JPS60219476A - Actuator - Google Patents

Actuator

Info

Publication number
JPS60219476A
JPS60219476A JP7265684A JP7265684A JPS60219476A JP S60219476 A JPS60219476 A JP S60219476A JP 7265684 A JP7265684 A JP 7265684A JP 7265684 A JP7265684 A JP 7265684A JP S60219476 A JPS60219476 A JP S60219476A
Authority
JP
Japan
Prior art keywords
shape
wire
shape memory
actuator
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7265684A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
芳野 久士
Koichiro Inomata
浩一郎 猪俣
Chiaki Tanuma
千秋 田沼
Nobuhito Matsuhira
松日楽 信人
Akihira Morishita
明平 森下
Yasuo Ehata
江畑 泰男
Isao Hoshino
星野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7265684A priority Critical patent/JPS60219476A/en
Publication of JPS60219476A publication Critical patent/JPS60219476A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Abstract

PURPOSE:To obtain an actuator which performs complicate movement by making partially different the shape recovery time of a shape memory alloy material. CONSTITUTION:The diameter of a shape memory alloy wire 1 is made different. The electric resistance is made partially different because of the difference of diameter. The part having the thinner diameter earlier reaches the shape recovery temperature through conduction heating. Different shape recovery time can be obtained by forming a conductive layer 2 having the equal resistance to that of the wire 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はアクチュエータに係)、特に形状記憶合金を用
いたアクチーエータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an actuator, and particularly to an actuator using a shape memory alloy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、アクチュエータとしては油圧、空気圧、モーター
等を用いたものが広く一般に用いられている。又、最近
では’I’1−Ni合金、Cu −Zn合金、Cu−A
l合金等の形状記憶合金をアクチーエータ−として用い
ることが試みられている。これら形状記憶合金を用いた
アクチーエータは軽量で、単位重量当りの出力を従来の
アクチーエータに比較し極めて大きく取ることができる
反面往復運動など比較的単純な動作が主体となっていた
。例えば窓の開閉用アクチュエータ、温度スイッチ等で
ある。
Conventionally, actuators using hydraulic pressure, pneumatic pressure, motors, etc. have been widely used. In addition, recently 'I'1-Ni alloy, Cu-Zn alloy, Cu-A
Attempts have been made to use shape memory alloys such as L alloys as actuators. Actuators using these shape memory alloys are lightweight and can achieve much higher output per unit weight than conventional actuators, but on the other hand, they mainly perform relatively simple movements such as reciprocating motion. For example, actuators for opening and closing windows, temperature switches, etc.

一方、アーム、関節、プーリー等を備えればロボットハ
ンドのような複雑な動きをさせることはできるが構造が
複雑になったシ全体の重量が重くなるなどの欠点があっ
た。
On the other hand, if it is equipped with arms, joints, pulleys, etc., it is possible to make complex movements similar to those of a robot hand, but it has disadvantages such as the complexity of the structure and the overall weight of the system.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、簡単な構
造で複雑な動きをすることが可能な、形状記憶合金を用
いたアクチーエータを提供することを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide an actuator using a shape memory alloy that has a simple structure and can perform complex movements.

〔発明の概要〕[Summary of the invention]

本発明は形状記憶合金素体を通電加熱によ多駆動させる
アクチェエータにおいて、前記形状記憶合金素体は、部
分的に形状回復時期が異°なるように構成されているこ
とを特徴としたアクチーエータである。
The present invention provides an actuator in which a shape memory alloy element is driven multiple times by electrically heating the actuator, characterized in that the shape memory alloy element is configured such that shape recovery timings are partially different from each other. be.

通電加熱によシ形状記憶合金素体を駆動させる概念は知
られている。本発明では、この素体の形状回復時期を部
分的に異ならせることによシ、通電加熱により、複雑な
動きをすることができるようにしたアクチュエータであ
る。
The concept of driving a shape memory alloy element by electrical heating is known. The present invention is an actuator that is capable of performing complex movements by heating with electricity by partially varying the shape recovery timing of the element body.

形状記憶合金としては、Ti−Ni合金、Cu −Zn
合金、Cu−k1合金等一般に知られている各種合金を
用いることができる。
Shape memory alloys include Ti-Ni alloy, Cu-Zn
Various commonly known alloys such as alloy and Cu-k1 alloy can be used.

部分的に形状回復時期を異ならせる手段としては2通電
の手段が挙げられる。
As a means for partially varying the shape recovery timing, there is a method of applying two currents.

(1)形状回復温度を部分的に変える。(1) Partially changing the shape recovery temperature.

(2)温度上昇を部分的に遅らせる。(2) Partially slowing down the temperature rise.

(I)の手段を用いる場合は、例えば部分的に合金組成
をずらすことによシ、形状回復時期を変えることができ
る。例えばTi−Ni合金は、 Ti量を49〜51a
t%とかえることKより一100〜100℃と形状回復
温度を変化させることができる。従って通電加熱時には
一様に温度上昇すると仮定すれば、もっとも形状回復温
度の低い所から形状回復がおこるととKなる。このよう
な形状記憶合金は、例えばTiワイヤーにNiをコーデ
ィングし、拡散させ、その度合をかえることによシ得る
ことができる。
When using the method (I), the shape recovery time can be changed by, for example, partially shifting the alloy composition. For example, Ti-Ni alloy has a Ti content of 49 to 51a.
The shape recovery temperature can be changed from 100 to 100° C. by changing t%. Therefore, assuming that the temperature rises uniformly during electrical heating, if shape recovery occurs from the lowest point at the shape recovery temperature, then K. Such a shape memory alloy can be obtained, for example, by coating a Ti wire with Ni and diffusing it to varying degrees.

また(2)の手段を用いる場合は1例えば、部分的に電
気抵抗値を変化させることが考えられる。ドープ材をい
れて部分的に抵抗値を変化させることもできる。又、部
分的にワイヤー径を細くすればその部分の抵抗値は大き
くなるため、通電加熱の際は直列抵抗と同様であるので
、ワイヤー径の細い部分がもっとも発熱する。よって、
ワイヤー径の細い部分がもっとも早く形状回復温度に達
し、形状回復がおこる。また、例えばCuメッキ等の導
電被覆を施し、その膜厚をかえることも考えられる。
When using the method (2), for example, it is conceivable to partially change the electrical resistance value. It is also possible to partially change the resistance value by adding a dopant. Furthermore, if the wire diameter is made thinner in a portion, the resistance value of that portion increases, so when heating with electricity, it is similar to a series resistance, so the portion where the wire diameter is thinner generates the most heat. Therefore,
The thinner diameter portion of the wire reaches the shape recovery temperature the fastest, and shape recovery occurs. It is also conceivable to apply a conductive coating such as Cu plating and change the film thickness.

このような本発明のアクチェエータは、変位を部分的に
時間をずらして生じることができる。従って、連続的に
ワイヤーの長手方向に形状回復時期をかえてやれば、変
位を進行させることができる。例えば波形を記憶させて
おけば、進行波を形成することができ、自走式のアクチ
ーエータを構成することもできる。
Such an actuator of the present invention can produce displacement partially at different times. Therefore, by continuously changing the timing of shape recovery in the longitudinal direction of the wire, the displacement can be made to progress. For example, if the waveform is stored, a traveling wave can be formed, and a self-propelled actuator can be constructed.

形状記憶合金は、加熱の程度にもよるが、通電加熱によ
多形状を回復し、加熱を停止すると復帰する。一般に復
帰には時間を要するため、形状記憶合金ワイヤーを複数
本よシ合わせて、選択的に加熱を行ない、加熱されてい
ないワイヤーをバネ材として用い、復帰速度を早くする
こともできる。
Although it depends on the degree of heating, shape memory alloys recover their multiple shapes when heated with electricity, and return to their original shapes when heating is stopped. Generally, it takes time for return to return, so it is also possible to speed up return by twisting multiple shape memory alloy wires together, selectively heating them, and using the unheated wires as spring material.

又、単にリン青銅等のバネ材と組み合わせて用いても良
い。
Alternatively, it may be used simply in combination with a spring material such as phosphor bronze.

さらに、シリコーンゴム等の絶縁性ゴムで被覆すること
によっても、復帰速度を早くすることができる。
Furthermore, the recovery speed can also be increased by covering with insulating rubber such as silicone rubber.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、簡単な構成で複雑
な動きを生ずる。形状記憶合金を用いたアクチュエータ
を得ることができる。
As explained above, according to the present invention, complex movements can be produced with a simple configuration. An actuator using a shape memory alloy can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、形状回復時期が部分的に異なる形状記憶合金ワイ
ヤー(1)を用意する。前述のごとくいくつかの手段が
あるが、例えば第1図(尋に断面図として示すように、
ワイヤー(1)径を異ならせる方法がある。電気抵抗は
断面積に反比例するため通電加熱時には、断面積の小さ
い方、すなわち径の細い方の発熱量が大きく、同一組成
でワイヤー(1)が構成されているとすれば、径の細い
所から先に形状回復温度に達するととKなる。又、第1
図(b)に示すようK、ワイヤー(1)の表面にメッキ
等によシ導電層(2)を形成し、その膜厚を変化させて
、ワイヤー(1)に流れる電流を変化させるとともでき
る。この際、ワイヤー(1)に電流が流れないと無意味
となるので、ワイヤー(1)の比抵抗と類似した抵抗を
有する材料を導電層(2)として用いることが好ましい
First, shape memory alloy wires (1) with partially different shape recovery times are prepared. As mentioned above, there are several methods, but for example, as shown in Figure 1 (as shown as a cross-sectional view)
There is a method of varying the diameter of the wire (1). Electrical resistance is inversely proportional to the cross-sectional area, so when heating with electricity, the smaller the cross-sectional area, that is, the smaller the diameter, the greater the amount of heat generated.If the wire (1) is made of the same composition, the smaller the diameter. When the shape recovery temperature is reached first, it becomes K. Also, the first
As shown in Figure (b), a conductive layer (2) is formed on the surface of the wire (1) by plating or the like, and the thickness of the conductive layer (2) is changed to change the current flowing through the wire (1). can. At this time, it is meaningless if no current flows through the wire (1), so it is preferable to use a material having a resistivity similar to that of the wire (1) as the conductive layer (2).

第1図に示すものは、いずれも図中布から左へと形状回
復時期が遅れるように構成されている。
All of the devices shown in FIG. 1 are constructed so that the shape recovery time is delayed from the cloth to the left in the figure.

次に第2図に示すように、ワイヤー(1)II)’を電
気的絶縁性を保ちた充ち2木よシ合わせ、アクチュエー
タ(4)を構成する。このとき、シリコーンゴム等の弾
性体(3)で全体を被覆しても良い。被覆した方が動き
がなめらかである。ワイヤー(1)(1)’は夫々通電
加熱が可能であシ、一方のワイヤー(1)を通電加熱し
て形状回復させ、その後、加熱をやめ、復帰させるとき
に、他方(IYはバネ材の役割をはたしワイヤー(1)
を形状復帰させる。形状記憶合金は加熱の度合によシ、
バネ材がなくても復帰することもできるため、特に一対
にする必要はないが、復帰速度を考慮した場合は、バネ
材を併せて一体化したものを用いることが好ましい。又
、ワイヤー(げの代わりに、例えばリン青銅等のバネ材
を用いても良い。又、前述の弾性体(3)も復元力を有
する。
Next, as shown in FIG. 2, the actuator (4) is constructed by combining the wires (1) II)' with two wires that maintain electrical insulation. At this time, the entire body may be covered with an elastic body (3) such as silicone rubber. Movement is smoother when covered. The wires (1) and (1)' can each be heated with electricity.One wire (1) is heated with electricity to recover its shape, and then the heating is stopped and the other wire (IY is a spring material) is heated. Wire (1)
to restore its shape. Shape memory alloys vary depending on the degree of heating.
Since it is possible to return without a spring material, it is not necessary to make a pair, but when the return speed is taken into account, it is preferable to use a combination of spring materials. Moreover, instead of the wire (barb), a spring material such as phosphor bronze may be used. Also, the above-mentioned elastic body (3) also has a restoring force.

しかしながら、ワイヤーCI) (1)’ともに形状記
憶合金で構成した方が、より複雑な運動が可能となる。
However, if both wires CI) (1)' are made of a shape memory alloy, more complex movements are possible.

次に第3図に本実施例のアクチュエータの運動の一例を
示す。第2図のととくに構成されたアクチーエータ(4
)は夫々のワイヤー(1)(1γ(第3図では図示せず
)が高温状態で第3図(C)に示すような波形となるよ
うに、形状が記憶されている。今、一方のワイヤーが図
中右側から左側へと順次形状口・復がおこるように構成
されているとする。すると通電加熱により、形状回復が
右側から順次生じ、摩擦の関係で、左側は右側にひきよ
せられることKなる(第3図(b))。図中Gは重心位
置を示すが全体的に形状回復が生じた時点では重心位置
は当初の位置よシδだけ右側にシフトする(第3図(C
))。
Next, FIG. 3 shows an example of the movement of the actuator of this embodiment. The specially constructed actuator (4
) have their shapes memorized so that each wire (1) (1γ (not shown in FIG. 3) has a waveform as shown in FIG. 3(C) in a high temperature state. Assume that the wire is configured so that its shape changes and returns sequentially from the right side to the left side in the figure.Then, due to electrical heating, the shape recovery occurs sequentially from the right side, and due to friction, the left side is pulled toward the right side. K (Fig. 3 (b)). In the figure, G indicates the position of the center of gravity, but when the overall shape recovery occurs, the position of the center of gravity shifts to the right by δ from the initial position (Fig. 3 (C)
)).

次いで通電加熱をやめると、通電加熱されなかったワイ
ヤーの復元力によシ、アクチュエータ(4)は低温状態
の形状に復帰しく第3図(ψ)、結果的に図中矢印(イ
)方向にδの変位を得ることができる。
Next, when the current heating is stopped, the actuator (4) returns to the shape of the low temperature state due to the restoring force of the wire that has not been heated, and as a result moves in the direction of the arrow (A) in the figure (ψ) in the figure. A displacement of δ can be obtained.

ここで例えば、第3図の運動を生じる時に通電加熱され
なかったもう一方のワイヤーを、図中左から右へと形状
回復を行なりように構成しておけば、同様に矢印(イ)
の逆方向への運動が可能となシ両方向への移動が可能と
なる。
Here, for example, if the other wire that was not heated by electricity when the movement in Figure 3 occurs is configured so that it recovers its shape from left to right in the figure, it will be similar to the arrow (A).
Movement in both directions is possible.

このように、本実施例では、自走式のアクチュエータを
得ることができ、特に狭所、悪環境下での使用に有効で
ある。又、前述の実施例では自走式としたが、例えば定
在波を形成することも可能であシ、所望の用途に応じて
、各種の運動を生じるアクチュエータを得ることができ
る。
In this way, in this embodiment, a self-propelled actuator can be obtained, which is particularly effective for use in narrow spaces and in bad environments. Furthermore, although the above-mentioned embodiments are self-propelled, it is also possible to form standing waves, for example, and it is possible to obtain actuators that produce various movements depending on the desired application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に得る形状記憶合金ワイヤーの断面図、
第2図は本発明に係るアクチーエータの断面図、第3図
は本発明に係るアクチュエータの動作を示す平面概念図
。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図
FIG. 1 is a cross-sectional view of a shape memory alloy wire obtained according to the present invention;
FIG. 2 is a sectional view of the actuator according to the present invention, and FIG. 3 is a conceptual plan view showing the operation of the actuator according to the present invention. Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)形状記憶合金素体を通電加熱により駆動させるア
クチェエータ忙おいて、前記形状記憶合金素体は、部分
的に形状回復時期が異なるように構成されていることを
特徴としたアクチュエータ。
(1) An actuator in which a shape memory alloy element body is driven by electrical heating, wherein the shape memory alloy element body is configured so that shape recovery timings are partially different from each other.
(2)前記形状記憶合金素体は、部分的に形状回復温度
が異なることを特徴とする特許請求の範囲第1項記載の
アクチュエータ。
(2) The actuator according to claim 1, wherein the shape memory alloy element body has partially different shape recovery temperatures.
(3)前記形状記憶合金素体は、部分的に電気抵抗が異
なることを特徴とする特許請求の範囲第1項記載のアク
チュエータ。
(3) The actuator according to claim 1, wherein the shape memory alloy element body has partially different electric resistances.
JP7265684A 1984-04-13 1984-04-13 Actuator Pending JPS60219476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7265684A JPS60219476A (en) 1984-04-13 1984-04-13 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7265684A JPS60219476A (en) 1984-04-13 1984-04-13 Actuator

Publications (1)

Publication Number Publication Date
JPS60219476A true JPS60219476A (en) 1985-11-02

Family

ID=13495635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7265684A Pending JPS60219476A (en) 1984-04-13 1984-04-13 Actuator

Country Status (1)

Country Link
JP (1) JPS60219476A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502060A (en) * 1989-11-06 1993-04-15 セラマテック,インコーポレーテッド Ceramic solid electrolyte based electrochemical oxygen concentrator
US5334461A (en) * 1986-07-28 1994-08-02 International Business Machines, Inc. Product formed by method of controlling resistivity of plated metal
CN103306925A (en) * 2012-03-16 2013-09-18 通用汽车环球科技运作有限责任公司 Spatially graded sma actuators
JP5348241B2 (en) * 2009-03-25 2013-11-20 コニカミノルタ株式会社 Actuator, drive device, and imaging device
US10294928B2 (en) * 2015-06-30 2019-05-21 Exergyn Limited SMA bundle wire optimisation in an energy recovery device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334461A (en) * 1986-07-28 1994-08-02 International Business Machines, Inc. Product formed by method of controlling resistivity of plated metal
JPH05502060A (en) * 1989-11-06 1993-04-15 セラマテック,インコーポレーテッド Ceramic solid electrolyte based electrochemical oxygen concentrator
JP5348241B2 (en) * 2009-03-25 2013-11-20 コニカミノルタ株式会社 Actuator, drive device, and imaging device
CN103306925A (en) * 2012-03-16 2013-09-18 通用汽车环球科技运作有限责任公司 Spatially graded sma actuators
US20130239565A1 (en) * 2012-03-16 2013-09-19 GM Global Technology Operations LLC Spatially graded sma actuators
US10294928B2 (en) * 2015-06-30 2019-05-21 Exergyn Limited SMA bundle wire optimisation in an energy recovery device

Similar Documents

Publication Publication Date Title
DE3470630D1 (en) Bistable shape memory effect electrothermal transducers
JPS63309252A (en) Hydrated polymer gel actuator
JPS60219476A (en) Actuator
JP4273902B2 (en) Shape memory alloy actuator
JP4385091B2 (en) Linear motion artificial muscle actuator and method for manufacturing linear motion artificial muscle actuator
JPS61171885A (en) Actuator
JPH06339887A (en) Actuator, articulated hand thereby, temperature switch, overcurrent switch and circuit changeover switch
JP2001110555A (en) Mesh heater
JPS60177159A (en) Shape memory element
JP2572597B2 (en) Intermittent device
JPS5875486A (en) Electric to dynamic energy converter
SU1283082A1 (en) Linear displacement drive
JPS60201083A (en) Actuator
JPH0443975B2 (en)
JPH0236956Y2 (en)
Sharif Electro-thermally controllable twisted coiled actuators (TCA) using nylon line
JPS6258767B2 (en)
JPS61150678A (en) Electric signal/mechanical amount converter and method of use thereof
JPS5981803A (en) Shape memory alloy wire
JPS63198567A (en) Electromagnetic actuator
JPS63104386A (en) High-molecular piezo-electric element
Shahinpoor Design and modeling of an active crawling robotic annelid
RU1823094C (en) Asynchronous motor with open magnetic circuit of field structure
JPH051396B2 (en)
JPS61245217A (en) Actuator