JPS60219071A - Ion flow controlled gradation recording method - Google Patents

Ion flow controlled gradation recording method

Info

Publication number
JPS60219071A
JPS60219071A JP59073891A JP7389184A JPS60219071A JP S60219071 A JPS60219071 A JP S60219071A JP 59073891 A JP59073891 A JP 59073891A JP 7389184 A JP7389184 A JP 7389184A JP S60219071 A JPS60219071 A JP S60219071A
Authority
JP
Japan
Prior art keywords
recording
ion flow
ion
voltage
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59073891A
Other languages
Japanese (ja)
Other versions
JPH0567429B2 (en
Inventor
Hiroyuki Hoshino
星野 坦之
Makoto Mentani
信 面谷
Tomoaki Tanaka
知明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59073891A priority Critical patent/JPS60219071A/en
Publication of JPS60219071A publication Critical patent/JPS60219071A/en
Publication of JPH0567429B2 publication Critical patent/JPH0567429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • B41J2/415Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To enable to form an image with gradations, by a method wherein a voltage varied at the same period as a dot period for recording and having a pulse width varied in accordance with a recording signal is impressed on an aperture electrode for controlling an ion flow. CONSTITUTION:The aperture electrode 5 is provided on a path along which ions generated by an ion generator 1 and a corona wire 2 are passed toward a counter electrode 3, and the ion flow is controlled, thereby forming an electrostatic image. In this operation, a voltage varied at the same period as the recording dot period and turned ON and OFF with a pulse width according to the recording signal is impressed on the electrode 5. Accordingly, the ion beam diameter of the ion flow which is passed when the voltage is ON is modulated, and the density of the ion flow is varied at the same period as the recording dot period, thereby enabling to record with gradations.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、イオン流を制御して記録する方法において
、イオンビーム径およびイオン流密度を制御して階―記
録を行う記録方法に関するものである。 〔従来技術〕 まず、イオン流を用いた静電記録の原理を第1図により
説明する。 第1図(a) 、(b) 、に示すように、イオン発生
器1とコロナワイヤ2の間に数KVの高圧をかけること
Kよりコロナワイヤ2がも発生したイオンは、コロナワ
イヤ2と対向vIi極3が形成する電界によって、例え
ば径100〜500μm程度のイオン流制御孔4を通過
するが、その通過量はアパーチャ電極5を形成する上部
制御′@極6および下部制御電極7が形成する電界によ
って制御される。すなわち、第1図(a)に示すように
、下部制御電極6と下部制御電極7が形成する゛電界を
、コロナワイヤ2と対向電極3で形成する電界と同方向
に設定すれば、イオンはイオン流制御孔4をイオン流1
゜aのように通過し、対向電圧3上の訪屯体からなる記
録媒体8上に静′@潜像9を形成する。また、第1図(
b)のように、上部制#電極6と下部制御電極Tが形成
する電界を逆にすると、イオンはイオン流10bのよう
に上部制御電植6に吸収され静電潜像9は形成されない
。なお、第1図(a)。 (b)では7パーチヤ1aisを1個のみ示したが実際
には】ラインに多数個設けられる。 上記従来のイオン流を制御して階調記録を行う方法には
、上部制御型a36と下部側alt[極7の間に記録信
号1に対応したパルス幅の電圧を印加するパルス幅制御
方法と、同じく記録イ目号に対応した大きさの電圧を印
加する電圧制御方法がある。 前者の方法はパルス幅を制御するためにディジタル回路
で実現しや丁いという利点があるが、形成される静電潜
像を現像する点を考えると階調再現性がよくないという
欠点がある。また、後者の方式は電圧を制御してイオン
ビーム径を制御しているため階調再現性がよいという利
点があるが、各アパーチャ′@極5ごとに電圧制御する
回路が複雑、高価となるという欠点がある。 〔発明の概要〕 この発明は、これらの欠点を除去するため、記録のドツ
ト周期と同じ周期で変化する電圧を記録信号に対応した
パルス幅でON、OFFさせ、記録のドツト周期と同じ
周期でイオン流の密度を変化させること九よりi己録す
るよう圧したものである。以下図面九ついてこの発明の
詳細な説明する。 〔発明の実施例〕 第2図はこの発明の一実施例であって、符号2゜5〜7
は第1図に示した\のと同じであり、11は前記7パー
チヤ屯a!5に印加する電圧を発生する電圧発生回路、
12..122,123. ・−山−はON。 OFF信号入力部(なお、以下総称するときは単に12
という。他の符号についても同じとする)、13、+ 
132+ 133+・・・・・・は制御信号出力部、1
4.。 14、、 14.、・山・・はトランジスタ、151,
1!12+158.・・・・・・ は抵抗器である〇な
お、制御信号出力部13はそれぞれ7パーチヤ電極5に
印加される。 第3図(a)はコロナワイヤ2から発生するイオン電流
の波形を示し、第3図(b)は電圧発生回路まり、1ラ
インのドツトから次のラインのドツトとの記録間隔であ
る(1ラインのドツトは一度に記録される)。図示のよ
うに出力は記録ドツト周期Tと同じ周期で変化している
。 これを動作させるには、コロナワイヤ2およびトランジ
スタ14の各コレクタに第3図(a)、 (b)に示す
波形のイオン電流および電圧をそれぞれ印加した状態で
、9N、OFF信号入力部12へのONのタイミングお
よびON信号のパルス幅を記録信号に対応して制御する
。 したがって、1ilf1141画像を記録する場合、静
電潜像を面積階調的に形成することができ、記録の再現
性2表現能力に優れている。面積階調的に記録できる理
由を以下に示す。 第2図において、第3図(b)に示すように電圧発生回
路11から加えられる電圧が低くイオンビーム径が小さ
いときは、第3図(a)に示すようにイオン電流は大き
くイオン密度は高くなる。逆にイオンビーム径が大きく
なるとイオン密度は低くなる。このようにイオンビーム
径とイオン密度の積がほぼ一定となるように制御すると
、静ta潜像め電荷密度をほぼ一定にすることができる
。 次に記録の再現性、表現能力に優れる理由は、以下に示
すように主に現像による。 第4図にこの発明による静電潜像を、また、第5図にイ
オンビーム径、イオン電流を変調しないでパルス幅のみ
を制御した場合の静電潜像を示す。 第4図、第5図における#1〜#40波形はパルス幅が
町〜#4の順に大きくなっている波形を示し、Lは現像
スライスレベル、横軸は位置(記録の大きさ)、縦軸は
電荷密度を示す。 第5図の従来例では現像スライスレベルLで切ってみる
と、 1.20波形のような低い電荷密度のときは記録
は全くなされず、#a 、 #4の波形になつ
[Technical Field of the Invention] The present invention relates to a recording method that performs step-by-step recording by controlling the ion beam diameter and ion flow density in a recording method by controlling an ion flow. [Prior Art] First, the principle of electrostatic recording using ion flow will be explained with reference to FIG. As shown in FIGS. 1(a) and 1(b), by applying a high voltage of several KV between the ion generator 1 and the corona wire 2, the ions generated by the corona wire 2 are Due to the electric field formed by the opposing vIi electrodes 3, the ions pass through the ion flow control hole 4 with a diameter of, for example, about 100 to 500 μm, but the amount of ion passing is determined by the upper control'@pole 6 forming the aperture electrode 5 and the lower control electrode 7. controlled by an electric field. That is, as shown in FIG. 1(a), if the electric field formed by the lower control electrode 6 and the lower control electrode 7 is set in the same direction as the electric field formed by the corona wire 2 and the counter electrode 3, ions will Ion flow control hole 4 is connected to ion flow 1
It passes as shown at ゜a, and forms a static '@ latent image 9 on a recording medium 8 consisting of a visiting body on a counter voltage 3. Also, Figure 1 (
If the electric fields formed by the upper control electrode 6 and the lower control electrode T are reversed as in b), the ions are absorbed by the upper control electrode 6 like the ion flow 10b, and the electrostatic latent image 9 is not formed. In addition, FIG. 1(a). In (b), only one 7-percha 1ais is shown, but in reality, a large number of them are provided on the line. The above conventional method of controlling the ion flow to perform gradation recording includes a pulse width control method of applying a voltage with a pulse width corresponding to the recording signal 1 between the upper control type a36 and the lower side alt [pole 7]. Similarly, there is a voltage control method in which a voltage of a magnitude corresponding to the recording number is applied. The former method has the advantage of being easy to implement with a digital circuit to control the pulse width, but has the disadvantage of poor gradation reproducibility when considering the point of developing the electrostatic latent image that is formed. . In addition, the latter method has the advantage of good gradation reproducibility because the ion beam diameter is controlled by voltage control, but the voltage control circuit for each aperture'@pole 5 is complicated and expensive. There is a drawback. [Summary of the Invention] In order to eliminate these drawbacks, the present invention turns on and off a voltage that changes at the same period as the recording dot period with a pulse width corresponding to the recording signal. It is important to note that changing the density of the ion flow is important. The present invention will be described in detail below with reference to the drawings. [Embodiment of the invention] Fig. 2 shows an embodiment of this invention, in which symbols 2°5 to 7
is the same as \ shown in Figure 1, and 11 is the 7 percha ton a! a voltage generation circuit that generates a voltage to be applied to 5;
12. .. 122, 123.・-Mountain- is ON. OFF signal input section (hereinafter collectively referred to as simply 12
That's what it means. The same applies to other signs), 13, +
132+ 133+... is a control signal output section, 1
4. . 14,, 14. ,・mountain...is a transistor, 151,
1!12+158. . . . is a resistor 〇 Note that the control signal output section 13 is applied to each of the seven percha electrodes 5. FIG. 3(a) shows the waveform of the ion current generated from the corona wire 2, and FIG. 3(b) shows the voltage generation circuit, the recording interval from one line of dots to the next line's dots (1 The line dots are recorded one at a time). As shown in the figure, the output changes at the same period as the recording dot period T. To operate this, apply the ionic current and voltage having the waveforms shown in FIGS. 3(a) and 3(b) to each collector of the corona wire 2 and the transistor 14, and then input the 9N and OFF signal input section 12. The ON timing and the pulse width of the ON signal are controlled in accordance with the recording signal. Therefore, when recording a 1ilf1141 image, an electrostatic latent image can be formed in an area gradation manner, and the recording reproducibility 2 is excellent in expressive ability. The reason why it is possible to record in area gradation manner is as follows. In FIG. 2, when the voltage applied from the voltage generating circuit 11 is low and the ion beam diameter is small, as shown in FIG. 3(b), the ion current is large and the ion density is small, as shown in FIG. 3(a). It gets expensive. Conversely, as the ion beam diameter increases, the ion density decreases. By controlling the product of the ion beam diameter and ion density to be approximately constant in this manner, the static latent image charge density can be maintained approximately constant. Next, the reason for the excellent recording reproducibility and expressive ability is mainly due to development, as described below. FIG. 4 shows an electrostatic latent image according to the present invention, and FIG. 5 shows an electrostatic latent image when only the pulse width is controlled without modulating the ion beam diameter or ion current. Waveforms #1 to #40 in FIGS. 4 and 5 indicate waveforms in which the pulse width increases in the order of pulse width to #4, where L is the development slice level, the horizontal axis is the position (recording size), and the vertical axis is the position (recording size). The axis shows charge density. In the conventional example shown in Fig. 5, when cutting at the development slice level L, no recording is made at all when the charge density is low, such as the 1.20 waveform, resulting in waveforms #a and #4.

【はじめ
て記録が行われる。 これ圧対し、第4図に示すこの発明では、 】の波形の
ときでも現像スライスレベルL以上となり、細いイオン
ビーム径により記録が行わオしることがわかる。そして
、現像される鎖酸がパルス幅に従って増大する様子がほ
ぼ比例しているため、現像される領域を制御しやすいこ
とがわかる。 次に7バーチヤ電極5に印加する電圧の大きさKよって
イオンビーム径を制御できることを第6図(a)〜(C
)によって説明する。これはイオンの軌跡の計算機シミ
ュレーション結果である。 第6図(a) 、(b) 、(c)は第1図に示したア
パーチャ電極5、つまり上部、下部制御電極6,7に印
加する電圧変化によるイオンビーム径の変化を示したも
ので、イオン流制御孔4の中心から半分のみ示しである
。イオンビーム径は第6図<a)〜(C)に示されるよ
うに、アパーチャ電極5に加える電圧で制御できる。 すなわち、第6図(a) + (b) 、(c)で、E
1+B2 + E3はそれぞれ下部制御重機6の近傍の
電界。 上部制御電極6と下部制御[伸yとの間の電界。 および下部制御重機7の近傍の電界を示している。 第6図(a)は、E!/ El =−Q、5. Es/
 El = 4の場合で、イオン流10Aはイオン流制
御孔4を通過できず記録は行われない。 第61fiJは、El / El = 0 + Es 
/ J = 4の場合であり、細いイオン流10Bによ
って記録が行われることを示している。 第6図(C)は、E、/E、=2.E3/E、=4の場
合であり、太いイオン流10Cによって記録が行われる
ことを示している。 なお、上記実施例では7パーチヤ電極5への電圧印加を
上部制御電極6と下部制御型a!Tとの間に行うように
したが、これは一方の電極のみに加え他方の電極を一定
電位に保つようにしてもよい。 さらに、イオン電流波形ならびに電圧発生回路11の出
力電圧波形は、第3図(a) 、(b)のように直線状
に変化するもののみでなく、上に凹、または上に凸の曲
線状に変化するもの等信の電圧波形を用いることもでき
る。 〔発明の効果〕 以上説明したように、この発明はイオンビーム径が変調
されるように記録のドツト周期と同じ周期で変化する重
圧を用い、この電圧を記録信号に対応したパルス幅でO
N、OFFさせるようにし。 また、イオン流の密度を記録のドツト周期と同じ周期で
変化させイオン流密度を制御するようにしたので、容易
圧実現できる回路で階調再現性に優れた記録ができると
いう利点がある。
[Recording is performed for the first time. In contrast, in the present invention shown in FIG. 4, even when the waveform is . It can be seen that since the amount of chain acid to be developed increases almost proportionally to the pulse width, it is easy to control the area to be developed. Next, it is shown in FIGS. 6(a) to (C) that the ion beam diameter can be controlled by the magnitude K of the voltage applied to the seven-virtier electrode 5.
). This is the result of a computer simulation of the ion trajectory. Figures 6(a), (b), and (c) show changes in the ion beam diameter due to voltage changes applied to the aperture electrode 5, that is, the upper and lower control electrodes 6 and 7 shown in Figure 1. , only half of the ion flow control hole 4 from the center is shown. The ion beam diameter can be controlled by the voltage applied to the aperture electrode 5, as shown in FIGS. That is, in Fig. 6 (a) + (b), (c), E
1+B2+E3 are electric fields near the lower control heavy equipment 6, respectively. Electric field between the upper control electrode 6 and the lower control electrode [extension y]. and shows the electric field near the lower control heavy equipment 7. FIG. 6(a) shows E! /El=-Q,5. Es/
In the case of El = 4, the ion flow 10A cannot pass through the ion flow control hole 4 and no recording is performed. The 61st fiJ is El / El = 0 + Es
/ J = 4, indicating that recording is performed using the narrow ion flow 10B. FIG. 6(C) shows E,/E,=2. This is the case where E3/E=4, indicating that recording is performed with a thick ion flow 10C. In the above embodiment, voltage is applied to the seven pertier electrodes 5 through the upper control electrode 6 and the lower control type a! Although this is done between the two electrodes, it is also possible to maintain only one electrode and the other electrode at a constant potential. Furthermore, the ion current waveform and the output voltage waveform of the voltage generation circuit 11 vary not only linearly as shown in FIGS. It is also possible to use a constant voltage waveform that changes as follows. [Effects of the Invention] As explained above, the present invention uses a heavy pressure that changes at the same period as the recording dot period so that the ion beam diameter is modulated, and this voltage is oscillated with a pulse width corresponding to the recording signal.
N, turn it off. Furthermore, since the ion flow density is controlled by changing the density of the ion flow at the same period as the recording dot period, there is an advantage that recording with excellent gradation reproducibility can be performed using a circuit that can easily realize pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、(b)はイオン流を用いた静電記録の
原理を説明する図、第2図はこの発明の一実施例の要部
の回路図、第3図(a)’、(b)はイオン電流と電圧
発生回路の←出力の波形例を示す図、第4図はこの発明
による静1!潜像を示す図、m5図は同じ〈従来のパル
ス幅変祠方式による静電潜像を示す図、第6図(a)〜
(c)はイオンビーム径の制御例を示す図である。 図中、10はイオン流、11は電圧発生回路、12はO
N、OFF信号入力部、13は制御信号出力部、14は
トランジスタ、15は抵抗器である。 第1図 (C]) (b) 8 第2図 2 第3図 (a) (b) 第4図 第5図 第6図 (a) (b) (c)
Figures 1 (a) and (b) are diagrams explaining the principle of electrostatic recording using ion flow, Figure 2 is a circuit diagram of the main part of an embodiment of the present invention, and Figure 3 (a)' , (b) is a diagram showing an example of the output waveform of the ionic current and voltage generation circuit, and FIG. The diagram showing the latent image and the m5 diagram are the same.
(c) is a diagram showing an example of controlling the ion beam diameter. In the figure, 10 is an ion flow, 11 is a voltage generation circuit, and 12 is O
N is an OFF signal input section, 13 is a control signal output section, 14 is a transistor, and 15 is a resistor. Figure 1 (C]) (b) 8 Figure 2 2 Figure 3 (a) (b) Figure 4 Figure 5 Figure 6 (a) (b) (c)

Claims (1)

【特許請求の範囲】[Claims] イオン流を7バーチヤ電−で制御する記録方法において
、前記7パーチヤ電極に印加する電圧として記録のドツ
ト周期と同じ周期で変化する電圧を記録信号に対応した
パルス幅でON、OFFしたものを用い、前記イオン流
の電圧ON時におけるイオンビーム径を変副すると同時
に前記イオン流の密度を前記記録のドツト周期と同じ周
期で変化させて記録を行うことを特徴とするイオン流制
御階調記録方法。
In a recording method in which the ion flow is controlled by seven pertier electrodes, a voltage that changes at the same period as the recording dot period is applied to the seven pertier electrodes, and is turned on and off with a pulse width corresponding to the recording signal. , an ion flow control gradation recording method characterized in that recording is performed by varying the ion beam diameter when the voltage of the ion flow is ON, and at the same time changing the density of the ion flow at the same period as the dot period of the recording. .
JP59073891A 1984-04-14 1984-04-14 Ion flow controlled gradation recording method Granted JPS60219071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073891A JPS60219071A (en) 1984-04-14 1984-04-14 Ion flow controlled gradation recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073891A JPS60219071A (en) 1984-04-14 1984-04-14 Ion flow controlled gradation recording method

Publications (2)

Publication Number Publication Date
JPS60219071A true JPS60219071A (en) 1985-11-01
JPH0567429B2 JPH0567429B2 (en) 1993-09-24

Family

ID=13531279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073891A Granted JPS60219071A (en) 1984-04-14 1984-04-14 Ion flow controlled gradation recording method

Country Status (1)

Country Link
JP (1) JPS60219071A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144958A (en) * 1985-12-19 1987-06-29 Fuji Xerox Co Ltd Ion current static recorder
US4727385A (en) * 1985-07-08 1988-02-23 Olympus Optical Co., Ltd. Image forming apparatus including means for dehumidifying
JPS63218372A (en) * 1987-03-07 1988-09-12 Fuji Xerox Co Ltd Ion flow control recording method
EP0552803A2 (en) 1992-01-22 1993-07-28 Dai Nippon Printing Co., Ltd. Halftone image recording device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727385A (en) * 1985-07-08 1988-02-23 Olympus Optical Co., Ltd. Image forming apparatus including means for dehumidifying
JPS62144958A (en) * 1985-12-19 1987-06-29 Fuji Xerox Co Ltd Ion current static recorder
JPS63218372A (en) * 1987-03-07 1988-09-12 Fuji Xerox Co Ltd Ion flow control recording method
EP0552803A2 (en) 1992-01-22 1993-07-28 Dai Nippon Printing Co., Ltd. Halftone image recording device
EP0552803A3 (en) * 1992-01-22 1994-02-16 Dainippon Printing Co Ltd

Also Published As

Publication number Publication date
JPH0567429B2 (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JPS60219071A (en) Ion flow controlled gradation recording method
JPH0527854B2 (en)
JPS6021260A (en) Gradation recording system
EP0552803B1 (en) Halftone image recording device
JPS612574A (en) Gradation recording method
JPH04323051A (en) Gradation recording method
JPH02102070A (en) Ion flow electrostatic recorder
JPS58194064A (en) Picture recording device
JPH0434449A (en) Tone recorder
JPH0630907B2 (en) Electrostatic recording method
JPS61263768A (en) Ion flow controlling electrode
JPH03261571A (en) Corona ion recording device
JPS6038737B2 (en) coordinate input device
JPS6355746B2 (en)
JPS57151966A (en) Electrostatic recorder
JPS61254353A (en) Ion stream static recording device
JPS604985B2 (en) Two-color electrostatic recording device
JPH06227027A (en) Recording apparatus
JPS62144958A (en) Ion current static recorder
JPH02171258A (en) Corona ion recorder
JPH0259352A (en) Ink jet recording device
JPH06415B2 (en) Method of equalizing resistance of thermal head
JPS58100153A (en) Image recording device
JPS61148428A (en) Liquid crystal shutter
JPS57101863A (en) Electrostatic recorder