JPS60219494A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS60219494A
JPS60219494A JP7600484A JP7600484A JPS60219494A JP S60219494 A JPS60219494 A JP S60219494A JP 7600484 A JP7600484 A JP 7600484A JP 7600484 A JP7600484 A JP 7600484A JP S60219494 A JPS60219494 A JP S60219494A
Authority
JP
Japan
Prior art keywords
cylinder
temperature
difference
compressor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7600484A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7600484A priority Critical patent/JPS60219494A/en
Publication of JPS60219494A publication Critical patent/JPS60219494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the generation of seizure due to the difference of thermal expansion by forming a discharged-gas passage contiguously to the suction hole on a cylindrical cylinder, thus reducing the temperature difference between the suction wall side and the discharge side of the cylinder. CONSTITUTION:In the vicinity of the suction hole 14 of a cylinder 13, a discharged-gas passage 18 is formed contiguously in the form of elliptical hole, and after a part of the high-temperature gas discharged from a discharge hole 15 flows-out into a rear case 19, the gas is introduced into the discharged-gas passage. Therefore, the temperature of the cylinder wall in the vicinity of the suction hole rises, and the difference of temperature from the temperature of the cylinder wall in the vicinity of the discharge hole 15 reduces, and the lock phenomenon and the seizure of the compressor due to the difference of the amount of thermal expansion of a compressor member can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車空調用などに使用される冷媒圧縮機の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in refrigerant compressors used for automobile air conditioning and the like.

従来例の構成とその問題点 近年、カーエアコンは自動車の安全性、快適性の向上に
とって不可欠のものとなり、その需要は年々増加してい
る。一方、自動車は最近ではその目的に応じ多様化する
傾向にあり、カーエアコン用圧縮機も変遷を余儀なく迫
られている。即ち、一つには、FF化等によるエンジン
ルームの狭小化は物理的寸法を規制し、小型化に迫車を
かけた。
Conventional configurations and their problems In recent years, car air conditioners have become essential for improving the safety and comfort of automobiles, and the demand for them has been increasing year by year. On the other hand, automobiles have recently become more diverse depending on their purpose, and compressors for car air conditioners are also being forced to change. That is, for one thing, the narrowing of the engine room due to the adoption of front-wheel drive (FF) etc. has restricted the physical dimensions, putting pressure on miniaturization.

また、運転のフィーリング向上、低騒音化はよシ静粛な
圧縮機を必要とした。これらの理由により、圧縮機は、
小型・静粛性において優るロータリ一式へ変遷しようと
している。そして現在、各種のロータリ一式圧縮機が出
現・実用化されてきた中で、最も小型化において有利な
ベーンタイプが主流になりつつある。
In addition, to improve the feeling of operation and reduce noise, a quieter compressor was required. For these reasons, the compressor
A transition is being made to a rotary set that is superior in its small size and quietness. Currently, various types of rotary unit compressors have appeared and been put into practical use, and the vane type, which is most advantageous in terms of miniaturization, is becoming mainstream.

第1図はベーン式ロータリー圧縮機の一例であるが、円
筒状のシリンダ1.複数のベーン溝を有するロータ2.
ベーン溝内を滑動するベーン3゜前記シリンダ1を両側
から閉塞する側板4a、4b等から構成されている。
FIG. 1 shows an example of a vane type rotary compressor, in which a cylindrical cylinder 1. Rotor with multiple vane grooves 2.
The vane 3° that slides within the vane groove is composed of side plates 4a, 4b, etc. that close the cylinder 1 from both sides.

前述した如く、ロータリー圧縮機は種々の特徴を持つが
、自動車の進歩発達と共に、多くの課題が課せられてき
ている。その中の一つに高速耐久性の向上が挙げられる
。即ち、自動車のエンジンの許容回転数のアップと共に
、圧縮機自体の高速耐久性の向上が要請されてきている
As mentioned above, rotary compressors have various characteristics, but with the advancement and development of automobiles, many problems have been imposed on them. One of these is improved high-speed durability. That is, in addition to increasing the permissible rotational speed of automobile engines, there is a demand for improving the high-speed durability of the compressor itself.

圧縮機は高速回転で運転されると、まず、エアコンシス
テムの冷凍サイクルのバランス上、圧縮機の吸入圧力が
低下し、圧縮比が増加するため、吐出ガス温度が上昇す
る。さらに高速回転による摩擦発熱と相まって、圧縮機
の吐出側は高温となる。一方、前述したように、吸入側
においては、吸入圧力の低下、即ち、吸入温度の低下、
冷媒ガス量の増加により、第1図におけるシリンダ1の
吸入孔5近傍のシリンダ壁は低温となる。逆に前述した
ように、吐出側の吐出孔6の近辺は高温となる。このよ
うに、シリンダ1は高速回転時には温度差が拡大される
。また、回転体であるロータ2及びベーン3は、吐出ガ
ス温の上昇と軸受7の発熱等により、高速回転時には、
吐出ガス温よシも高い温度に達することもある。そして
、結果として、ロータ2やベーン3の膨張に対するシリ
ンダ1の低温側の膨張の差が拡大し、最悪第2図に示し
だロータ2及びベーン3のサイドの隙間8゜9が消滅し
たシ、ロータ2とシリンダ1の近接部1oの隙間がなく
なシ、圧縮機はロック状態を引き起こすことがある。
When the compressor is operated at high speed, first, due to the balance of the refrigeration cycle of the air conditioner system, the suction pressure of the compressor decreases and the compression ratio increases, causing the discharge gas temperature to rise. Furthermore, combined with frictional heat generation due to high speed rotation, the discharge side of the compressor becomes high temperature. On the other hand, as mentioned above, on the suction side, a decrease in suction pressure, that is, a decrease in suction temperature,
Due to the increase in the amount of refrigerant gas, the cylinder wall near the suction hole 5 of the cylinder 1 in FIG. 1 becomes low temperature. Conversely, as described above, the vicinity of the discharge hole 6 on the discharge side becomes high temperature. In this way, the temperature difference in the cylinder 1 increases when the cylinder 1 rotates at high speed. In addition, the rotor 2 and vane 3, which are rotating bodies, are rotated at high speed due to the rise in discharge gas temperature and the heat generation of the bearing 7.
The discharge gas temperature may also reach high temperatures. As a result, the difference in the expansion of the cylinder 1 on the low-temperature side with respect to the expansion of the rotor 2 and vanes 3 increases, and in the worst case, the gap 8°9 between the sides of the rotor 2 and vanes 3 disappears as shown in FIG. If there is no gap between the rotor 2 and the adjacent portion 1o of the cylinder 1, the compressor may become locked.

発明の目的 本発明は、ロータリー圧縮機の温度差による問題点に対
し、改良を加え耐久性を向上せしめんとするものである
OBJECTS OF THE INVENTION The present invention aims to improve the durability of rotary compressors by improving the problems caused by temperature differences.

発明の構成 本発明は、前述した如く温度差による部分の熱膨張差に
よっておこる圧縮機の停止を、シリンダの吸入孔付近の
低温部を吐出された高温ガスで加熱する為の吐出ガス通
路をシリンダの吸入孔付近に隣接して設けることにより
、防止せんとするものである。
Components of the Invention The present invention provides a discharge gas passage for heating a low-temperature section near the suction hole of the cylinder with high-temperature gas discharged from the cylinder, in order to prevent the compressor from stopping due to the difference in thermal expansion of the parts caused by the temperature difference, as described above. This is intended to be prevented by providing the device adjacent to the suction hole.

実施例の説明 以下に本発明の実施例を示す一例を第3.4図を用いて
説明する。
DESCRIPTION OF EMBODIMENTS An example of an embodiment of the present invention will be described below with reference to FIG. 3.4.

第3図は本発明のロータリー圧縮機の横断面図、第4図
は第3図のA−A断面図である。11は複数のベーン溝
を放射状に有するロータで、12は゛−没自在に配設さ
れたベーンである。ロータ11と一点が近接して円筒状
内壁を有するシリンダ13が有り、シリンダ13には、
吸入孔14、吐出孔16が設けである。またシリンダの
両側は側板16.17が閉塞している。シリンダ13の
吸入孔14近傍には隣接して吐出ガス通路18が長孔状
に配設されており、吐出孔15から吐出された高温ガス
の一部はリアケース19に流出後、この吐出ガス通路1
8に導かれる。一般に、シリンダ13は吸入孔14から
低温の冷媒ガスが流入するため、吸入孔14近傍のシリ
ンダ壁は冷却される。まだ、吸入終了後、冷媒ガスはベ
ーン2、ロータ11の運動により、圧縮され、次第に高
温ガスとなり、吐出孔16付近で最高温度に達する。従
って、シリンダ13の吐出孔15付近はシリンダ壁の中
で、最も高い温度に達する。ここで本発明の場合、吸入
孔14付近のシリンダ壁は、低温冷媒による冷却は行な
われるが、吐出ガス通路18の存在の為、一方では加熱
されるため、吸入孔14付近のシリンダ壁温は上昇し、
吐出孔15付近のシリンダ壁温との差が少なくなり均一
化される。
FIG. 3 is a cross-sectional view of the rotary compressor of the present invention, and FIG. 4 is a cross-sectional view taken along line AA in FIG. 11 is a rotor having a plurality of radial vane grooves, and 12 is a vane that is freely disposed. There is a cylinder 13 having a cylindrical inner wall close to the rotor 11 at one point, and the cylinder 13 has:
A suction hole 14 and a discharge hole 16 are provided. The cylinder is also closed on both sides by side plates 16,17. A discharge gas passage 18 is arranged in the shape of a long hole adjacent to the suction hole 14 of the cylinder 13, and after a part of the high temperature gas discharged from the discharge hole 15 flows into the rear case 19, this discharge gas Passage 1
8. Generally, low-temperature refrigerant gas flows into the cylinder 13 from the suction hole 14, so that the cylinder wall near the suction hole 14 is cooled. After the suction is finished, the refrigerant gas is compressed by the movement of the vanes 2 and the rotor 11 and gradually becomes a high-temperature gas, reaching the maximum temperature near the discharge hole 16. Therefore, the temperature near the discharge hole 15 of the cylinder 13 reaches the highest among the cylinder walls. In the case of the present invention, although the cylinder wall near the suction hole 14 is cooled by the low-temperature refrigerant, it is also heated due to the presence of the discharge gas passage 18, so the cylinder wall temperature near the suction hole 14 is rise,
The difference between the cylinder wall temperature near the discharge hole 15 is reduced and the temperature is made uniform.

この結果、シリンダ壁温の均一化によシ、温度上昇によ
る熱膨張量はシリンダ13各部とも同等になり、ロータ
11、ベーン12の膨張量との差が少なくなるため、特
に高速回転時に吸入圧力。
As a result, by equalizing the cylinder wall temperature, the amount of thermal expansion due to temperature rise becomes the same for each part of the cylinder 13, and the difference between the amount of expansion of the rotor 11 and vane 12 is reduced, so the suction pressure increases, especially during high speed rotation. .

温度の急降下、吐出圧力、温度の急上昇が発生しても、
圧縮機の部材の熱膨張量差により、各部材間の隙間が即
座に消滅し、圧縮機がロック状態を引き起こすことはな
い。
Even if a sudden drop in temperature, discharge pressure, or temperature rise occurs,
Due to the difference in the amount of thermal expansion of the members of the compressor, gaps between the members disappear immediately, and the compressor does not become locked.

本実施例では、真円タイプのシリンダの場合を示したが
、楕円タイプのベーンロータリーでも全く同様である。
In this embodiment, a case of a perfectly circular type cylinder is shown, but the same applies to an elliptical type vane rotary.

さらには、ベーンがロータを負通したいわゆるスルース
ロットタイプの場合でも同様の効果が得られる。
Furthermore, similar effects can be obtained even in the case of a so-called through-slot type in which the vanes pass through the rotor in a negative manner.

この様に1本実施例のロータリー圧縮機では、円筒状の
シリンダの吸入孔に隣接して、吐出ガス通路を設けた構
成にすることによシ、シリンダの吸入壁側か低温部とな
っていたことによる部材の熱膨張量差から発生していた
圧縮機のロック現象を解消し、耐久性に優れたロータリ
ー圧縮機を提供することができる。
In this way, in the rotary compressor of this embodiment, the discharge gas passage is provided adjacent to the suction hole of the cylindrical cylinder, so that the low temperature part is on the suction wall side of the cylinder. It is possible to eliminate the locking phenomenon of the compressor that occurs due to the difference in the amount of thermal expansion of the members due to various factors, and to provide a rotary compressor with excellent durability.

発明の効果 円筒状内壁を有し、吸入孔に隣接して吐出ガス通路が配
設されたシリンダと、前記シリンダ内に配設され、複数
のベーンを有するロータと、前記シリンダを両側から閉
塞する側板と、前記側板の端面に配置されたリアーケー
スからなるロータリー圧縮機を構成することによシ、シ
リンダの吸入孔付近は、高温の吐出ガスの流動により加
熱されるため、低温の吸入冷媒ガスによる温度の低下が
防止される。その結果、シリンダの温度は均一化され、
圧縮機の構成部品であるシリンダ、ロータ。
Effects of the Invention A cylinder having a cylindrical inner wall and having a discharge gas passage adjacent to a suction hole, a rotor disposed within the cylinder and having a plurality of vanes, and closing the cylinder from both sides. By configuring a rotary compressor consisting of a side plate and a rear case placed on the end face of the side plate, the vicinity of the suction hole of the cylinder is heated by the flow of high-temperature discharge gas, so that low-temperature suction refrigerant gas is heated. This prevents the temperature from decreasing. As a result, the temperature of the cylinder is equalized,
Cylinder and rotor are the components of a compressor.

ベーンの熱膨張量差が少なくなシ、各部品間の微少な隙
間が減少することが防止できるため、圧縮機の耐久性を
向上せしめることができる。
Since there is little difference in the amount of thermal expansion of the vanes, it is possible to prevent the minute gaps between the various parts from decreasing, thereby improving the durability of the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のロータリー圧縮機を示す断面図、第2図
は第1図の縦断面図、第3図は本発明のロータリー圧縮
機を示す断面図、第4図は第3図のA−A断面図である
。 11・・・・・ロータ、12・・・・・・ベーン、13
・・・・・・シリンダ、14・・・・・・吸入孔、15
・・・・・・吐出孔、18代理人の氏名 弁理士 中 
尾 敏 男 ほか1名第 2 図 b 113 図
Fig. 1 is a sectional view showing a conventional rotary compressor, Fig. 2 is a longitudinal sectional view of Fig. 1, Fig. 3 is a sectional view showing a rotary compressor of the present invention, and Fig. 4 is A of Fig. -A sectional view. 11...Rotor, 12...Vane, 13
...Cylinder, 14...Suction hole, 15
・・・・・・Discharge hole, 18 Name of agent Patent attorney Medium
Toshio Oo and one other person Figure 2b Figure 113

Claims (1)

【特許請求の範囲】[Claims] 円筒状内壁を有し、吸入孔に隣接して吐出ガス通路が配
設されたシリンダと、前記シリンダ内に配設され、複数
のベーンを有するロータと、前記シリンダを両側から閉
塞する側板と、前記側板の端面に配置されたりアーケー
スからなるロータリー圧縮機。
A cylinder having a cylindrical inner wall and having a discharge gas passage adjacent to an intake hole; a rotor disposed within the cylinder and having a plurality of vanes; and a side plate closing the cylinder from both sides. A rotary compressor consisting of an arc case placed on the end face of the side plate.
JP7600484A 1984-04-16 1984-04-16 Rotary compressor Pending JPS60219494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7600484A JPS60219494A (en) 1984-04-16 1984-04-16 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7600484A JPS60219494A (en) 1984-04-16 1984-04-16 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS60219494A true JPS60219494A (en) 1985-11-02

Family

ID=13592660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7600484A Pending JPS60219494A (en) 1984-04-16 1984-04-16 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS60219494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325924B (en) * 1997-06-04 2001-04-18 Lawson Mardon Sutton Ltd A container closure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325924B (en) * 1997-06-04 2001-04-18 Lawson Mardon Sutton Ltd A container closure

Similar Documents

Publication Publication Date Title
JP3564769B2 (en) Scroll compressor
JPS6146743B2 (en)
JP4044311B2 (en) Air-cooled scroll fluid machine
KR100875344B1 (en) Rotary compressor
JPS60219494A (en) Rotary compressor
US4548558A (en) Rotary compressor housing
EP0517250A1 (en) Single-screw compressor rotor construction
JPH0217195Y2 (en)
EP0131157B1 (en) Rotary compressor
JPH1113661A (en) Screw compressor
JP4320906B2 (en) Screw compressor rotor structure
JP2000009065A (en) Scroll type compressor
CN217898186U (en) Compressor pump body, compressor and temperature regulation system
JP4253391B2 (en) Scroll type compressor
JP2756809B2 (en) Water circulation scroll compressor
JPS614885A (en) Compressor
JPS614888A (en) Rotary compressor
JPH04112990A (en) Closed type rotary compressor
JPH10281094A (en) Centrifugal fluid machine
JPS59206693A (en) No-lubrication type vane vacuum pump
JPS6248983A (en) Rotary compressor for cooling and heating
JPS63173893A (en) Gas compressor
JPS59211786A (en) Vane for compressor and manufacturing method thereof
JPS6032988A (en) Rate-of-flow controller for refrigerant of multi-robe type vane rotary compressor
JPS60252190A (en) Vane type compressor