamined Patent Publication No. 61-259103).
かくして前記伸長導電性シートは伸長等の変形に際して
電気抵抗値が減少し且つ大きな伸長に対応することがで
きるので、この伸長導電性シートを用いて作られたセン
サー素子であれば人体の肘、膝の屈曲部分のような大き
な伸長等の変形を電気的に検出することができる。In this way, the electrical resistance value of the stretchable conductive sheet decreases when it is deformed such as stretching, and it can handle large extensions, so a sensor element made using this stretchable conductive sheet can be used on the elbows and knees of the human body. Deformations such as large elongations such as bends can be electrically detected.
しかしながら、これらの伸長導電性シートから成る伸長
導電素子を用いたセンサー素子を、ロボットの暴走予防
スイッチとして用いる場合や、人体の肘、膝などの関節
の屈曲を検出する場合に、−時的にせよ伸長導電性シー
トにその許容変形量あるいは許容応力を超える大変形が
加わり、その結果伸長導電性シートの特性が変化したり
、さらには伸長導電素子が破壊したりするという問題点
があった。However, when using a sensor element using an elongated conductive element made of these elongated conductive sheets as a runaway prevention switch for a robot or when detecting the bending of a human joint such as an elbow or knee, However, there is a problem in that a large deformation exceeding the allowable amount of deformation or stress is applied to the elongated conductive sheet, resulting in changes in the properties of the elongated conductive sheet or even destruction of the elongated conductive element.
ここでいう許容応力とは、伸長導電素子すなわち伸長導
電性シートの特性が変化しない範囲での最大の応力のこ
とをいう。第2図に伸長導電素子の応力と電気抵抗値の
関係の概念図を示す。第2図に示すように、伸長導電素
子に加える応力を増していくと電気抵抗値は減少するが
、ある応力以上になると抵抗値が上昇し始める。この抵
抗値変化が減少から増加に転する時の応力を許容応力と
する。また、この時の変形量を許容変形量とする。The allowable stress here refers to the maximum stress within a range in which the properties of the elongated conductive element, that is, the elongated conductive sheet do not change. FIG. 2 shows a conceptual diagram of the relationship between stress and electrical resistance of an elongated conductive element. As shown in FIG. 2, as the stress applied to the elongated conductive element increases, the electrical resistance value decreases, but when the stress exceeds a certain level, the resistance value begins to increase. The stress at which this change in resistance changes from decreasing to increasing is defined as the allowable stress. Further, the amount of deformation at this time is defined as the allowable amount of deformation.
伸長導電素子に、許容応力あるいは許容変形量以上の応
力あるいは変形が加わると伸長導電素子の特性が変化し
たり、破断したりする可能性が高い。If stress or deformation exceeding the allowable stress or allowable deformation amount is applied to the elongated conductive element, there is a high possibility that the characteristics of the elongated conductive element will change or it will break.
そこで本発明と同一の出願人は特開昭62−16390
2号公報において、伸長導電素子の作用伸度を所定伸度
以下に設定できる伸び抑制部材を併設する作用伸度設定
型伸長導電素子を提案している。Therefore, the same applicant as the present invention is
No. 2 proposes an elongated conductive element of an action elongation setting type that is provided with an elongation suppressing member that can set the elongation of the elongated conductive element to a predetermined elongation or less.
このように、伸び抑制部材を併設した場合、伸長導電素
子に許容変形量以上の変形、許容応力以上の応力が加え
られるのを防ぎ、伸長導電素子の特性が変化したり、伸
長導電素子が破壊したりするのを防ぐことができる。し
かしながらこのような伸長導電素子では小さな変形から
大きな変形に至る伸長等の変形量を検知することが困難
であるだけでなく、被験体の側からみると、伸び抑制部
材が、つっばるため、被験体の自由な動きが妨げられ特
に被験体が人や動物の場合には、圧迫感や苦痛を伴うと
いう欠点があった。In this way, when an elongation suppressing member is installed, it is possible to prevent the elongated conductive element from being deformed more than the allowable amount of deformation or to apply stress more than the allowable stress to the elongated conductive element. You can prevent it from happening. However, with such an elongated conductive element, it is not only difficult to detect the amount of deformation such as elongation ranging from small deformation to large deformation, but also because the elongation suppressing member is stretched when viewed from the subject's side. This has the disadvantage that free movement of the body is obstructed, causing a feeling of pressure and pain, especially when the subject is a human or animal.
本発明は、本発明の出願人によってさきに提案された伸
長導電素子の有する使用上の問題点を解決して、伸長導
電素子自身の許容変形量あるいは許容応力を超える大変
形をも、被験体に負担を与えることなく検出することが
できる歪み、応力検知センサー素子を提供することを目
的とする。The present invention solves the problems in use of the elongated conductive element previously proposed by the applicant of the present invention, and enables the elongated conductive element to be subjected to large deformations exceeding its own allowable deformation or allowable stress. The object of the present invention is to provide a strain/stress detection sensor element that can detect strain and stress without imposing a burden on the subject.
本発明の目的は変形により電気抵抗値が減少する伸長導
電性シートに、間隔をあけて、少なくとも2個の電極を
設けて成る伸長導電素子に、直列及び/又は並列に、1
個以上の弾性体を接続したことを特徴とする歪み、応力
検知センサー素子によって達成される。The object of the present invention is to form an elongated conductive element in which at least two electrodes are provided at intervals on an elongated conductive sheet whose electrical resistance value decreases when deformed, and one electrode is connected in series and/or in parallel to the elongated conductive element.
This is achieved by a strain/stress sensing sensor element characterized by connecting two or more elastic bodies.
前記弾性体としては、歪みを受けた時に、もとに戻ろう
とする力の大きい素材であればどのような素材でも用い
ることができる。例えば、ゴム状物(シリコンゴム、ウ
レタンゴム、EPRゴムなど)、又はバネ、伸縮性の良
い編織物(ウレタン糸を混入したり前記ゴム状物を貼り
合せたり包埋した編織物など)などを用いることができ
る。As the elastic body, any material can be used as long as it has a strong tendency to return to its original state when subjected to strain. For example, rubber-like materials (silicone rubber, urethane rubber, EPR rubber, etc.), springs, knitted fabrics with good elasticity (knitted fabrics with urethane thread mixed in, or the above-mentioned rubber-like materials bonded or embedded), etc. Can be used.
伸長導電素子と弾性体の接続方式としては、伸び等の変
形方向に対して直列に接続する方式、並列に接続する方
式、および直列の接続と並列の接続を並用する方式とを
用いることができる。As a method of connecting the elongated conductive element and the elastic body, a method of connecting in series with respect to the direction of deformation such as elongation, a method of connecting in parallel, and a method of using both series and parallel connections can be used. .
以下本発明による歪み、応力検知センサー素子の実施例
を示す添付図面を参照して本発明を詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings showing embodiments of strain and stress detection sensor elements according to the present invention.
第1図、第4図、第6a図、第6b図、第7図、第9図
、第10図および第11図は本発明による歪み、応力検
知センサーの各実施例を示す。1, 4, 6a, 6b, 7, 9, 10, and 11 show embodiments of strain and stress detection sensors according to the present invention.
第1図に示すセンサー素子では、伸長導電素子に弾性体
が直列に接続されている。すなわち伸長導電性シート1
の一端にはスナップボタン5aを有するホックを用いて
、電極3aと弾性体2の一端が取付けられ、電極3aに
はリード線4aが接続されている。伸長導電性シート1
の他端にはスナップボタン5bを有するホックを用いて
電極3bが取付けられ、電極3bにはリード線4bが接
続されている。かくして弾性体を具備した本発明による
歪み、応力検知センサーが形成される。In the sensor element shown in FIG. 1, an elastic body is connected in series to an elongated conductive element. That is, stretched conductive sheet 1
An electrode 3a and one end of the elastic body 2 are attached to one end of the electrode 3a using a hook having a snap button 5a, and a lead wire 4a is connected to the electrode 3a. Stretched conductive sheet 1
An electrode 3b is attached to the other end using a hook having a snap button 5b, and a lead wire 4b is connected to the electrode 3b. In this way, a strain/stress detection sensor according to the present invention including an elastic body is formed.
図中8a 、8bはサージカルテープであり7a。In the figure, 8a and 8b are surgical tapes and 7a.
7bは接着剤を示す。この例のように、伸長導電素子と
所望の弾性を有する弾性体を直列に接続すると、伸長導
電素子自身の許容変形量を超えるような大変形が、セン
サー素子に加わった場合でも、弾性体が変形するので伸
長導電素子は実際には許容変形量を超えずに伸長導電素
子の破壊や特性の変化を防ぐことができる。また、被験
体の動きが、伸長導電素子と弾性体の双方に加わるので
、弾性体の種類や形状を選ぶことにより、変形量からみ
たセンサー素子の感度を調整することができる。7b indicates adhesive. As in this example, when an elongated conductive element and an elastic body having a desired elasticity are connected in series, even if a large deformation exceeding the allowable deformation amount of the elongated conductive element itself is applied to the sensor element, the elastic body will Since the elongated conductive element is deformed, it is possible to prevent the elongated conductive element from breaking or changing its properties without actually exceeding the permissible deformation amount. Furthermore, since the movement of the subject is applied to both the elongated conductive element and the elastic body, the sensitivity of the sensor element in terms of the amount of deformation can be adjusted by selecting the type and shape of the elastic body.
また、弾性体の種類や形状を選ぶことにより、被験体の
動きを阻害しない小さな応力で、センサー素子を大変形
させることができる。Furthermore, by selecting the type and shape of the elastic body, it is possible to greatly deform the sensor element with a small stress that does not inhibit the movement of the subject.
第3a図に、伸長導電素子と弾性体を第1図のように直
列に接続したセンサー素子の変形量と応力の関係の一例
を示す。曲線aは伸長導電素子の、曲線すは弾性体の、
曲線Cは伸長導電素子と弾性体を直列に接続したセンサ
ー素子の変形量と応力の関係を示す。伸長導電素子と弾
性体が直列に接続したセンサー素子では、応力Fが加わ
った場合、伸長導電素子と弾性体のどちらの両端にも大
きさFの応力が加わる。(第3b図)
即ち、応力Fがセンサー素子に加わった時のセンサー素
子の変形量xcは、応力Fが加わった時の伸長導電素子
の変形量xaと応力Fが加わった時の弾性体の変形量x
bを積算したもの(xc−xa+xb)になる。このた
め、伸長導電素子の許容変形量xmix、aに比べ、セ
ンサー素子の許容変形量x、、X、cは大きくなる。FIG. 3a shows an example of the relationship between the amount of deformation and the stress of a sensor element in which an elongated conductive element and an elastic body are connected in series as shown in FIG. Curve a is for the elongated conductive element, curve a is for the elastic body,
Curve C shows the relationship between the amount of deformation and stress of a sensor element in which an elongated conductive element and an elastic body are connected in series. In a sensor element in which an elongated conductive element and an elastic body are connected in series, when a stress F is applied, a stress of magnitude F is applied to both ends of the elongated conductive element and the elastic body. (Figure 3b) In other words, the amount of deformation xc of the sensor element when stress F is applied to the sensor element is the amount of deformation xa of the elongated conductive element when stress F is applied and the amount of deformation xa of the elastic body when stress F is applied. Deformation amount x
The result is (xc-xa+xb) obtained by integrating b. Therefore, the permissible deformation amounts x, , X, c of the sensor element become larger than the permissible deformation amount xmix,a of the elongated conductive element.
次に、伸長導電素子と弾性体を並列に接続したセンサー
素子の例を第4図に、その場合の変形量と応力の関係の
一例を第5a図に示す。第4図では、弾性体2bが伸長
導電素子に並列に接続されている。図中、6a 、6b
はフレキシブルプリント回路、8a 、8bはサージカ
ルテープ、7a。Next, an example of a sensor element in which an elongated conductive element and an elastic body are connected in parallel is shown in FIG. 4, and an example of the relationship between the amount of deformation and stress in that case is shown in FIG. 5a. In FIG. 4, the elastic body 2b is connected in parallel to the elongated conductive element. In the figure, 6a, 6b
is a flexible printed circuit, 8a and 8b are surgical tapes, and 7a.
7bは接着剤である。7b is an adhesive.
この例のように、伸長導電素子と所望の弾性を有する弾
性体を並列に接続すると、センサー素子の許容応力を伸
長導電素子自身の許容応力よりも大きくすることができ
る。As in this example, when an elongated conductive element and an elastic body having a desired elasticity are connected in parallel, the allowable stress of the sensor element can be made larger than the allowable stress of the elongated conductive element itself.
尚、第4図では、伸長導電素子と弾性体との接着は、両
端でのみ行なわれているが、伸長導電素子の裏面全面を
接着していてもよいし、両端と共に中央部の一部を接着
していてもよい。In Fig. 4, the elongated conductive element and the elastic body are bonded only at both ends, but the entire back surface of the elongated conductive element may be bonded, or both ends and a part of the center may be bonded. It may be glued.
また、弾性体2bの長さは、伸長導電素子の長さと必ず
しも同じである必要はなく、場合に応じて長くしたり、
短くすることによって、センサー素子と被験体のフィツ
ト性を向上させたり、検出感度を調整することもできる
。Further, the length of the elastic body 2b does not necessarily have to be the same as the length of the elongated conductive element, and may be made longer or longer depending on the case.
By shortening the length, it is possible to improve the fit between the sensor element and the subject and to adjust the detection sensitivity.
第5a図において、曲線aは伸長導電素子の、曲線すは
弾性体の、曲線Cは伸長導電素子と弾性体を並列に接続
したセンサー素子の変形量と応力の関係を示す。伸長導
電素子と弾性体2bの長さが同じであれば、伸長導電素
子の変形量と弾性体2bの変形量は同じである。また伸
長導電素子と弾性体を並列に接続したセンサー素子の内
部応力Fa+b(センサー素子に加わる外部応力FCに
等しい)は、伸長導電素子の内部応力Faと弾性体Fb
を積算したものである。したがって伸長導電素子の許容
応力F max、aに比べ、センサー素子の許容応力F
max’cは大きくなる。In FIG. 5a, curve a shows the relationship between deformation and stress of the elongated conductive element, the curve C shows the relationship between the deformation amount and the stress of the sensor element in which the elongated conductive element and the elastic body are connected in parallel. If the lengths of the elongated conductive element and the elastic body 2b are the same, the amount of deformation of the elongated conductive element and the amount of deformation of the elastic body 2b are the same. Furthermore, the internal stress Fa+b of the sensor element in which the elongated conductive element and the elastic body are connected in parallel (equal to the external stress FC applied to the sensor element) is the internal stress Fa of the elongated conductive element and the elastic body Fb.
It is the sum of . Therefore, compared to the allowable stress F max,a of the elongated conductive element, the allowable stress F of the sensor element
max'c becomes larger.
また、伸長導電素子と弾性体を並列に接続する場合、そ
の変形態様として伸長導電素子を弾性体にらせん状に巻
いてもよい。第11a図、第11b図にそれぞれS型ら
せん巻き、Z型らせん巻きの本発明物の概略図を示す。Further, when the elongated conductive element and the elastic body are connected in parallel, as a modification, the elongated conductive element may be spirally wound around the elastic body. FIG. 11a and FIG. 11b show schematic diagrams of the present invention having S-type spiral winding and Z-type spiral winding, respectively.
図中、1は伸長導電素子、2eは弾性体(例えばゴムチ
ューブ)、5a、6bはリード線を表わす。このように
すると、センサー素子を長さ方向に伸長した際、幾何学
的な効果から伸長導電素子自身の変形量は、センサー素
子の変形量に比して小さくなる。このため、センサー素
子の許容変形量及び許容応力は、伸長導電素子自身の許
容変形量及び許容応力に比べて大きくなる。即ち、大変
形を検知できるようになる。また、伸長導電素子を弾性
体に巻く時の巻き数、間隔、弾性体の種類、形状等を変
えることによりセンサー素子の変形量と電気抵抗値の関
係、あるいはセンサー素子に加わる応力と電気抵抗値の
関係を、任意に調整することができる。したがって、こ
れらの特性カーブを緩やかにすることにより、精度良く
、アナログ的に検知できる変形量の範囲、及び応力の範
囲を広くすることが可能である。尚、伸長導電素子を弾
性体にらせん状に巻いたものの、もう一つの重要な特徴
は、センサー素子の長さ方向への伸長を併なわないねじ
り変形をも検知できることである。In the figure, 1 represents an elongated conductive element, 2e represents an elastic body (for example, a rubber tube), and 5a and 6b represent lead wires. In this way, when the sensor element is extended in the length direction, the amount of deformation of the elongated conductive element itself becomes smaller than the amount of deformation of the sensor element due to geometric effects. Therefore, the allowable deformation amount and allowable stress of the sensor element are larger than the allowable deformation amount and allowable stress of the elongated conductive element itself. In other words, large deformations can be detected. In addition, by changing the number of windings, the spacing, the type and shape of the elastic body when winding the elongated conductive element around the elastic body, it is possible to determine the relationship between the amount of deformation of the sensor element and the electrical resistance value, or the stress applied to the sensor element and the electrical resistance value. The relationship can be adjusted as desired. Therefore, by making these characteristic curves gentler, it is possible to widen the range of deformation amounts and the range of stress that can be detected accurately in an analog manner. Although the elongated conductive element is spirally wound around an elastic body, another important feature is that it is also possible to detect torsional deformation that does not involve elongation in the length direction of the sensor element.
もちろん、伸長を併なうねじり変形も検知できることは
、いうまでもない。Of course, it goes without saying that torsional deformation accompanied by elongation can also be detected.
すなわち、第7図に示すように、S型らせん巻きと、Z
型らせん巻きを組合わせ、第8a図に示すブリッジ回路
で電圧出力を検出すると、センサー素子の長さ方向への
伸長変形に影響されずに、ねじりの方向と大きさを精度
よく検出することができる。That is, as shown in FIG.
By combining spiral windings and detecting the voltage output with the bridge circuit shown in Figure 8a, it is possible to accurately detect the direction and magnitude of twist without being affected by the elongation deformation in the length direction of the sensor element. can.
第7図中、1aはS型らせん巻き、1bはZ型らせん巻
きの伸長導電素子、2eは弾性体(ゴムチューブ)、6
a、6b、6c、6dはリード線を示す。In Fig. 7, 1a is an S-shaped spiral winding, 1b is a Z-shaped spiral winding elongated conductive element, 2e is an elastic body (rubber tube), and 6
a, 6b, 6c, and 6d indicate lead wires.
′ ねじり変形に関して、伸長導電素子を弾性体にS型
らせん巻きにした場合は、時計回りのねじりが加わると
センサー素子の電気抵抗値が下がるが反時計回りのねじ
りが加わった場合は電気抵抗値は変化しない。また逆に
、伸長導電素子をZ型らせん巻きにした場合は、反時計
回りのねじりが加わるとセンサー素子の電気抵抗値が下
がるが、時計回りのねじりが加わった場合は、電気抵抗
値は変化しない。このことは、ねじりの方向と大きさを
検知する上で、便利である。′ Regarding torsional deformation, when an elongated conductive element is wound in an S-shaped spiral around an elastic body, the electric resistance value of the sensor element decreases when a clockwise twist is applied, but the electric resistance value decreases when a counterclockwise twist is applied. does not change. Conversely, if the elongated conductive element is wound in a Z-shaped spiral, the electric resistance value of the sensor element will decrease when a counterclockwise twist is applied, but the electric resistance value will change when a clockwise twist is applied. do not. This is useful in detecting the direction and magnitude of twist.
また第8a図中、R1,R2は抵抗、Eは電源、■は電
圧計、S、、S2はS型らせん巻きにされた伸長導電素
子の両端にとりつけられたリード線と接続される電極端
子であり、Zl、Z2はZ型らせん巻きされた伸長導電
素子の両端にとりつけられたリード線に接続される電極
端子である。In Figure 8a, R1 and R2 are resistors, E is a power source, ■ is a voltmeter, S, and S2 are electrode terminals connected to the lead wires attached to both ends of the S-shaped spirally wound elongated conductive element. Zl and Z2 are electrode terminals connected to lead wires attached to both ends of the Z-shaped spirally wound elongated conductive element.
第8b図には、第8a図に示すブリッジ回路を用いてS
型らせん巻きとZ型らせん巻きを組合わせた本発明物の
センサー素子によるねじり検出波形を検出した例を示す
。第8b図中、曲線ABは、時計方向比O度から180
度までねじった際、曲線BCは、180度から0度にも
どした際、また、曲線CDは反時計方向へ0度から18
0度までねじった際、曲線DEは180度から0度へも
どした際の出力波形である。FIG. 8b shows the S
An example is shown in which a torsion detection waveform is detected by the sensor element of the present invention, which is a combination of type spiral winding and Z-type spiral winding. In Figure 8b, the curve AB is 180 degrees from the clockwise ratio O degrees.
Curve BC when twisted from 180 degrees to 0 degrees, and curve CD when twisted counterclockwise from 0 degrees to 18 degrees.
When twisted to 0 degrees, curve DE is the output waveform when twisted from 180 degrees to 0 degrees.
また、伸長導電素子を弾性体にらせん状に巻きつけた際
、伸長導電素子全体を弾性体に固定すると、センサー素
子に屈曲変形が加わった場合にも伸長導電素子全体に屈
曲変形に併なう応力、変形が伝達され、屈曲の程度に応
じて電気抵抗値が下がるため、屈曲変形の有無、大きさ
も認識することができる。Furthermore, when an elongated conductive element is spirally wound around an elastic body, if the entire elongated conductive element is fixed to the elastic body, even if bending deformation is applied to the sensor element, the entire elongated conductive element will be bent and deformed. Stress and deformation are transmitted, and the electrical resistance value decreases depending on the degree of bending, so the existence and magnitude of bending deformation can also be recognized.
さらに、弾性体としてチューブ状物を用いて中空に水や
油等の流体を入れると、チューブの一部に圧力が加わっ
た時、チューブの他の部分が膨張し、伸長導電素子の電
気抵抗値が下がるため、圧縮変形を検知することができ
る。Furthermore, if a tube-shaped object is used as an elastic body and a fluid such as water or oil is poured into the hollow space, when pressure is applied to one part of the tube, the other part of the tube expands, increasing the electrical resistance of the elongated conductive element. decreases, so compressive deformation can be detected.
尚、以上に述べてきたらせん巻きのセンサー素子に用い
られる弾性体の断面は円形が好ましいが特にこだわるも
のではなく、例えば、六角形、四角形等でもよい。また
、中空状物や、複数の弾性体を複合したものでもよい。The cross section of the elastic body used in the spirally wound sensor element described above is preferably circular, but is not particularly critical, and may be, for example, hexagonal or quadrangular. Alternatively, it may be a hollow object or a composite of a plurality of elastic bodies.
次に、伸長導電素子と弾性体を直列かつ並列に接続した
センサー素子の例を第9図に、その場合の変形量と応力
の関係の一例を第12a図に示す。Next, FIG. 9 shows an example of a sensor element in which an elongated conductive element and an elastic body are connected in series and parallel, and FIG. 12a shows an example of the relationship between the amount of deformation and stress in that case.
第9図の場合には弾性体2aが伸長導電素子に直列に接
続されると共に弾性体2bが伸長導電素子に並列に接続
されている。図中6a 、6bはフレキシブルプリント
回路、8a 、8bはサージカルテープ、7a、7b、
7cは接着剤である。なお前記弾性体2aおよび2bを
第10図に示すように一体物の弾性体2Cとしたり、あ
るいは伸長導電素子に面する全面で伸長導電素子に接続
させてもよい。In the case of FIG. 9, the elastic body 2a is connected in series with the elongated conductive element, and the elastic body 2b is connected in parallel with the elongated conductive element. In the figure, 6a, 6b are flexible printed circuits, 8a, 8b are surgical tapes, 7a, 7b,
7c is an adhesive. The elastic bodies 2a and 2b may be formed as an integral elastic body 2C as shown in FIG. 10, or may be connected to the elongated conductive element on its entire surface facing the elongated conductive element.
第12a図において、曲線aは伸長導電素子の、曲線b
ibは弾性体2bの、曲″gAbz−は弾性体2aの、
曲線Cは伸長導電素子と弾性体を直列かつ並列に接続し
たセンサー素子の変形量と応力の関係を示している。伸
長導電素子と弾性体2bの長さが同じであれば、伸長導
電素子の変形量x8と弾性体2bの変形量x bzbは
同じである。センサー素子全体の変形量xcは、伸長導
電素子の変形量xaと弾性体2aの変形量Xb2aを積
算したもの(x (−x @ + x b2a )であ
る。尚、センサー素子に加わる外部応力FCと、伸長導
電素子と弾性体2bを並列に接続したもの全体の内部応
力Fi+bzbは等しい(FC−Fa+bzb) 、ま
た、F a+b2bは伸長導電素子の内部応力F3と弾
性体2bの内部応力F bzbを積算したもの(F、、
b□、−Fa+Fbzb)である。即ち、センサー素子
の変形量xcと内部応力F a+b2b (外部応力F
Cに等し7い)及び伸長導電素子の変形量x3と内部応
力Fa′を比べると、xc>xR,Fa、、z、> F
aである(但し、Xb2a> o、l Fbzb>
Oの場合)。したがって、伸長導電素子と弾性体を直列
かつ並列に接続すると、センサー素子の許容変形量XH
aX+(、許容応力F maXicはともに、伸長導電
素子自体の許容変形量xmBx−s 、許容応力F。8
8.3に比べ大きくなる。In FIG. 12a, curve a is the curve b of the elongated conductive element.
ib is the elastic body 2b, the song "gAbz- is the elastic body 2a,
Curve C shows the relationship between the amount of deformation and stress of a sensor element in which an elongated conductive element and an elastic body are connected in series and in parallel. If the lengths of the elongated conductive element and the elastic body 2b are the same, the amount of deformation x8 of the elongated conductive element and the amount of deformation xbzb of the elastic body 2b are the same. The amount of deformation xc of the entire sensor element is the sum of the amount of deformation xa of the elongated conductive element and the amount of deformation Xb2a of the elastic body 2a (x (-x @ + x b2a). Note that the external stress FC applied to the sensor element And, the internal stress Fi+bzb of the entire structure in which the elongated conductive element and the elastic body 2b are connected in parallel is equal (FC-Fa+bzb), and F a+b2b is the internal stress F3 of the elongated conductive element and the internal stress F bzb of the elastic body 2b. The integrated value (F,,
b□, -Fa+Fbzb). That is, the amount of deformation xc of the sensor element and the internal stress F a+b2b (external stress F
Comparing the amount of deformation x3 of the elongated conductive element and the internal stress Fa', xc>xR,Fa, z,>F
a (However, Xb2a> o, l Fbzb>
(in case of O). Therefore, when the elongated conductive element and the elastic body are connected in series and parallel, the permissible deformation of the sensor element XH
aX+(, allowable stress F maXic are both allowable deformation amount xmBx-s of the elongated conductive element itself, allowable stress F.8
It is larger than 8.3.
又本発明と同一の出願人により特願昭61−89207
号公報G号公報下提案されている伸長導電素子と板バネ
状物を貼り合わせたものに、弾性体を直列及び/又は並
列に接続してもよい。板バネ状物が介在していると、屈
曲変形が伸長導電素子に集中し、より高感度に検出でき
るので好ましい。その−例を第11図に示す。この場合
、柔らかいゴム状の弾性体2dを用いると、板バネ状物
9で被験体を傷つけるのを防ぐことができ好ましい。特
に被験体が、人や動物、あるいは柔らかい物である場合
に良い。Also, patent application No. 89207/1989 filed by the same applicant as the present invention.
An elastic body may be connected in series and/or in parallel to a structure in which an elongated conductive element and a leaf spring-like material are bonded together as proposed in Publication No. G. It is preferable that a plate spring-like object is present because bending deformation is concentrated on the elongated conductive element and detection can be performed with higher sensitivity. An example thereof is shown in FIG. In this case, it is preferable to use a soft rubber-like elastic body 2d because it can prevent the leaf spring-like object 9 from injuring the subject. This is especially good when the subject is a person, animal, or soft object.
伸長導電素子と弾性体の接続手段は、接着剤や熱融着フ
ィルム等を用いた貼り合わせの他、弾性体自身の形成工
程中の粘着性を利用して接着する方法(例シリコンゴム
フィルムの作成工程中の乾燥、硬化前の段階で貼り合わ
せるなど)や、スナップボタン、ワにロクリソプなどバ
ネによる挟持を行なうもの、磁石、気圧差、織成ファス
ナー糸でしばる方法、ぬい合わせる方法などが挙げられ
る。但し、センサー素子の変形に耐える挟持力をもつも
のであれば、これら以外の方法を用いてもよい。The elongated conductive element and the elastic body can be connected by bonding using an adhesive or heat-sealing film, or by using the adhesive properties of the elastic body itself during the formation process (for example, using a silicone rubber film). (drying during the production process, bonding before curing, etc.), methods that use spring clamping such as snap buttons, wa-locrisop, magnets, pressure differences, tying with woven zipper thread, and sewing methods. It will be done. However, methods other than these may be used as long as they have a clamping force that can withstand deformation of the sensor element.
前述のように構成された本発明による歪み、応力検知セ
ンサー素子は被験体の大変形に対して対応することがで
きるので、従来の検知センサー素子では使用することの
できない下記のような用途に有用に用いることができる
。The strain/stress detection sensor element of the present invention configured as described above can respond to large deformations of the subject, so it is useful for the following applications that cannot be used with conventional detection sensor elements. It can be used for.
例えば、呼吸の周期や回数を検知する呼吸バンド呼吸監
視装置や、肺機能検査装置〔新生児の無呼吸症、特に未
熟児に対する呼吸管理、または、呼吸波形を記録して、
肺活量、流速(波形の勾配から算出して末梢肺機能を検
査する)から肺機能を調べることを目的とする〕などの
医療用センサーとして使える。また、万歩計として、肘
や膝などに貼りつけたり、靴に組み込んで歩行数を検知
するセンサー、筋力増強やシェイプアップを目的とした
各種トレーニング器具(曲げや伸びを伴う)の回数や屈
曲度などのレベルを検知するスポーツトレーニング用セ
ンサーに用いることができる。For example, a breathing band breathing monitoring device that detects the cycle and number of breathing, a pulmonary function testing device [respiratory management for neonatal apnea, especially premature infants, or recording respiratory waveforms, etc.]
It can be used as a medical sensor to measure lung function from vital capacity and flow velocity (calculated from the slope of the waveform to test peripheral lung function). In addition, sensors that can be attached to the elbow or knee as a pedometer or incorporated into shoes to detect the number of steps taken, as well as various training devices (involving bending and stretching) for the purpose of strengthening muscle strength and shaping the body, as well as the number of times and degrees of flexion. It can be used in sports training sensors that detect levels such as
さらに、手や腕に直接語るかまたは手袋などに貼ること
により指の動きに直に対応したフィンガースイッチ用、
即ち、臨場感あふれるゲーム用ジョイスティックをはじ
め、コンピューターと組み合せた、手話の音声変換装置
、さらには、危険作業用や精密作業用のロボットハンド
の遠隔操作可能の入力装置などに用いることができる。Furthermore, finger switches that directly respond to finger movements by applying them directly to the hand or arm or attaching them to gloves, etc.
That is, it can be used as a joystick for games with a sense of realism, a sign language voice conversion device combined with a computer, and an input device that can remotely control robot hands for dangerous or precision work.
また、人体の関節部などの機能回復を目的として、伸長
度や屈曲度を検知するリハビリテーション用器具に用い
られる。It is also used in rehabilitation equipment that detects the degree of elongation and flexion for the purpose of restoring the functions of joints of the human body.
また、伸長の応力やひずみを検知させることにより、ひ
ずみ計や荷重計、加速度計、振動計として用いることが
できる。Furthermore, by detecting elongation stress or strain, it can be used as a strain meter, load meter, accelerometer, or vibration meter.
センサー素子の接続端部の形状や間隔を適宜選ぶと、面
の微細な動きを感度よくとらえることができ、適度に伸
長させて金属性の剛材や木材に張り合せると、それらの
伸びや反りなどの微小変形を検知するひずみゲージとし
て用いることもできる。If the shape and spacing of the connecting ends of the sensor element are selected appropriately, minute movements on the surface can be detected with high sensitivity. It can also be used as a strain gauge to detect minute deformations such as.
また、センサー素子の両端を固定し、中央部を押スこと
によって伸長変化させることにより、ロボットの触覚セ
ンサー、キーボードや手書き入力用無接点スイッチ、座
席部に用いて着席を確認する着席検知センサー、防犯用
や安全用に窓わくや手すりに設置する防犯・危険予知セ
ンサー(タッチセンサーなどの圧力センサー、自動車な
どのパワーウィンドー用危険予知センサーなど)に用い
ることができる。次に工業用センサーとしては、工業用
ロボットの回転部分や屈曲部分にとりつけて、ロボ・7
トハンドなどの方向を検知する方法センサーや位置制御
を目的とした位置制御センサー、リミットスイッチやマ
イクロスイッチ、周囲を囲むようにとりつけて、ロボッ
トの暴走を防ぐための安全スイッチ、さらに危険区域に
シート状(マット状)のセンサー素子を敷くことにより
、作業員の侵入を検知してロボットを非常停止させる安
全スイッチなどに用いることができる。また、ダイヤプ
ラムや圧力計、膨張体の膨張率検出用のセンサーや脈拍
計、血圧計用、各種流速計(液体、気体などの流体用)
として用いることができる。In addition, by fixing both ends of the sensor element and changing its extension by pressing the center part, we can create tactile sensors for robots, non-contact switches for keyboards and handwriting input, and seating detection sensors that can be used in seats to confirm seating. It can be used for crime prevention and danger prediction sensors installed on window frames and handrails for crime prevention and safety (pressure sensors such as touch sensors, danger prediction sensors for power windows of cars, etc.). Next, as an industrial sensor, it can be attached to the rotating or bending part of an industrial robot.
Sensors for detecting the direction of robot hands, position control sensors for position control, limit switches and microswitches, safety switches installed around the robot to prevent it from running out of control, and sheet-shaped sensors installed in dangerous areas. By laying a (mat-like) sensor element, it can be used as a safety switch that detects the intrusion of a worker and stops the robot in an emergency. In addition, diaphragms, pressure gauges, sensors for detecting the expansion rate of expansion bodies, pulse meters, blood pressure monitors, and various current meters (for fluids such as liquids and gases)
It can be used as
尚、本発明物のセンサー素子の用途が、これら前述の用
途に限られるものではないことは明らかである。It is clear that the uses of the sensor element of the present invention are not limited to the above-mentioned uses.
以下、実施例を用いてさらに詳しく説明するが、本発明
による歪み、応力検知センサー素子が、これら実施例や
図面に示すもののみに限定されるものでないことは明ら
かである。Hereinafter, a more detailed explanation will be given using examples, but it is clear that the strain and stress detection sensor element according to the present invention is not limited to only those examples and those shown in the drawings.
旭化成工業■製のポリエステル繊維糸条からなるタフタ
(経50d /24 f 、緯75d /36 f )
を水酸化すトリウム水溶液(80g/lり、100”C
で減量加工(液量率20%)し、SnCβ2:塩酸が3
:10の重量比の浴中で感受性化し、水洗脱水後、Pd
(J2:塩酸が重量比1:15の浴中で活性化し、水洗
脱水後NiC# 2 ・6 H2O、NaHPOz、ク
エン酸ナトリウム、NH,C1、アンモニア水が1:1
:3:’2:2の重量比の浴中90℃×2分処理して、
Niメツキエステルタフタを作製した。これを10cm
X10cmの大きさのサンプルになし、2重円筒形の層
流発生装置(内側の円筒が高速回転、外筒の内径25■
、内筒の外径10cm)に水と一緒に入れ、内筒回転速
度20Orpmで、300分処理して伸長導電性織物を
得た。Taffeta made of polyester fiber yarn manufactured by Asahi Kasei Corporation (warp 50d/24f, weft 75d/36f)
Thorium hydroxide solution (80g/l, 100"C
(liquid volume ratio 20%), SnCβ2:hydrochloric acid is 3
: After sensitization in a bath with a weight ratio of 10, washing with water and dehydration, Pd
(J2: Hydrochloric acid is activated in a bath with a weight ratio of 1:15, and after washing with water and dehydrating, NiC#2.6 H2O, NaHPOz, sodium citrate, NH, C1, and aqueous ammonia are mixed in a 1:1 ratio.
:3:' Treated for 2 minutes at 90°C in a bath with a weight ratio of 2:2,
Ni-metsuki ester taffeta was produced. This is 10cm
A double cylindrical laminar flow generator (the inner cylinder rotates at high speed, the outer cylinder has an inner diameter of 25 cm)
, an inner cylinder with an outer diameter of 10 cm) together with water, and treated at an inner cylinder rotation speed of 20 rpm for 300 minutes to obtain an elongated conductive fabric.
次に、市販ウレタン系エラストマー樹脂(溶媒DMF、
固形分10wt/%)を90 ttm、 300Jr
mゲージでそれぞれ離形紙にコーテイング後100℃×
3 min乾燥させ生乾きの状態で、このシート状の伸
長導電性織物の両面にそれぞれ4 kg / cJの圧
力で110℃で熱接着転写し100℃×30分乾燥させ
、伸長導電性シートを得た。Next, commercially available urethane elastomer resin (solvent DMF,
Solid content 10wt/%) 90ttm, 300Jr
100℃ after coating on release paper with m gauge
After drying for 3 min and in a half-dry state, thermal adhesive transfer was applied to both sides of this sheet-shaped elongated conductive fabric at 110°C with a pressure of 4 kg/cJ, and dried at 100°C for 30 minutes to obtain an elongated conductive sheet. .
次にこの伸長導電性シートをl cm巾X5cm長にバ
イアス方向に裁断し、両端から1 cm長を銅板ではさ
み、20%伸長することにより、電気抵抗値を測定した
ところ、両端の銅板間で伸長前後で4.5X10Ωから
60Ωに抵抗値が変化した。Next, this stretched conductive sheet was cut in the bias direction to 1 cm width x 5 cm length, and a 1 cm length from both ends was sandwiched between copper plates and stretched by 20%.The electrical resistance value was measured. The resistance value changed from 4.5×10Ω to 60Ω before and after stretching.
この伸長導電性シートを用いて下記の8種類の本発明に
よるセンサー素子と対応する8種類の比較例としてのセ
ンサー素子を作った。Using this stretched conductive sheet, eight types of sensor elements as comparative examples corresponding to the following eight types of sensor elements according to the present invention were made.
■ 伸長導電シート1の両端から1cmにカーボン系導
電性樹脂を塗布した。次にウレタン糸を編成したリボン
(1cm巾X10cm長)から成る弾性体2と伸長導電
シート1及びリード線4.a、4bを第1図に示した順
に重ね、しんちゅう類スナップボタン5a 、5bて押
さえ、接着剤でサージカルテープ8a 、8bを接着し
第1図に示す形態の本発明の歪み、応力検知センサー素
子、試料N[Llを作製した。(2) A carbon-based conductive resin was applied to a distance of 1 cm from both ends of the stretched conductive sheet 1. Next, an elastic body 2 made of a ribbon (1 cm wide x 10 cm long) knitted from urethane thread, an elongated conductive sheet 1, and a lead wire 4. A and 4b are stacked in the order shown in FIG. 1, pressed with brass snap buttons 5a and 5b, and surgical tapes 8a and 8b are bonded with adhesive to form a strain/stress detection sensor element of the present invention in the form shown in FIG. 1. , Sample N[Ll was prepared.
■ 伸長導電シート1の両端からl cmにカーボン系
導電性樹脂を塗布し、その上にリード線6a。■ Carbon-based conductive resin is applied 1 cm from both ends of the stretched conductive sheet 1, and lead wires 6a are placed on top of it.
6bとして、市販のフレキシブルプリント回路(ポリエ
ステルベースフィルム35μ…厚、Ag系導電層、表面
熱融着ポリマー積層)をl cm中×6cm長にカット
したものを接着した。さらに、シリコンゴムシート(厚
さ300廂)をl cm x 5 am長にカットし、
弾性体2bとして両端からl cmを伸長導電シート1
にシリコン系接着剤で接着した。さらに、サージカルテ
ープ8a 、8bを、エポキシ系接着剤で、シリコンゴ
ムシートに接着し、第4図に示す本発明の試料階2を作
製した。As 6b, a commercially available flexible printed circuit (polyester base film 35 μm thick, Ag-based conductive layer, surface heat-sealable polymer lamination) was cut into 1 cm x 6 cm length and adhered. Furthermore, a silicone rubber sheet (thickness 300 feet) was cut into a length of 1 cm x 5 am.
Conductive sheet 1 stretched l cm from both ends as elastic body 2b
It was attached with silicone adhesive. Further, the surgical tapes 8a and 8b were adhered to a silicone rubber sheet using an epoxy adhesive to prepare a sample floor 2 of the present invention shown in FIG. 4.
■ 伸長導電性シートを511巾X12CIIl長にカ
ットし両端から5朋に銀系導電性樹脂を塗布し、その上
に市販のフレキシブルプリント回路を5 n巾X5CI
ll長にカントしたものを接着した。次に、シリコンチ
ューブ(外径5鰭)を長さ9cmにカットし、その上に
伸長導電シートをS型らせん巻き(ピッチ間距離1 c
m、巻き数7)にし、シリコン系接着剤で、伸長導電シ
ートの裏面全体をシリコンチューブに接着し、第6a図
に示す本発明の試料隘3を作製した。■ Cut the stretched conductive sheet to 511 width x 12 CIIl length, apply silver-based conductive resin to 5mm from both ends, and place a commercially available flexible printed circuit on it to 5n width x 5CIl length.
The canted pieces were glued together. Next, cut the silicone tube (outer diameter: 5 fins) to a length of 9 cm, and wrap the stretched conductive sheet on top of it in an S-shaped spiral (pitch distance: 1 cm).
The entire back surface of the elongated conductive sheet was adhered to a silicone tube using a silicone adhesive to prepare a sample 3 of the present invention shown in FIG. 6a.
■ 伸長導電シートをシリコンチューブにZ型らせん巻
きにする他は、すべて、試料11h3と同様の素材、構
成よりなる第6b図に示す本発明の試料阻4を作製した
。(2) Sample 4 of the present invention shown in FIG. 6b was prepared from the same materials and configuration as sample 11h3 except that the stretched conductive sheet was wound in a Z-shaped spiral around a silicon tube.
■ 伸長導電性シートを5 cm巾×12cm長に2零
カットし、各々の両端から5 mmに銀系導電性樹脂を
塗布し、その上に市販のフレキシブルプリント回路を5
1巾X 5 am巾にカソトシたものを接着した。次に
シリコンチューブ(径5mm)を長さ9cmにカットし
、その上に1枚の伸長導電シートをS型らせん巻き(ピ
ンチ間距離1(、m4き数7)にし、伸長導電シートの
両端からl cmの部分の裏面にシリコン系接着剤を塗
布して、シリコンチューブに接着した。その上にもう一
枚の伸長導電シートをZ型らせん巻き(ピッチ間距離1
am、巻き数7)にし、伸長導電シートの両端からl
cmの部分の裏面にシリコン系接着剤を塗布して、シ
リコンチューブに接着し、第7図に示す本発明の試料隘
5を作製した。■ Cut the stretched conductive sheet into 2 pieces 5 cm wide x 12 cm long, apply silver-based conductive resin to 5 mm from both ends of each, and place 5 commercially available flexible printed circuits on top of it.
A piece measuring 1 width x 5 am width was glued together. Next, cut a silicone tube (diameter 5 mm) to a length of 9 cm, and wrap one stretched conductive sheet on top of it in an S-shape spiral (pinch distance 1 (, m4 multiplicity 7), starting from both ends of the stretched conductive sheet. A silicone adhesive was applied to the back side of the 1 cm section and it was adhered to the silicone tube. On top of that, another stretched conductive sheet was wound in a Z-shape (with a pitch distance of 1 cm).
am, the number of turns is 7), and l from both ends of the stretched conductive sheet.
A silicone adhesive was applied to the back surface of the cm portion and adhered to a silicone tube to prepare a sample 5 of the present invention shown in FIG. 7.
■ 伸長導電シート1の両端から1 cmにカーボン系
導電性樹脂を塗布し、その上にリード線6a。■ Carbon-based conductive resin is applied 1 cm from both ends of the stretched conductive sheet 1, and lead wires 6a are placed on top of it.
6bとして、市販のフレキシブルプリント回路(ポリエ
ステルベースフィルム35μ+4、Ag系導電層、表面
熱融着ポリマー積層)を1 am巾×6cm長にカット
したものを接着した。さらに、シリコンゴムシート(厚
さ300陣)を1 cm巾X5cm長にカットし、弾性
体2bとして両端からl cmを伸長導電シート1にシ
リコン系接着剤で接着した。As 6b, a commercially available flexible printed circuit (polyester base film 35μ+4, Ag-based conductive layer, surface heat-sealable polymer laminate) cut into a 1 am width x 6 cm length was adhered. Furthermore, a silicone rubber sheet (thickness: 300 squares) was cut into a piece 1 cm wide by 5 cm long, and 1 cm from both ends was adhered to the stretched conductive sheet 1 using a silicone adhesive as an elastic body 2b.
さらに、シリコンゴムシート(厚さ100廂)を1cm
巾X3cm長にカントし、弾性体2aとして一端をエポ
キシ樹脂で伸長導電シート1の一端に接着し、シリコン
ゴムシートの他端を接着剤でサージカルテープ8aに接
着し、第9図に示す本発明の試料阻6を作製した。Furthermore, 1 cm of silicone rubber sheet (100 feet thick)
The elastic body 2a was made into a width x 3cm length, one end of which was glued to one end of the stretched conductive sheet 1 with epoxy resin, and the other end of the silicone rubber sheet was glued to the surgical tape 8a with an adhesive. Sample 6 was prepared.
■ 第10図に示すセンサー素子の弾性体2Cとして用
いるために、市販ウレタン系エラストマー樹脂(溶媒ト
ルエン、固形分20wt%)を500卿ゲージで離型紙
にコーテイング後100℃X3m1n乾燥させてフィル
ムとし、生乾きの状態で、伸長導電性シート1の片面に
、第10図に示すように、4 kg / cutの圧力
で110℃で熱接着転写した後、110°CX30m1
n乾燥させた。これをl cm中×10cm長にカント
し両端からl cmにカーボン系導電性樹脂7a、7b
を塗布し、試料No、 2と同様にフレキシブルプリン
ト回路6a 、6bを接着した。さらに両端にサージカ
ルテープ8a 、8bを接着し、本発明の試料歯7を作
製した。■ In order to use it as the elastic body 2C of the sensor element shown in Fig. 10, a commercially available urethane elastomer resin (solvent toluene, solid content 20 wt%) was coated on a release paper using a 500 inch gauge, and then dried at 100°C x 3 ml to form a film. In a half-dried state, as shown in Fig. 10, it was thermally adhesively transferred to one side of the stretched conductive sheet 1 at 110°C with a pressure of 4 kg/cut, and then 110°C x 30 m1.
n dried. Cant this into a length of 1 cm x 10 cm, and add carbon-based conductive resin 7a and 7b from both ends to a length of 1 cm.
was applied, and flexible printed circuits 6a and 6b were adhered in the same manner as samples No. 2. Furthermore, surgical tapes 8a and 8b were adhered to both ends to produce a sample tooth 7 of the present invention.
■ 伸長導電シート1を、第11図に示すように、市販
の熱融着性ポリエステルフィルム(厚さ30側1m)を
用いて、ポリカーボネートフィルム9(厚さ80側、l
Cm巾×7印長にカプトしたもの)に熱融着した。さ
らに試料No、 4と同様な方法で弾性体2dとしてウ
レタン系エラストマー樹脂フィルム(長さ10Cm)を
第11図に示すように両側をあけて貼り合わせた。また
、ポリカーボネートフィルムの両端からQ、 7 cm
に銅板10 (厚さ35陶)を接着した。さらに伸長導
電シー1−の両端からl cmの部分と銅板の上に銀系
導電性樹脂3Cを塗布し、リード線4. a 、 4
bを銅板にハンダ付し、接着剤7a 、7bでサージカ
ルテープ8a、8bを接着し、本発明の試料No、 8
を作製した。■ As shown in FIG. 11, the stretched conductive sheet 1 is attached to a polycarbonate film 9 (thickness 80 side, l
It was heat-sealed to a sheet (cm width x 7 mark length). Further, in the same manner as Sample No. 4, a urethane elastomer resin film (length 10 cm) was bonded as the elastic body 2d with both sides left open as shown in FIG. Also, Q, 7 cm from both ends of the polycarbonate film.
A copper plate of 10 (thickness: 35 porcelain) was glued to the. Further, a silver-based conductive resin 3C is applied to a portion 1 cm from both ends of the elongated conductive sheet 1- and on the copper plate, and the lead wire 4. a, 4
Sample No. 8 of the present invention was soldered to a copper plate, and surgical tapes 8a and 8b were attached using adhesives 7a and 7b.
was created.
次に、これらの歪み、応力検知センザー素子試料No、
1〜8の比較例として、試料No、 1〜8において
、弾性体を接続せず、その他はNo、 1〜8と同様の
素材、同様の構造よりなる歪み、応力検知センザー素子
階1′〜8′を作製した。(試料No、 1〜磁8の比
較例をそれぞれml ’、N12 ’、N[L3 ’、
階4′、嵐5′、N1116′、階7′および陽8′と
する。)
次に、試料歯1〜7、階1′〜階7′の限界変形量及び
限界応力を測定したところ、表1に示す結果を得た。即
ち、弾性体の接続により試料歯1では限界変形量の増加
が、試料歯2では限界応力の増加が、試料N113〜隘
7では、限界変形量と限界応力の増加が見られた。Next, these distortion and stress detection sensor element sample No.
As comparative examples for samples 1 to 8, strain and stress detection sensor elements made of the same material and structure as samples Nos. 1 to 8, without connecting the elastic body, and samples 1' to 1' to 8' was produced. (Comparative examples of samples No. 1 to Magnetic 8 are ml', N12', N[L3',
Floor 4', Arashi 5', N1116', Floor 7' and Yang 8'. ) Next, the critical deformation amount and critical stress of sample teeth 1 to 7 and floors 1' to 7' were measured, and the results shown in Table 1 were obtained. That is, due to the connection of the elastic body, an increase in the critical deformation amount was observed in Sample Tooth 1, an increase in critical stress in Sample Tooth 2, and an increase in the critical deformation amount and critical stress in Samples N113 to No. 7.
また、試料11kL8、阻8′の両端を人の右手中指の
第2関節にサージカルテープで固定し、関節の屈曲度測
定を行なったところ、試料N114’では、皮膚が引き
つれて指の屈曲が妨げられた他、約2時間の測定で、皮
膚が赤くなったが、階4では、指の屈曲を自由に行なう
ことができ、連続24時間の測定でも、皮膚に変化がな
かった。In addition, when we fixed both ends of samples 11kL8 and 8' to the second joint of the middle finger of a person's right hand with surgical tape and measured the degree of flexion of the joint, we found that in sample N114', the skin was stretched and the flexion of the finger was hindered. In addition, after about 2 hours of measurement, the skin became red, but on floor 4, the fingers could be freely flexed, and there was no change in the skin even after 24 hours of continuous measurement.
次に第13a図に示す形状に弾性体2(シリコンゴムシ
ート厚さ500加)を切り出し、試料No、 8と同様
の手法によってポリカーボネートフィルム(厚さ80側
m)に貼り合わせた伸長導電素子をこの弾性体にエポキ
シ系接着剤で接着し、本発明の試料歯9を作製した。図
中11は両面接着テープである。Next, an elastic body 2 (silicon rubber sheet thickness: 500 m) was cut into the shape shown in Fig. 13a, and an elongated conductive element was attached to a polycarbonate film (thickness: 80 m) using the same method as sample No. 8. A sample tooth 9 of the present invention was produced by adhering to this elastic body with an epoxy adhesive. In the figure, 11 is a double-sided adhesive tape.
また、ゴム弾性を有する市販医療用術ザックを第13b
図に示すように切り出して弾性体2とし、第13a図と
同様にして伸長導電素子を貼り合わせ、本発明の試料N
o、10を作製した。In addition, a commercially available medical bag with rubber elasticity is available in No. 13b.
Sample N of the present invention was cut out as shown in the figure to form an elastic body 2, and an elongated conductive element was attached in the same manner as in Figure 13a.
o, 10 was prepared.
試料No、 9、及びNo、10を、第13c図に示す
ように指関節に取り付け、屈曲回数を測定したところ、
適度なフィツト性を有し、かつ指の屈曲動作を違和感な
く行うことができる指関節屈曲回数検知センサーとなる
ことがわかった。このセンサーは例えば、リハビリ用と
して使える他、アトピー性皮膚炎や掻痒症などのかき回
数を検知する診断用センサーとして用いることができる
。Samples No. 9 and No. 10 were attached to the finger joints as shown in Fig. 13c, and the number of bends was measured.
It has been found that the sensor can detect the number of times the finger joint is flexed, which has an appropriate fit and allows the finger to be flexed without discomfort. For example, this sensor can be used not only for rehabilitation purposes, but also as a diagnostic sensor for detecting the number of scratches for atopic dermatitis, pruritus, and other conditions.
次に、試料111o、 3の両端を把持し、伸長変形(
20%)のみ加えた場合、時計回り(180度)のねじ
り変形のみ加えた場合、反時計回り(180度)のねじ
り変形のみ加えた場合、伸長変形(20%)と時計回り
(180度)のねじり変形の両方を加えた場合、伸長変
形(20%)と反時計回り(180度)のねじり変形の
両方を加えた場合の各々において電気抵抗値の変化を測
定した。さらに次に試料歯4の両端を把持し、患3と同
様に電気抵抗値を測定した。その結果を表−2に示す。Next, grasp both ends of the sample 111o, 3 and stretch and deform it (
20%), only clockwise (180 degrees) torsional deformation, counterclockwise (180 degrees) only torsional deformation, elongation deformation (20%) and clockwise (180 degrees) The changes in electrical resistance were measured in each of the cases in which both an elongated deformation (20%) and a counterclockwise (180 degree) torsional deformation were applied. Next, both ends of the sample tooth 4 were grasped, and the electrical resistance value was measured in the same manner as for patient 3. The results are shown in Table-2.
即ち、S型らせん巻きの試料歯3は、時計回りのねじり
変形を検知し、Z型らせん巻きの試料No、 4は反時
計回りのねじり変形を検知するといえる。That is, it can be said that the S-shaped spiral wound sample tooth 3 detects clockwise torsional deformation, and the Z-shaped spiral wound sample No. 4 detects counterclockwise torsional deformation.
次にS型らせん巻きとZ型らせん巻きを並用した試料歯
5を、第8a図に示すブリッジ回路に接続した。ブリッ
ジ回路において、2つの抵抗R1゜R2はいずれも10
〔kΩ〕、電源Eは3〔V〕の電池を用い、電圧計■
には市販のデジタルマルチメーターを用いた。即ち、S
型らせん巻きの伸長導電シートの電極を31.S2に、
Z型らせん巻きの伸長導電シートの電極をZl、Z2に
接続した。次に、試料歯5の両端を把持し、時計回り及
び反時計回りのねじり変形を加え、出力電圧を調べた。Next, the sample tooth 5 having both the S-type spiral winding and the Z-type spiral winding was connected to a bridge circuit shown in FIG. 8a. In the bridge circuit, the two resistors R1 and R2 are both 10
[kΩ], the power supply E uses a 3 [V] battery, and the voltmeter ■
A commercially available digital multimeter was used. That is, S
31. Electrode of a spirally wound stretched conductive sheet. In S2,
Electrodes of a Z-shaped spirally wound stretched conductive sheet were connected to Zl and Z2. Next, both ends of the sample tooth 5 were grasped, and the sample tooth 5 was twisted clockwise and counterclockwise to examine the output voltage.
結果を第8b図に示す。即ち、S型らせん巻きとZ型ら
せん巻きを並用したセンサー素子では、ねじり変形の方
向と大きさを検知することができる。The results are shown in Figure 8b. That is, a sensor element using both an S-type spiral winding and a Z-type spiral winding can detect the direction and magnitude of torsional deformation.
表 1 各試料の限界変形量と限界応力表2
〔発明の効果〕
本発明による歪み、応力検知センサー素子は前述の如く
構成されているので、従来公知のセンサー素子を用いて
は行なうことのできない大変形の検出を、被験体に負担
を与えることなく行なうことができる。したがって先に
詳述したように、人体の動き(手足の指、手首、肘、肩
、首、腰、膝等の関節部分の屈曲、呼吸による胸部、腹
部等の膨張や収縮、運動による筋肉の緊張、し緩等)の
検知に用いることができる。Table 1 Limit deformation amount and limit stress of each sample Table 2 [Effects of the invention] Since the strain and stress detection sensor element according to the present invention is configured as described above, it is possible to detect the strain and stress that cannot be detected using conventionally known sensor elements. Large deformation can be detected without placing any burden on the subject. Therefore, as detailed above, the movements of the human body (bending of joints such as fingers and toes, wrists, elbows, shoulders, neck, hips, knees, etc., expansion and contraction of the chest and abdomen due to breathing, muscle contraction due to exercise, etc.) It can be used to detect tension, relaxation, etc.
第1図、第4図、第6a図、第6b図、第7図、第9図
、第10図および第11図は本発明による歪み、応力検
知センサー素子の各種実施態様をそれぞれ示す正面図で
あり、第2図は伸長導電素子の応力と電気抵抗値との関
係を示すグラフであり、第3a図は、伸長導電素子と弾
性体を直列に接続した場合の歪み、応力検知センサー素
子の変形量と応力の関係の一例を示すグラフであり、第
3b図は、センサー素子に外力が加わった場合、伸長導
電素子と弾性体にどのように力が加わるかを示す概念図
であり、第5a図は伸長導電素子と弾性体を並列に接続
した場合の歪み、応力検知センサー素子の変形量と応力
の関係の一例を示すグラフであり、第5b図はセンサー
素子に外力が加わった場合、伸長導電素子と弾性体にど
のような力が加わるかを示す概念図であり、第8a図は
第7図に示した本発明による歪み、応力検知センサーに
接続される回路図の一例であり、第8b図は第7図に示
した歪み・応力検知センサーにねじり変形を加えた場合
の出力波形を示すグラフであり、第12a図は、伸長導
電素子と弾性体を直列かつ並列に接続した場合の歪み、
応力検知センサー素子の変形量と応力の関係の一例を示
すグラフであり、第12b図はセンサー素子に外力が加
わった場合、伸長導電素子と弾性体にどのように力が加
わるかを示す概念図であり、第13a図〜第13C図は
本発明による歪み、応力検知センサー素子が指関節屈曲
回数検知センサーとして用いた場合の例を示す図であり
、第13a図は平面図、第13b図は斜視図、第13C
図は正面図である。
1.12.Ib・・・伸長導電シート、2.2a、2b
、2c、2d、2e−・・弾性体、3.3a、3b、3
c、](L・・電極、4a 、4b・・・リード線、
5a 、5b・・・スナップボタン、
6a、6b、6c、6d・・・フレキシブルプリント回
路、
7a、1b、7cm−−接着剤、
3a 、3b・・・サージカルテープ、9・・・樹脂フ
ィルム、 11・・・両面テープ、R,、R2・
・・抵抗、 E・・・電源、■・・・電圧計、
sl、Sz、Zl、Z2・・・電極端子、A〜B・・・
時計回りのねじり変形(0−180度)を加えていく過
程、
B−C・・・ねじり変形(180−0度)を戻していく
過程、
C−D・・・反時計回りのねじり変形(0−180度)
を加えていく過程、
D〜E・・・ねじり変形を戻してい<(180−0度)
過程。1, 4, 6a, 6b, 7, 9, 10, and 11 are front views showing various embodiments of the strain/stress detection sensor element according to the present invention, respectively. FIG. 2 is a graph showing the relationship between stress and electrical resistance of an elongated conductive element, and FIG. FIG. 3b is a graph showing an example of the relationship between the amount of deformation and stress, and FIG. 3b is a conceptual diagram showing how force is applied to the elongated conductive element and the elastic body when external force is applied to the sensor element. Figure 5a is a graph showing an example of the relationship between strain and stress detection sensor element deformation amount and stress when an elongated conductive element and an elastic body are connected in parallel, and Figure 5b is a graph showing an example of the relationship between the amount of deformation and stress of the sensor element when an elongated conductive element and an elastic body are connected in parallel. FIG. 8a is an example of a circuit diagram connected to the strain/stress detection sensor according to the present invention shown in FIG. 7; Figure 8b is a graph showing the output waveform when torsional deformation is applied to the strain/stress detection sensor shown in Figure 7, and Figure 12a is a graph when the elongated conductive element and the elastic body are connected in series and parallel. distortion,
12b is a graph showing an example of the relationship between the amount of deformation of the stress detection sensor element and the stress, and FIG. 12b is a conceptual diagram showing how force is applied to the elongated conductive element and the elastic body when external force is applied to the sensor element. FIG. 13a to FIG. 13C are diagrams showing an example in which the strain/stress detection sensor element according to the present invention is used as a sensor for detecting the number of finger joint flexions, and FIG. 13a is a plan view, and FIG. 13b is a diagram. Perspective view, No. 13C
The figure is a front view. 1.12. Ib...stretched conductive sheet, 2.2a, 2b
, 2c, 2d, 2e--elastic body, 3.3a, 3b, 3
c, ](L...electrode, 4a, 4b...lead wire, 5a, 5b...snap button, 6a, 6b, 6c, 6d...flexible printed circuit, 7a, 1b, 7cm--adhesive , 3a, 3b...Surgical tape, 9...Resin film, 11...Double-sided tape, R,, R2・
...Resistance, E...Power supply, ■...Voltmeter, sl, Sz, Zl, Z2...Electrode terminal, A~B...
Process of adding clockwise torsional deformation (0-180 degrees), B-C... Process of undoing torsional deformation (180-0 degrees), C-D... Counterclockwise torsional deformation ( 0-180 degrees)
The process of adding , D to E... Returning the torsional deformation < (180-0 degrees)
process.
Claims (1)
に、間隔をあけて、少なくとも2個の電極を設けて成る
伸長導電素子に、直列及び/又は並列に1個以上の弾性
体を接続したことを特徴とする歪み、応力検知センサー
素子。1. One or more elastic bodies are connected in series and/or in parallel to an elongated conductive element comprising at least two electrodes spaced apart from each other on an elongated conductive sheet whose electrical resistance value decreases when deformed. A strain and stress detection sensor element characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63153402A JPH0192603A (en) | 1987-06-26 | 1988-06-23 | Strain and stress detection sensor element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15777287 | 1987-06-26 | ||
JP62-157772 | 1987-06-26 | ||
JP63153402A JPH0192603A (en) | 1987-06-26 | 1988-06-23 | Strain and stress detection sensor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0192603A true JPH0192603A (en) | 1989-04-11 |
Family
ID=26482034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63153402A Pending JPH0192603A (en) | 1987-06-26 | 1988-06-23 | Strain and stress detection sensor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0192603A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07500748A (en) * | 1991-11-07 | 1995-01-26 | マギル,アラン レミー | health monitoring technology |
US6602633B1 (en) * | 1999-09-13 | 2003-08-05 | Hosiden Corporation | Crush type pressure detecting device, rechargeable battery with pressure detecting device, and portable electronic device |
JP2006038710A (en) * | 2004-07-28 | 2006-02-09 | Hiroshima Univ | Bending deformation sensor and deformation measuring device |
JP2006212329A (en) * | 2005-02-07 | 2006-08-17 | Ngk Spark Plug Co Ltd | Thoracic motion detecting sensor and monitor of biological condition |
JPWO2005089645A1 (en) * | 2004-03-24 | 2008-01-31 | 大日本住友製薬株式会社 | Biological information measuring garment having sensor, biological information measuring system, biological information measuring device, and device control method |
JP2010029633A (en) * | 2008-06-30 | 2010-02-12 | Tokai Rubber Ind Ltd | Method of detecting muscle movement and device of detecting muscle movement |
JP2010201066A (en) * | 2009-03-05 | 2010-09-16 | Tokai Rubber Ind Ltd | Metabolizing amount calculating device |
JP2017075847A (en) * | 2015-10-14 | 2017-04-20 | ヤマハ株式会社 | Movement detection device |
JP2017146242A (en) * | 2016-02-18 | 2017-08-24 | 株式会社槌屋 | Sensor for strain measurement |
WO2018047825A1 (en) * | 2016-09-09 | 2018-03-15 | 合同会社アーク | Body movement detection sensor |
JP2018511354A (en) * | 2015-03-20 | 2018-04-26 | インテル コーポレイション | Wearable device with stretch sensor |
JP2018096849A (en) * | 2016-12-13 | 2018-06-21 | 三井化学株式会社 | Detection member |
-
1988
- 1988-06-23 JP JP63153402A patent/JPH0192603A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07500748A (en) * | 1991-11-07 | 1995-01-26 | マギル,アラン レミー | health monitoring technology |
US6602633B1 (en) * | 1999-09-13 | 2003-08-05 | Hosiden Corporation | Crush type pressure detecting device, rechargeable battery with pressure detecting device, and portable electronic device |
JPWO2005089645A1 (en) * | 2004-03-24 | 2008-01-31 | 大日本住友製薬株式会社 | Biological information measuring garment having sensor, biological information measuring system, biological information measuring device, and device control method |
JP2006038710A (en) * | 2004-07-28 | 2006-02-09 | Hiroshima Univ | Bending deformation sensor and deformation measuring device |
JP2006212329A (en) * | 2005-02-07 | 2006-08-17 | Ngk Spark Plug Co Ltd | Thoracic motion detecting sensor and monitor of biological condition |
JP2010029633A (en) * | 2008-06-30 | 2010-02-12 | Tokai Rubber Ind Ltd | Method of detecting muscle movement and device of detecting muscle movement |
JP2010201066A (en) * | 2009-03-05 | 2010-09-16 | Tokai Rubber Ind Ltd | Metabolizing amount calculating device |
JP2018511354A (en) * | 2015-03-20 | 2018-04-26 | インテル コーポレイション | Wearable device with stretch sensor |
JP2017075847A (en) * | 2015-10-14 | 2017-04-20 | ヤマハ株式会社 | Movement detection device |
JP2017146242A (en) * | 2016-02-18 | 2017-08-24 | 株式会社槌屋 | Sensor for strain measurement |
WO2018047825A1 (en) * | 2016-09-09 | 2018-03-15 | 合同会社アーク | Body movement detection sensor |
US11141110B2 (en) | 2016-09-09 | 2021-10-12 | Ark Limited Liability Company | Body movement detection sensor |
JP2018096849A (en) * | 2016-12-13 | 2018-06-21 | 三井化学株式会社 | Detection member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | A stretchable and highly sensitive graphene‐based fiber for sensing tensile strain, bending, and torsion | |
Liu et al. | Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics | |
Rossi et al. | Electroactive fabrics and wearable biomonitoring devices | |
Trung et al. | Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoringand personal healthcare | |
Wang et al. | Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance | |
EP0206450B1 (en) | Deformation sensitive electroconductive knitted or woven fabric and deformation sensitive electroconductive device comprising the same | |
Wu et al. | Wearable carbon-based resistive sensors for strain detection: a review | |
US20170089782A1 (en) | Strain gauge device and equipment with such strain gauge devices | |
JPH0192603A (en) | Strain and stress detection sensor element | |
Wu et al. | Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion | |
JP4045344B2 (en) | Body motion detection sensor and body motion monitoring system using the same | |
CN106705829A (en) | Flexible wearable conductive fiber sensor and preparation method and application thereof | |
US10842413B2 (en) | Piezoelectric patch sensor | |
JP2013248528A (en) | System for detecting movement | |
JP2009511135A5 (en) | ||
Salibindla et al. | Characterization of a new flexible pressure sensor for body sensor networks | |
JPWO2018056062A1 (en) | Elastic capacitor, deformation sensor, displacement sensor, sensing method of breathing state and sensing wear | |
Zang et al. | A facile, precise radial artery pulse sensor based on stretchable graphene-coated fiber | |
Vijayababu et al. | Review of MXene-based resistance pressure sensors for vital signs monitor | |
CN110916621A (en) | Flexible sensor for detecting multiple physiological signals | |
Tuli et al. | Polymer-based wearable nano-composite sensors: a review | |
JPS62200701A (en) | Deformed conductive knitting | |
JP2018096797A (en) | Extensible structure, manufacturing method of extensible structure, and sensor component | |
JPS62290442A (en) | Body movement detection sensor element | |
Zhong et al. | Knotted fiber-based strain sensors with tunable sensitivity and a sensing region for monitoring wearable physiological signals and human motion |