JPS60219266A - Antistatic paint and film - Google Patents
Antistatic paint and filmInfo
- Publication number
- JPS60219266A JPS60219266A JP7616084A JP7616084A JPS60219266A JP S60219266 A JPS60219266 A JP S60219266A JP 7616084 A JP7616084 A JP 7616084A JP 7616084 A JP7616084 A JP 7616084A JP S60219266 A JPS60219266 A JP S60219266A
- Authority
- JP
- Japan
- Prior art keywords
- component
- paint
- film
- antistatic
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は病院、エレクトロニクス工場、化学実験室等の
床、壁、天井等に塗工して帯電を防止する塗料並びにこ
の塗料を利用したフィルムに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a paint that is applied to floors, walls, ceilings, etc. of hospitals, electronics factories, chemical laboratories, etc. to prevent static electricity, and a film using this paint.
近年、電子関連機器の急速な普及に伴い、IC1LSI
、超LSI等電子部品の需要増大も著しい。In recent years, with the rapid spread of electronic equipment, IC1LSI
There is also a significant increase in demand for electronic components such as ultra-LSIs.
これらの電子部品の生産工場や組立工場では、静電気や
帯電を除去する為、生産現場の床、壁、天井等に導電性
をもたせる試みがなされている。即ち、床面が作業者の
、履物の摩擦接触によりて帯電したり、室内空気流によ
りて壁、天井が帯電した場合には、この静電気が電子部
品に放電してこれを損傷したシ、微細な塵の除去を困難
にす一原因となるためである。乾燥塗膜の場合を例にと
れば、一般的には、静電気防止に有効な表面抵抗値は1
0’〜109Ωであるとされている。In production factories and assembly factories for these electronic components, attempts are being made to make the floors, walls, ceilings, etc. of the production site conductive in order to eliminate static electricity and charge. In other words, if the floor surface becomes electrically charged due to the frictional contact of workers' footwear, or if the walls or ceiling become electrically charged due to indoor airflow, this static electricity may discharge to electronic components and damage them. This is because it becomes a cause of difficulty in removing dust. Taking the case of a dry paint film as an example, the surface resistance value effective for preventing static electricity is generally 1.
It is said to be 0' to 109Ω.
また病院の手術室、化学実験室等では、引火性の強い薬
品、溶剤を使用する事が多く、火災や爆発を未然に防止
するためには、床を導電化して不可避に発生した静電気
を放電してしまうことが望まれる。反面、導電化する際
に過度に低抵抗化すると感電事故を誘発する可能性があ
るので、乾燥塗膜の表面抵抗値で10’〜10’Ω程度
が望ましいとされている。因みに、米国N F P A
(National FireProtection
As5ociation)規格では、2L5X10’
〜lXl0’Ωである。In addition, highly flammable chemicals and solvents are often used in hospital operating rooms and chemical laboratories, so in order to prevent fires and explosions, the floors must be made conductive to discharge static electricity that inevitably occurs. It is hoped that this will happen. On the other hand, if the resistance is excessively reduced during conductivity, electric shock may occur, so it is said that the surface resistance value of the dry coating film is desirably about 10' to 10' Ω. By the way, the United States N.F.P.A.
(National Fire Protection
As5ocation) standard, 2L5X10'
~lXl0'Ω.
その他、メーター類の表示部ガラス、テレビブラウン管
、クリーンルームの窓ガラス、半導体装材料等、帯電防
止の用途は多種多様のものが考えられる。In addition, a wide variety of antistatic applications are possible, such as meter display glass, television cathode ray tubes, clean room window glass, and semiconductor packaging materials.
従来、静電気の帯電を防止或いは除去する為には、導電
性粉体や導電性ポリマーが使用されてきた。しかしなが
ら、ニッケル、アルミニウム等の金属は酸化の問題があ
り、銀等の貴金属は高価で使用できず、カーボンブラッ
クは黒色である為、湿度依存性が強い為、低湿度環境下
では殆ど効果がない。このように、導電性の塗料を脚整
する上で、安価で、充分に満足できる素材はないという
のが実情である。Conventionally, conductive powders and conductive polymers have been used to prevent or remove static electricity. However, metals such as nickel and aluminum have problems with oxidation, precious metals such as silver are too expensive to use, and carbon black is black and has strong humidity dependence, so it is almost ineffective in low humidity environments. . As described above, the reality is that there is no inexpensive and fully satisfactory material for preparing conductive paints.
本発明者らは、白色粉体で、しかも比較的安価に入手で
きる導電性酸化亜鉛に注目し、これを結合剤溶液中に分
散して帯電防止用塗料とすることを検討したが、との塗
料により目標とする抵抗値を得るためには、結合剤に対
する導電性酸化亜鉛の比率を高くしなければならず、結
果的に塗膜表面に導電性酸化亜鉛が露出したり、塗膜強
度が不足して剥離が生じ易かった。しかも、目標抵抗直
が10’Ω以下になると導電性酸化亜鉛では実現が困の
導電性酸化錫は導電性酸化亜鉛の約io〜5゜倍の価格
であり、コスト面の制約があった。The present inventors focused on conductive zinc oxide, which is a white powder and is available at a relatively low price, and considered dispersing it in a binder solution to make an antistatic paint. In order to obtain the target resistance value with a paint, the ratio of conductive zinc oxide to the binder must be increased, resulting in the conductive zinc oxide being exposed on the paint film surface and reducing the strength of the paint film. Due to insufficient amount, peeling was likely to occur. Moreover, conductive tin oxide, which is difficult to realize with conductive zinc oxide when the target resistance value is 10'Ω or less, is about io~5 times as expensive as conductive zinc oxide, and there are cost constraints.
かかる現状に鑑み、本発明者等は、鋭意研究を進めた結
果、(a)成分たる導電性の酸化亜鉛や酸化錫に対して
、下記のφ)成分又は(C)成分を混合すると、導電性
が著しく向上し、塗膜表面の抵抗値が下るとの知見を得
て本発明を完成するに至りた。In view of the current situation, the present inventors have carried out extensive research and have found that when the following component φ) or component (C) is mixed with conductive zinc oxide or tin oxide, which is component (a), conductive The present invention was completed based on the knowledge that the resistance of the coating film was significantly improved and the resistance value of the coating film surface was reduced.
Φ)成分;アスコルビン酸、その光学異性体又は還元性
を有するこれらの誘導体
(C)成分;還元性糖類又はその誘導体導電性酸化亜鉛
は、酸化亜鉛に対して少量のアルミニウム、ガリウム、
スズ等■価の不純物金楓をドーピング剤として添加し、
焼成して得られるNW半導体であり、ドーピング剤の種
類、量、温度、時間等の処理条件を適宜選択することに
より、様々な粒径、抵抗値のものを得ることができる。Φ) Component; Ascorbic acid, its optical isomer or a derivative thereof having reducing properties (C) Component; Reducing saccharide or its derivative Conductive zinc oxide contains a small amount of aluminum, gallium,
Adding impurity gold maple equivalent to tin as a doping agent,
It is a NW semiconductor obtained by firing, and can be obtained with various particle sizes and resistance values by appropriately selecting processing conditions such as the type and amount of doping agent, temperature, and time.
また導電性酸化錫についてもほぼ同様であり、一般的に
はアンチモンをドーピング剤として、6椎の処理条件を
制御することによシ性能が決められる。The same applies to conductive tin oxide, and its performance is generally determined by using antimony as a doping agent and controlling the processing conditions of the six vertebrae.
これらの導電性の酸化亜鉛や酸化錫は、粒径が細かいも
の程、塗膜内での相互の接触性に優れているので導電性
向上に効果があり、粉末粒径lμ以下、特にO,Sμ以
下のものが望ましい。特に、粒径o、 iμ以下の微粒
粉末は透明性のある塗膜が得られるので有用である。These conductive zinc oxides and tin oxides are effective in improving conductivity because the finer the particle size, the better the mutual contact within the coating film. It is desirable that it be less than Sμ. Particularly, fine powder having a particle size of o or iμ or less is useful because a transparent coating film can be obtained.
上記した導電性の酸化亜鉛や酸化錫は、酸素のような′
R1!R1分子が表面に吸着すると、伝導電子が内部に
追いやられるために、電気伝導性の減少がみられる。本
発明においては、アスコルビン酸の如@(b)成分又は
還元性糖類のRDき(C)成分を塗料中に配合した結果
、電気伝導性が向上するが、その理由は、(b)成分又
は(C)成イ蒙表面に吸着した#i!、素を還元すると
同時に、(b)成分又は(C)成分が(a)。The conductive zinc oxide and tin oxide mentioned above are
R1! When R1 molecules are adsorbed to the surface, conduction electrons are driven inside, resulting in a decrease in electrical conductivity. In the present invention, as a result of blending component (b) such as ascorbic acid or component (C) with RD of reducing sugars into the paint, the electrical conductivity improves.The reason for this is that component (b) or (C) #i adsorbed on the surface of the seedlings! , and at the same time, component (b) or component (C) is reduced to (a).
成分の表面に吸着する結果、(a)成分とその表面に吸
着した(b)成分又は(C)成分との間に電荷の移動が
し
起こるために考えられる。This is thought to be due to the fact that as a result of adsorption to the surface of the component, charge transfer occurs between the component (a) and the component (b) or component (C) adsorbed to the surface.
尚、プリント配線板の回路形成に使用する導電性塗料と
して、金属銅粉と銅化合物に、亜リン酸塩や次亜リン酸
塩の如き還元性物質を添加すると、導電効果を向上させ
ることが知られている。これらの回路形成用に使用され
る塗料は、金属銅粉を主体としているためにその個有の
色調により用途が制限される。また、亜リン酸塩等は銅
化合物中の銅分を金属銅として還元析出させて、この析
出した銅により金属銅粉の粒子間隙を埋めて、結果的に
導電性を向上させるものである。従って、亜リン酸塩、
亜硫酸塩、チオ硫酸塩等は、本発明の(a)成分たる導
電性の酸化亜鉛や酸化錫の如き半導体物質に対しては、
導電性向上効果を生じない。Furthermore, when a reducing substance such as phosphite or hypophosphite is added to the metallic copper powder and copper compound as a conductive paint used to form circuits on printed wiring boards, the conductive effect can be improved. Are known. Since the paint used for forming these circuits is mainly composed of metallic copper powder, its unique color tone limits its uses. Further, phosphites and the like reduce and precipitate the copper content in the copper compound as metallic copper, and the precipitated copper fills the gaps between particles of the metallic copper powder, resulting in improved conductivity. Therefore, phosphite,
Sulfites, thiosulfates, etc. are not suitable for semiconductor materials such as conductive zinc oxide and tin oxide, which are component (a) of the present invention.
Does not produce conductivity improvement effect.
本発明に用いる申)成分について説明すれば、アスコル
ビン酸はL−7スコルビン酸〔下記一般式(I)〕に代
表されるエンジオール基を持つ強い還元性のある物質で
あり、その光学異性体エリソルビン酸〔下記一般式(I
f) )と共に、上記のように導電性の酸化亜鉛や酸化
錫の導電性を高めるものである。同様に、還元性のある
アスコルビン酸誘導体としては、主に一般式(I)の1
.4,5.6位における反応誘導体を称するもので、例
えば、エーテル誘導体として、5−0−メチルアスコル
ビン酸等、エステル誘導体としてアスコルビン酸−6−
リン酸等のリン酸エステルやアスコルビン酸−6−硫酸
等の硫酸エステルや6−0−アセチルアスコルビン酸等
の有機酸エステルが挙げられ、この他にアミン誘導体で
あるスコルバミン酸等、アミジン誘導体、金属塩や塩基
性塩の誘導体であるアスコルビン酸ソーダ等、エンジオ
ール基(下記一般式(II) )の残存する物質が挙げ
られる。To explain the (mono) component used in the present invention, ascorbic acid is a strongly reducing substance having an enediol group represented by L-7 scorbic acid [the following general formula (I)], and its optical isomer Erythorbic acid [the following general formula (I
f) Along with ()), it increases the conductivity of conductive zinc oxide and tin oxide as described above. Similarly, as reducing ascorbic acid derivatives, mainly 1 of general formula (I) is used.
.. It refers to reaction derivatives at the 4, 5, and 6 positions, such as ether derivatives such as 5-0-methylascorbic acid, and ester derivatives such as ascorbic acid-6-
Examples include phosphoric acid esters such as phosphoric acid, sulfuric acid esters such as ascorbic acid-6-sulfuric acid, and organic acid esters such as 6-0-acetylascorbic acid.In addition, amine derivatives such as scorbamic acid, amidine derivatives, metal Examples include substances in which an enediol group (the following general formula (II)) remains, such as sodium ascorbate, which is a derivative of a salt or a basic salt.
−C=C−
又、一般式情)に示したエンジオール基のオキシ基の1
個又は2個をアミノ基、チオール基、イミノ基で置換さ
れた誘導体も還元性を損わず、有効である。アスコルビ
ン酸の光学異性体であるエリソルビン酸についても、上
記同様な誘導体は同じ効果を持ち、本発明に有効である
。-C=C- Also, one of the oxy groups of the enediol group shown in the general formula
Derivatives having one or two substituted with amino groups, thiol groups, or imino groups are also effective without impairing reducing properties. Regarding erythorbic acid, which is an optical isomer of ascorbic acid, derivatives similar to those described above have the same effect and are effective in the present invention.
一方、<c>成分たる還元性糖類又はその誘導体として
は、還元性三糖類のメルトース、ラクトース、メルビオ
ース等、アルドース系のグリコールアルデヒド、グルコ
ース、キシロース、ガラクトース、アラビノース、マン
ノース等、ケトース系ノフルクトース、ソルボース、ジ
ヒドロキシアセトン等、2−ケトアルドン酸系の2−ケ
トグルコン酸等、ウロン酸系のグルクロン酸等が挙げら
れる。特にアルドース系、ケトース系及びウロン酸系は
還元性が強く、導電性向上効果が顕著で−ある。On the other hand, the reducing sugars or derivatives thereof that are component <c> include reducing trisaccharides such as meltose, lactose, and melbiose, aldose-based glycolaldehyde, glucose, xylose, galactose, arabinose, mannose, etc., ketose-based nofructose, Examples include sorbose, dihydroxyacetone, etc., 2-ketoaldonic acid-based 2-ketogluconic acid, and uronic acid-based glucuronic acid. In particular, aldose-based, ketose-based, and uronic acid-based materials have strong reducing properties and have a remarkable effect of improving conductivity.
上記(b)成分や(C)成分の(a)成分に対する配合
比率は、<a)成分100重量部に対して、10重量部
以下、好ましくは0.005〜5重量部とする。0.0
05重量部未満では導電性向上の効果が少なく、5重量
部を超えると逆に導電性が低下する傾向がある。(b)
成分又は、(C)成分は、(a)成分の分散時または塗
料調成混合時に添加するのが通常であるが、予め(a)
成分と混合しておいても良い。The blending ratio of component (b) and component (C) to component (a) is 10 parts by weight or less, preferably 0.005 to 5 parts by weight, per 100 parts by weight of component (a). 0.0
If the amount is less than 0.5 parts by weight, the effect of improving conductivity is small, and if it exceeds 5 parts by weight, the conductivity tends to decrease. (b)
Component or component (C) is usually added at the time of dispersing component (a) or when preparing and mixing the paint.
It may be mixed with other ingredients.
一方、塗料の結合剤を水系、有機溶剤系のいずれとし、
また具体的にいずれの結合剤を使用するかは、主として
塗工対象物の状況や環境によって選択される。On the other hand, whether the binder of the paint is water-based or organic solvent-based,
Further, the specific binder to be used is mainly selected depending on the situation and environment of the object to be coated.
水系では、ポリビニルアルコール、メチルセルロース、
ヒドロキシエチルセルロース、カルボキシメチルセルロ
ース、でんぷん、変成でんぷん等の水溶性結合剤、酢ビ
−アクリル、アクリル酸、スチレン−ブタジェン、ポリ
エステル等のエマルジ冒ン系結合剤、を例示することが
できる。この他に結着力を有するポリスチレンスルホン
酸ソーダ、ポリアクリル酸ソーダ等の高分子電解質を結
合剤としても良い。In aqueous systems, polyvinyl alcohol, methyl cellulose,
Examples include water-soluble binders such as hydroxyethyl cellulose, carboxymethyl cellulose, starch, and modified starch, and emulsion-based binders such as acetic acid-vinyl acrylic, acrylic acid, styrene-butadiene, and polyester. In addition, polymer electrolytes such as sodium polystyrene sulfonate and sodium polyacrylate having binding strength may be used as the binder.
、有機溶剤型としては、アクリル酸、スチレン、シリコ
ン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アルキ
ッド樹脂、エポキシ樹脂等を例示することができる。Examples of the organic solvent type include acrylic acid, styrene, silicone resin, polyester resin, polyurethane resin, alkyd resin, and epoxy resin.
本発明においては上記の結合剤に限ることなく、また、
適宜2棟類以上を混合して使用してもよい。The present invention is not limited to the above-mentioned binders;
Two or more buildings may be mixed and used as appropriate.
この他、必要に応じて、助剤、無機顔料、染料、分散剤
、紫外線吸収剤等を添加して塗料を調製する。In addition, if necessary, auxiliary agents, inorganic pigments, dyes, dispersants, ultraviolet absorbers, etc. are added to prepare the paint.
(a)成分と結合剤の配合比率は目標とする塗膜の抵抗
値や強度により異なるが、結合剤が多すぎると(a)成
分相互の距離が太きくなるために抵抗が高くなるので、
通常、重量比で、40(60〜952つ
このようにして得られた塗料はバー、スプレー。The blending ratio of component (a) and binder will vary depending on the target resistance value and strength of the coating film, but if there is too much binder, the distance between components (a) will become wider and the resistance will increase.
Usually, the weight ratio is 40 (60 to 952).The paints thus obtained are used in bars and sprays.
ドクター、ブレード、ロー永準す毛等を使用して、導電
化処理を必要とする天井、壁面、壁紙や床面等の上に塗
布され、また、小さなものでは、ディピングにより表面
塗膜を形成される。It is applied to ceilings, walls, wallpaper, floors, etc. that require conductive treatment using a doctor, blade, low-length hair, etc. Also, for small items, a surface coating is formed by dipping. be done.
また、上記塗料を合成樹脂フィルムに塗工すれは、極め
て簡便に利用できる帯電防止用フィルムを得ることがで
きる。尚、この場合に支持体として使用するフィルムは
、厚さが数■あり−ても差支えないが、加工性の面から
一般的には0.2 w以下の薄いフィルムが望ましい。Further, by applying the above-mentioned paint to a synthetic resin film, an antistatic film that can be used extremely easily can be obtained. The film used as the support in this case may have a thickness of several inches, but from the viewpoint of processability, it is generally desirable to use a thin film of 0.2 W or less.
特に(a)成分として導電性酸化錫を使用した塗料を透
明性の合53i:樹脂フィルムに塗工して得られゐ帯電
防止用゛フィルムは、微粒の酸化錫を選択し、且つその
塗布量を少な目に調整することで、透明性のあるものを
製造することができる。In particular, the antistatic film obtained by coating a transparent resin film with a paint containing conductive tin oxide as the component (a) is obtained by selecting fine particles of tin oxide and controlling the coating amount. By adjusting the amount to a small amount, it is possible to manufacture transparent products.
以上の如く、本発明に従って、(a) ff分の少なく
とも1種と(b)ff−分又は(e)成分の少なくとも
1種とを結合剤中に分散して成る塗料は、これを塗布し
て得られる乾燥塗膜の表面抵抗値が極めて低いことを利
点とする。このために、塗布量低減によるコストダウン
を図ることができ、又、同一の塗布量とするのであれば
、結合剤の比率を多ぐして、乾燥塗膜の強度を向上させ
ることができる。更に、平均粒径0.2μ程度の導電性
酸化亜鉛を配合した塗料により得られる塗膜は白色であ
り、また導電性酸化錫の場合には、超微粒の粉末ではや
や灰色がかった透明な塗膜、0.1μ程度より大きい粉
末では白色の塗膜となる。従って、目標とする抵抗値を
考慮した上で、適宜、染料や顔料を加えて、調色するこ
と覗容易である。As described above, according to the present invention, a paint comprising (a) at least one ff component and (b) at least one ff- component or (e) component dispersed in a binder can be applied. The advantage is that the surface resistance of the dried coating film obtained by this process is extremely low. Therefore, costs can be reduced by reducing the amount of coating, and if the amount of coating is the same, the ratio of the binder can be increased to improve the strength of the dried coating film. Furthermore, the paint film obtained with a paint containing conductive zinc oxide with an average particle size of about 0.2μ is white, and in the case of conductive tin oxide, an ultra-fine powder gives a slightly grayish transparent coating. Powder particles larger than about 0.1 μm form a white coating. Therefore, it is easy to adjust the color by adding dyes and pigments as appropriate after considering the target resistance value.
更に、上記塗料を利用した帯電防止用フィルムは、上記
の特長をそのまま有するほか、目的物に応じて任意の形
状及び大きさに切取ることができ、るので利用が簡便で
ある。目的物が略平担である限り、この帯電防止用フィ
ルムを適用することができる。特に、透明性の帯電防止
用フィルムは、クリーンルームの窓ガラスやメーター類
の表示部ガラスにそのまま貼り付けて使用できるので、
利する。尚、説明中の部は重量部を意味する。Furthermore, the antistatic film using the above-mentioned paint has the above-mentioned features as is, and can be cut into any shape and size depending on the intended object, making it easy to use. This antistatic film can be applied as long as the object is approximately flat. In particular, transparent antistatic films can be used as they are by pasting them on clean room windows and meter display glass.
profit Note that parts in the description mean parts by weight.
〔比較例1〕
比抵抗192Q(1s oky/crl加圧)、加圧比
重1、sao(7okg/d加圧)の導電性酸化亜鉛(
白水化学製、平均粒径0.2μ)70部と、飽和ポリエ
ステル樹脂(東洋紡製バイロン20SS。[Comparative Example 1] Conductive zinc oxide (
70 parts of saturated polyester resin (manufactured by Hakusui Chemical Co., Ltd., average particle size 0.2μ) and saturated polyester resin (Vylon 20SS, manufactured by Toyobo Co., Ltd.).
30チ固形分濃度)100部をあらかじめ混合し、アト
ライターにて20分間分散し塗料を得た。この塗料をワ
イヤーパーにて、乾燥後の塗膜が20μの厚さとなるよ
うに硬質の塩化ビニル製床タイル上に塗工し、乾燥固化
した後、塗膜表面の抵抗値を測定した。30% (solid content concentration) were mixed in advance and dispersed for 20 minutes using an attritor to obtain a paint. This paint was applied onto a hard vinyl chloride floor tile using a wire parser so that the dried paint film had a thickness of 20 μm, and after drying and solidification, the resistance value of the paint film surface was measured.
尚、表面電気抵抗は910Rの距離を保って2つの電極
を置きその間の抵抗を測定した。The surface electrical resistance was measured by placing two electrodes at a distance of 910 R and measuring the resistance between them.
〔実施例1〕
比較例1の塗料中にフラクトース0.7 mを加えて、
良く分散し塗料とした。この塗料を使用した以外は比較
例1と同様にして、床タイル上に塗膜を形成し、その表
面抵抗値を測定した。[Example 1] 0.7 m of fructose was added to the paint of Comparative Example 1,
It was well dispersed and made into a paint. A coating film was formed on a floor tile in the same manner as in Comparative Example 1 except that this coating material was used, and its surface resistance value was measured.
〔比較例2及び3〕
導電性酸化亜鉛と結合剤との固形分配合比率が同様にし
て塗料を―製し、塗工試験をした。[Comparative Examples 2 and 3] Paints were prepared with the same solid proportions of conductive zinc oxide and binder, and a coating test was conducted.
実施例1の塗料を使用した以外は同様にした。The same procedure was carried out except that the paint of Example 1 was used.
〔比較例4〕
実施例1と同一の導電性酸化亜鉛100部を予め溶解し
fc20 %82のスチレンブタジェン共重合体(シェ
ル化学製カリフレックスTR−1102)400部に混
合し、アトライターで15分間分散して、塗料を得た。[Comparative Example 4] 100 parts of the same conductive zinc oxide as in Example 1 was dissolved in advance and mixed with 400 parts of a styrene-butadiene copolymer (Cariflex TR-1102 manufactured by Shell Chemical Co., Ltd.) having an fc of 20% and 82%, and the mixture was mixed with an attritor. After dispersing for 15 minutes, a paint was obtained.
この塗料をワイヤーバーにより、床タイル上に、乾燥後
の厚さが12μの塗膜になるように塗工し、比較例4に
おいて、アトライター処理に先立って、ジヒドロキシア
セトンを1部添加した以外は同様にして塗料を得た。こ
の塗料を使用して、比較例1と同様にして塗工試験をし
た。This paint was applied onto the floor tiles using a wire bar so that it would have a coating thickness of 12 μm after drying, except that in Comparative Example 4, 1 part of dihydroxyacetone was added prior to the attritor treatment. The paint was obtained in the same manner. A coating test was conducted in the same manner as in Comparative Example 1 using this paint.
〔比較例5〕
実施例1と同じ導電性酸化亜鉛100部と2.518度
のメチルセルシーズ溶液400部をあラカじめ混合した
上、アトライターで40分間分散し。[Comparative Example 5] 100 parts of the same conductive zinc oxide as in Example 1 and 400 parts of a 2.518 degree Celsius methyl celseed solution were mixed thoroughly and then dispersed with an attritor for 40 minutes.
塗料を得た。この塗料をコート紙上にワイヤーバーを用
い乾燥後の塗膜がそれぞれ6μ及び11μの厚さになる
よ5に塗工し、20℃、5oチRH囲気下に24時間調
湿した後、塗膜の表面抵抗値を測足した。Got the paint. This paint was applied onto coated paper using a wire bar so that the dried coating film had a thickness of 6 μm and 11 μm, respectively. The surface resistance value was measured.
〔実施例5−■〜5−■〕
比較例5においてアトライター処理前にガラクトース、
キシロース、メリピオース、又はグルクロン酸を0.1
部添加し、アトライターで分散処理した以外は同様にし
て、塗料を調製した。これらの塗料を使用して比較例5
と同様の塗膜を得て、その表面抵抗値を測足した。[Example 5-■ to 5-■] In Comparative Example 5, galactose,
xylose, melipiose, or glucuronic acid at 0.1
A paint was prepared in the same manner, except that 100% of the above was added and the dispersion treatment was carried out using an attritor. Comparative Example 5 using these paints
A coating film similar to that was obtained and its surface resistance value was measured.
以上の実施例及び比較例で得られた乾燥塗膜はいずれも
白色であった。その試験結果を表にまとめて示す。The dried coating films obtained in the above Examples and Comparative Examples were all white. The test results are summarized in a table.
夷
上記の表より塗料中に(e)成分を添加することにより
、得られた白色の乾燥塗膜の表面抵抗値が大幅に低下す
ることが分る。従って、各実施例において、相対的に低
い表面抵抗値、即ち対応する比較例と等し1表面抵抗値
を得ようとすれば、塗料中の結合剤比率を増すことが可
能になるので、比較例よりも強い乾燥塗膜を得ることが
できる。It can be seen from the above table that by adding component (e) to the paint, the surface resistance value of the resulting white dry paint film is significantly reduced. Therefore, in each example, in order to obtain a relatively low surface resistance value, that is, a surface resistance value equal to that of the corresponding comparative example, it is possible to increase the binder ratio in the paint; A stronger dry coating can be obtained than in the example.
〔比較例6〕
411L性酸化錫(三菱金属製T−1.Sbドーピング
品、粒径0.1μ以下)100部に対し、水分散型ポリ
エステル樹脂(東洋紡製MD−1200,34%固形分
濃度)90部を添加し、アトライターにて30分間分散
して塗料を得た。この塗料を厚さ27μのポリエステル
フィルム上にワイヤーパーにて、2μの乾燥塗膜となる
よう塗工して帯電防止用フィルムを得た。このフィルム
の塗膜の゛表面電気抵抗は1.3X10’Ωであった。[Comparative Example 6] 100 parts of 411L tin oxide (T-1.Sb-doped product manufactured by Mitsubishi Metals, particle size 0.1μ or less) was mixed with water-dispersed polyester resin (MD-1200 manufactured by Toyobo, 34% solid content concentration). ) was added and dispersed for 30 minutes using an attritor to obtain a paint. This paint was applied onto a 27 μm thick polyester film using a wire coater to form a dry coating film of 2 μm thickness to obtain an antistatic film. The surface electrical resistance of the coating of this film was 1.3×10'Ω.
〔実施例6〕
比較例6における塗料中に、更に15部のアスコルビン
酸を配合し、良く分散して塗料を@た。[Example 6] 15 parts of ascorbic acid was further added to the paint in Comparative Example 6, and was well dispersed to form a paint.
この艙科を使用して、比較例6と同様にポリエステルフ
ィルムに塗工して帯電防止用フィルムf得た。Using this coating, it was coated on a polyester film in the same manner as in Comparative Example 6 to obtain an antistatic film f.
本笑流側により得られた塗膜の表面電気抵抗は6、5
X 10’Ωと低く、色調は、僅かに灰色がかっ友透明
であっfc、にのフィルムを計測器の表示部ガラス上に
貼り付けたところ、優れた帯電防止効果が得られた。尚
、塗料段階でみると、比較例6の塗料と比べて、粘度が
高く成膜性が良好であった。The surface electrical resistance of the coating film obtained by this method was 6.5.
When the film was pasted on the display glass of a measuring instrument, an excellent antistatic effect was obtained. In addition, when looking at the paint stage, the viscosity was higher and the film forming property was better than that of the paint of Comparative Example 6.
Claims (1)
分又は(C)成分の少なくとも1檎とを必須成分として
結合剤溶液中に分散して成ることを特徴とする帯電防止
用塗料。 (a)成分;導電性酸化亜鉛又は導電性酸化錫(b)成
分;アスコルビン酸、その光学異性体又は還元性を有す
るこれらの誘導体 (C)成分;還元性糖類又はその誘導体(2) (a)
成分100重量部忙対して、(b)成分又は(C)成分
を0.005〜5重量部配合したことを特徴とする特許
請求の範囲第1項記載の帯電防止用塗料。 (3)次に示す(a)成分の少なくとも1種と(b)成
分又は(C)成分の少なくとも1棟とを必須成分として
結合剤溶液中に分散して成る塗料を、合成樹脂フィルム
に塗工したことを特徴とする帯電防止用フィルム。 (a)成分;導電性酸化亜鉛又は導電性酸化錫(b)成
分;アスコルビン酸、その光学異性体又は還元性を有す
るこれらの誘導体 (C)成分;還元性糖類又はその誘導体(4) 前記塗
料が(a)成分100重量部に対して、(b)成分又は
(C)成分を0.005〜5重量部配合した塗料である
ことを特徴とする特許請求の範囲第3項記載の帯電防止
用フィルム。 (5) 前記(a)成分が粒径0.1μ以下の粉末であ
り、且つ前記合成樹脂フィルムが透明性であることを特
徴とする特許請求の範囲第3項又は第4項に記載の帯電
防止用フィルム。[Scope of Claims] (Li) It is characterized by being made by dispersing in a binder solution at least one of the following components (a) and at least one component (b) or (C) as essential components. Antistatic paint. (a) Component; conductive zinc oxide or conductive tin oxide; (b) component; ascorbic acid, its optical isomer or a derivative thereof having reducing properties; (C) component; reducing saccharide or Derivatives thereof (2) (a)
The antistatic paint according to claim 1, characterized in that 0.005 to 5 parts by weight of component (b) or component (C) is blended per 100 parts by weight of component. (3) Apply a paint consisting of at least one of the following components (a) and at least one component (b) or (C) as essential components dispersed in a binder solution to a synthetic resin film. An antistatic film that is characterized by a special process. (a) Component; Conductive zinc oxide or conductive tin oxide (b) Component; Ascorbic acid, its optical isomer or a derivative thereof having reducing properties (C) Component; Reducing saccharide or its derivative (4) The paint The antistatic agent according to claim 3, wherein is a paint containing 0.005 to 5 parts by weight of component (b) or component (C) per 100 parts by weight of component (a). Film for. (5) The charging device according to claim 3 or 4, wherein the component (a) is a powder with a particle size of 0.1 μm or less, and the synthetic resin film is transparent. Prevention film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7616084A JPS60219266A (en) | 1984-04-16 | 1984-04-16 | Antistatic paint and film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7616084A JPS60219266A (en) | 1984-04-16 | 1984-04-16 | Antistatic paint and film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60219266A true JPS60219266A (en) | 1985-11-01 |
JPH0522740B2 JPH0522740B2 (en) | 1993-03-30 |
Family
ID=13597302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7616084A Granted JPS60219266A (en) | 1984-04-16 | 1984-04-16 | Antistatic paint and film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60219266A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207174A (en) * | 2011-03-30 | 2012-10-25 | Central Japan Railway Co | Composition for forming thin film, coating liquid, and method for forming thin film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009024361A (en) * | 2007-07-18 | 2009-02-05 | Oishi Corporation:Kk | Fire prevention floor of gas station |
-
1984
- 1984-04-16 JP JP7616084A patent/JPS60219266A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207174A (en) * | 2011-03-30 | 2012-10-25 | Central Japan Railway Co | Composition for forming thin film, coating liquid, and method for forming thin film |
Also Published As
Publication number | Publication date |
---|---|
JPH0522740B2 (en) | 1993-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7722786B2 (en) | Conductive materials | |
EP0021538B1 (en) | Air-fireable conductor composition | |
JPH07116388B2 (en) | EMI blocking paint and its manufacturing method | |
JP3473146B2 (en) | Composition for forming conductive film and method for producing transparent conductive film-coated glass plate | |
JPS6025067B2 (en) | Conductive white coating | |
JPS60219266A (en) | Antistatic paint and film | |
JP2003308730A (en) | Silver oxide fine particle composition, its manufacturing method, conductive composition, conductive film and its manufacturing method | |
JPS60204670A (en) | Dielectric composition | |
JPH0566683B2 (en) | ||
JP3195072B2 (en) | Fibrous conductive filler and method for producing the same | |
JPS63151619A (en) | Treatment of transparent powder having conductivity | |
US4780248A (en) | Thick film electronic materials | |
JP3431726B2 (en) | Conductive powder, method for producing the same, and conductive coating film | |
JPH1166956A (en) | Conductive paste | |
JPH0575027B2 (en) | ||
JPH0466269B2 (en) | ||
JP2844012B2 (en) | Conductive fine powder and method for producing the same | |
JPH0149390B2 (en) | ||
JP3394556B2 (en) | Conductive barium sulfate filler and method for producing the same | |
JPS5889712A (en) | Method of forming transparent conductive film on surface of glass substrate | |
KR20080055238A (en) | Composition for emi shield paint | |
JP2986024B2 (en) | Phosphor | |
CN101481555B (en) | Water-based antistatic coating liquid composition and preparation method thereof | |
JPH0585588B2 (en) | ||
JP3140576B2 (en) | Conductive barium sulfate filler and method for producing the same |