JPS60218614A - Image forming lens - Google Patents

Image forming lens

Info

Publication number
JPS60218614A
JPS60218614A JP7538984A JP7538984A JPS60218614A JP S60218614 A JPS60218614 A JP S60218614A JP 7538984 A JP7538984 A JP 7538984A JP 7538984 A JP7538984 A JP 7538984A JP S60218614 A JPS60218614 A JP S60218614A
Authority
JP
Japan
Prior art keywords
lens
optical axis
refractive index
shape
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7538984A
Other languages
Japanese (ja)
Inventor
Jun Hattori
純 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7538984A priority Critical patent/JPS60218614A/en
Priority to US06/720,082 priority patent/US4762403A/en
Publication of JPS60218614A publication Critical patent/JPS60218614A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only

Abstract

PURPOSE:To obtain a wide-field-angle photographic lens which has various aberrations compensated excellently by isuing two distributed index lenses. CONSTITUTION:This lens consists of two lenses which vary in refractive index continously with the distance from the optical axis. The 1st lens arranged at an object field side is thickest on the optical axis, and becomes thinner and thinner according to the distance from the optical axis, and the refractive index distribution has the largest refractive index on the optical axis and decreases in refractive index according to the distance from the optical axis. The 2nd lens arranged at the image field side is thickest on the optical axis and increases in thickness according to the distance from the optical axis, and its refractive index distribution has the maximum refractive index on the optical axis and decreases in refractive index according to the ditance from the optical axis. The 1st and the 2nd lens both have positive power; and the object-field side surface of the 1st lens is convex to the object field side and the object-field side of the 2nd lens is concave to the object field side.

Description

【発明の詳細な説明】 本発明は、光軸と直交する面内に於いて、光軸・を中心
にしてその屈折率が徐々に変化する。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, the refractive index gradually changes around the optical axis in a plane perpendicular to the optical axis.

いわゆる屈折率分布が存する媒質を用い九−例えば写真
用レンズ等に好適な結像レンズに関するものである。
The present invention relates to an imaging lens that uses a medium having a so-called refractive index distribution and is suitable for, for example, a photographic lens.

従来はとんどの結像レンズは屈折率が一様な媒質を用い
て構成されており、例えば半画角25° FNOl、4
−1.8fj!If(FIHIIしy、(a写真用レン
ズにみられるごとく均質媒質レンズ6〜7枚による構成
が一毅的であみ。これをより少な一レンズ枚数で構成す
ることが出来る力らば、レンズ加工に要する労力の軽減
、レンズ保持機構の簡素化、更には偏心等の′製作誤差
の介入する要素が少なくなる等の点で極めて有利である
Conventionally, most imaging lenses are constructed using a medium with a uniform refractive index, such as a half-field angle of 25° FNOl, 4
-1.8fj! If (FIHIIy, (a) A configuration with 6 to 7 homogeneous medium lenses as seen in photographic lenses is a must.If it is possible to configure this with a smaller number of lenses, lens processing This is extremely advantageous in that it reduces the labor required for manufacturing, simplifies the lens holding mechanism, and reduces the number of intervening factors such as eccentricity and other manufacturing errors.

しかしながら、従来技術で杜光学性能を維持しつつ構成
枚数を現状より蛾らすのは極めて困難である。
However, with the prior art, it is extremely difficult to reduce the number of lenses compared to the current state while maintaining good optical performance.

一方、近年屈折率分布型レンズが新規な光学技術として
注目を集め、正、立等倍結倫素子として用いられるプレ
イレンズや、軸上近傍の結像のみを考慮しtコリメータ
レンズ、光デイスク用ピックアップレンズなどへの応用
が多数提案されで−る、更にAtklnson等の論文
(APPLT 顆OPTICg、701,21.46 
(1982) ) においては。
On the other hand, in recent years, gradient index lenses have attracted attention as a new optical technology, such as play lenses used as positive and vertical equal-magnification collimation elements, t-collimator lenses that take into account only near-on-axis imaging, and optical disc lenses. Many applications have been proposed for pickup lenses, etc., and the paper by Atklnson et al.
(1982)).

写真用レンズへの応用が報告されて−る。この写真用レ
ンズは2枚の屈折率分布型レンズで構成され、物界側に
は、光軸上で最も肉厚が薄く、光軸から離れるに従って
肉厚が増加し、物体側に凸なる面を向は九メニスカス形
状で且つ光軸上で最も屈折率が高く、光軸から離れるに
従って屈折率の値が連続的に減少する屈折率分布を有す
る第1のレンズが、像界側には光軸上で最□も肉厚が薄
く光軸から離れるに従って肉厚が増加し、像界側に凸な
る面を向けたメニスカス形状で、且つ光軸上で最も屈折
率が高く、光軸から離れるに従って屈折率の値が連続的
に減少する屈折率分布を有する第2のレンズが配されて
−21,この構成によ11が2の標準レンズを得てiる
本ので、従来の均質レンズによるものに比べ、大幅にレ
ンズ枚数を少なくしてI/%ル。
Application to photographic lenses has been reported. This photographic lens is composed of two graded refractive index lenses.On the object side, there is a surface that is thinnest on the optical axis, increases in thickness as it moves away from the optical axis, and is convex toward the object side. The first lens has a nine-meniscus shape and has a refractive index distribution in which the refractive index is highest on the optical axis and the refractive index value decreases continuously as it moves away from the optical axis. It has the thinnest wall thickness on the optical axis and increases in thickness as it moves away from the optical axis, and has a meniscus shape with a convex surface facing the image field side.It also has the highest refractive index on the optical axis and moves away from the optical axis. A second lens having a refractive index distribution in which the refractive index value continuously decreases according to -21 is arranged, and with this configuration, a standard lens of 11 to 2 is obtained. The number of lenses is significantly reduced compared to that of the original model.

そして比較的に大きな画角を有する結像レンズに屈折率
分布型レンズを応用した例は、この報告以外には、はと
んど見られない。
Other than this report, there are hardly any examples of applying a gradient index lens to an imaging lens having a relatively large angle of view.

本発明の目的は、屈折率分布が存する媒質を用−1極め
て少ないレンズ枚数で構成されるにも拘わらず収差が良
好に補正され且つ写真レンズ等に適用可能な広画角を有
する結像レンズを提供するととにある。
An object of the present invention is to provide an imaging lens that uses a medium with a refractive index distribution, and that has aberrations well corrected despite being composed of an extremely small number of lenses, and that has a wide angle of view that can be applied to photographic lenses, etc. It is said to provide.

本発明に係る結像レンズ系に於いては、光軸からの距@
に応じて屈折率が連続的に変化する媒質より成る2枚の
レンズで形成される。物界側に配される第ルンズの′形
状は、光軸上で最奄肉厚が厚く、光軸から離れるに従っ
て肉厚が減少する様な形状(以後本明細書では、斯様な
形状を凸の形状と呼ぶ)で、その屈折率分布は光軸上で
屈折率が最も小さく、光軸から離れるに伴って屈折率の
値が増大する分布(以後本明細書では負の屈折力の屈折
率分布と呼ぶ)を有する。一方、像界側に配される第2
レンズの形状は、光軸上で最も肉厚が薄く、光軸から離
れるに従って肉厚が増大する様な形状(以後、斯様な形
状を凹の形状と呼ぶ)で、その屈折率分布は、光軸上で
屈折率が最屯大きく、光軸から離れるに伴って屈折率の
値が減少する分布(以後、正の屈折力の屈折率分布と呼
ぶ)を有してth!、。
In the imaging lens system according to the present invention, the distance from the optical axis @
It is formed by two lenses made of a medium whose refractive index continuously changes according to the change in refractive index. The shape of the first lun arranged on the material world side is such that the maximum wall thickness is thick on the optical axis, and the wall thickness decreases as it moves away from the optical axis (hereinafter, in this specification, such a shape will be referred to as The refractive index distribution has the smallest refractive index on the optical axis, and the refractive index value increases as it moves away from the optical axis (hereinafter referred to as a refractive index with negative refractive power). rate distribution). On the other hand, the second
The shape of the lens is such that it is thinnest on the optical axis and increases in thickness as it moves away from the optical axis (hereinafter, such a shape is referred to as a concave shape), and its refractive index distribution is as follows: It has a distribution in which the refractive index is highest on the optical axis and decreases as it moves away from the optical axis (hereinafter referred to as a refractive index distribution with positive refractive power). ,.

上記屈折率分布型のレンズの□パワー紘、屈折率分布の
状態と、レンズ形状との相互の関係によ砂定まるもので
あ石が、本発明に係る実施例で示す様に、第ルンズ及び
第□2レンズとも、正のパワーを有することが望ましい
。更に形状としては、第ルンズの物界側の面は物界側に
凸なる形状の面が、第2レシズの物界側の面は、物界側
に凹なる形状の面が望ましいのである。
The □power level of the above-mentioned gradient index lens is determined by the mutual relationship between the state of the refractive index distribution and the lens shape. □It is desirable that both of the second lenses have positive power. Further, as for the shape, it is desirable that the surface of the second lens on the material world side be convex toward the material world side, and that the surface of the second lens on the material world side be concave toward the material world side.

以下本発明を詳述する。 □ □本発明の結像レンズを形成するしyズ素子の如く、屈
折率Nが、光軸からの距#rK応じて変化するいわゆる
ラディアルグラデイエントレンズの屈折率N (r)杜
、 ’ N(r)mH0+H,r”4−M、r’+Hsr”
+−−−−□と表わされる。但しN。e ’1 # N
鵞e ”I・・・は定数、了は光軸からの距離を表わす
ものである。この様な分布を有するレンズには、以下の
様な特徴があゐ。
The present invention will be explained in detail below. □ □The refractive index N (r) of a so-called radial gradient lens, which forms the imaging lens of the present invention and whose refractive index N changes depending on the distance #rK from the optical axis, such as the y-z element, is (r) mH0+H, r"4-M, r'+Hsr"
It is expressed as +---□. However, N. e'1 #N
鵞e "I..." is a constant, and "R" represents the distance from the optical axis. A lens with such a distribution has the following characteristics.

(1) 屈折率分布自身が屈折力をもつ、従って近軸領
域における設計の自由度が大きい。
(1) The refractive index distribution itself has refractive power, so there is a large degree of freedom in design in the paraxial region.

(2)屈折率分布がペッツバール和への寄与をもつ。そ
して正の屈折力を屈折率分布に持たせた場合、同等の屈
折力を屈折面に持たせるのに比べ、そのペッツ具−ル和
への寄与は小さ−、従って、ペッツバール和を遺切な値
とし。
(2) The refractive index distribution has a contribution to the Petzval sum. When a positive refractive power is added to the refractive index distribution, its contribution to the Petzval sum is small compared to when the refractive surface has an equivalent refractive power. year.

偉面湾曲を補正することが比較的蓉易である。It is relatively easy to correct the surface curvature.

(3) 非球面に類似した収差−補正効果がある。即ち
、4次以上の分布係数(M、、N、・・・)によって近
軸tK影響を与えることなく賭収差をある範囲において
コントロールすることができる。
(3) It has an aberration-correcting effect similar to that of an aspherical surface. That is, it is possible to control the gambling aberration within a certain range by using the fourth-order or higher distribution coefficients (M, , N, . . . ) without affecting the paraxial tK.

(4) 色消効果がある。即ち、2次の係数Mmの波長
依存性が色収差係数に影響を4つため、これKよ9色収
差をコントa−ルすることができる。
(4) Has an achromatic effect. That is, since the wavelength dependence of the second-order coefficient Mm has four effects on the chromatic aberration coefficient, it is possible to control nine chromatic aberrations.

本発明線、これらの特徴を活かし1次のような構成をと
り”twる。即ち、物界側の第ルンズの形状を凸、情界
側の第うレンズの形状を凹とし、更に第ルンズの屈折率
分布の屈折力を負、第2レンズの屈折率分布の屈折力を
正とする。
The line of the present invention takes advantage of these features and adopts a first-order configuration.That is, the shape of the first lun on the material world side is convex, the shape of the concave lens on the information world side is concave, and The refractive power of the refractive index distribution of the second lens is negative, and the refractive power of the refractive index distribution of the second lens is positive.

既に述べたようK、屈折率外布に正の屈折力を分担させ
た方が像面彎曲の補正に有利である。
As already mentioned, it is more advantageous for correcting the curvature of field to share positive refractive power with the outer refractive index cloth.

従って本発明では第2レンズの屈折率分布に強い正の屈
折力を持たせ、ペッツバール和への正の寄与を小さくし
ている。更に第2レンズの形状を凹とすることによ争、
ペッツバール和への負の寄与を待たせ像面彎曲の補正を
図ると共に、球面収差等の他の収差の補正をも行なう。
Therefore, in the present invention, the refractive index distribution of the second lens is given a strong positive refractive power to reduce the positive contribution to the Petzval sum. Furthermore, by making the shape of the second lens concave,
In addition to correcting the field curvature by waiting for its negative contribution to the Petzval sum, other aberrations such as spherical aberration are also corrected.

この場合、軸外収差の補正のため、物界側の面を凹面と
することがmましい、、また分布の非球面効果により球
面収差等を補正するには、4次の分布係数N、を正の値
とす鼠のが望ましい。
In this case, in order to correct off-axis aberrations, it is preferable to make the surface on the object world side a concave surface, and in order to correct spherical aberrations etc. by the aspherical effect of the distribution, the fourth-order distribution coefficient N, It is desirable to have a positive value.

一般に、第2レンズ社全体のパワーとして比較的強い正
の屈折力を持つので、球面収差が補正不足とまる。これ
を、第ルンズの負の屈折力の屈折率外布により補正する
。この場合収差補正上、4次の分布係数N、け正の値と
するのが望ましい。
In general, since the second lens has a relatively strong positive refractive power as a whole, spherical aberration can be prevented from being under-corrected. This is corrected by the outer refractive index distribution of the negative refractive power of the second lens. In this case, for aberration correction, it is desirable to set the fourth-order distribution coefficient N to a positive value.

更に良好な収差補正を行なうため、以下の条件を満たす
ことが望ましい。
In order to perform even better aberration correction, it is desirable that the following conditions be satisfied.

1≦r 1 / f≦2.9 (1) −042≦r、 / f≦−o、s s (2)0.5
 ≦t1./f≦o、s (3)0.28≦(1,/f
≦0.55(4)ことにfl−i全系の焦点距離、 r
t+rsは物体側から数えて第1、WEB面の1率半径
、即ちr。
1≦r 1 / f≦2.9 (1) −042≦r, / f≦−o, s s (2) 0.5
≦t1. /f≦o,s (3)0.28≦(1,/f
≦0.55 (4) In particular, the focal length of the entire fl-i system, r
t+rs is the 1st radius of the first WEB surface as counted from the object side, that is, r.

は第ルンズの物界側の、r、は第2レンズの物界側の曲
率半径であシ、alは第ルンズの、d、は第2レンズの
軸上肉厚である。
is the radius of curvature of the object-world side of the second lens, r is the radius of curvature of the object-world side of the second lens, al is the axial thickness of the second lens, and d is the axial thickness of the second lens.

r@ /fが条件式(1)の下限をこえると#11レン
ズの物界側の面で発生する球面収差が大とな9、全系で
の補正が困難となる。tた上限をこえると軸外光線の5
[ルンズの物界側の面での屈折が大きくな9、軸外収差
が悪化する。
When r@/f exceeds the lower limit of conditional expression (1), the spherical aberration generated on the object-world side surface of the #11 lens becomes large9, making it difficult to correct it in the entire system. 5 of off-axis rays when the upper limit is exceeded.
[The refraction on the surface of the lens on the object side increases9, and off-axis aberrations worsen.

r、/fが(2)の下限をζえると、ペッツバール和が
大となり像面彎曲の補正が困難とな砂オた上限をこえる
とIIE2レンズの物界側の面での高次収差の発生が大
とな−、特に球面収差、コマ条件式(5) 、 (4)
はレンズ厚に関する条件であり。
When r, /f exceeds the lower limit of (2), the Petzval sum becomes large, making it difficult to correct field curvature. The occurrence is large, especially spherical aberration, coma conditional expressions (5), (4)
is a condition regarding lens thickness.

a、、a3が条件式(5) 、 (4)の下限をこえる
と各レン□ズの屈折力分布が強くな9諸収差が悪化する
と共に、媒質の製造が困難と、なる、′また(3)、(
4)の上限をこえると全系が大型化し、ノ(ツクフオー
カ□ 以下に本発明の実施例にりiて説明する。
If a, , a3 exceeds the lower limit of conditional expressions (5) and (4), the refractive power distribution of each lens will be strong, 9 various aberrations will worsen, and it will be difficult to manufacture the medium. 3), (
If the upper limit of 4) is exceeded, the entire system will become larger.

表1は本発明の第1〜第7実施例のレンズデータを示す
、各実施例は半画角24°、実施例1゜2はF′厘が1
.8、その他の実施例はFAが1.4であり、焦点距離
を1に規格化して−る。
Table 1 shows the lens data of the first to seventh embodiments of the present invention. Each embodiment has a half angle of view of 24°, and Example 1°2 has an F' angle of 1.
.. 8. In other embodiments, the FA is 1.4 and the focal length is normalized to 1.

速時の3次の球面収差係数1、コマ収差係数1、非点収
差係数値、ペッツバール和P、歪曲収差係数Vの値を示
す。表でみるように、各実施例弁論収差係数が良好に補
正されている。
The values of the third-order spherical aberration coefficient 1, coma aberration coefficient 1, astigmatism coefficient value, Petzval sum P, and distortion aberration coefficient V at high speed are shown. As seen in the table, the speech aberration coefficients of each example are well corrected.

第1.第3及び第4実施例で社、第ルンズの形状は両凸
形状、第2レンズの形状は物界側に凹面を向けたメニス
カス形状、#!2実施例では、第ルンズの形状は物界側
に凸面を肉汁たメニスカス形状、第2レンズの形状社物
界側に凹面を向けた平−凹の形状、第5爽施例では第ル
ンズの形状は両凸形状、第2レンズの形状は物界側に凹
面を向けた平−凹の形状、第6実施例では、第ルンズの
形状は物界側に凸面を向けた平−凸の形状!第2レンズ
の形状は物界側に凹面を向けた平−凹のt状、第7実施
例では、第ルンズの形状は両凸形状、ls2しyズの形
状は物界側に凹面を向けたグニスカス形状である。屈折
率分布が存する媒質に、球面加工を施す場合、屈折率外
布によってきまる光−に対して偏心なく加工せねばなら
ず、従来の均質媒質の球面加工に比べて聾かしい。従っ
てレンズの片面を平面とした第2、第5及び第6実施例
は量産性において大食な効果があるといえる。
1st. In the third and fourth embodiments, the shape of the second lens is a biconvex shape, the shape of the second lens is a meniscus shape with a concave surface facing the object world side, and #! In the second example, the shape of the second lens is a meniscus shape with a convex surface facing the material world, and the shape of the second lens is a plano-concave shape with a concave surface facing the material world. The shape is a biconvex shape, the shape of the second lens is a plano-concave shape with a concave surface facing the object world side, and in the sixth embodiment, the shape of the second lens is a plano-convex shape with a convex surface facing the object world side. ! The shape of the second lens is a plano-concave T-shape with the concave surface facing the object world side. In the seventh embodiment, the shape of the second lens is a biconvex shape, and the shape of the ls2 and y lenses is a plano-concave T-shape with the concave surface facing the object world side. It has a sinusoidal shape. When processing a medium with a refractive index distribution into a spherical surface, the processing must be performed without eccentricity with respect to the light determined by the outer refractive index distribution, which is harsher than the conventional spherical processing of a homogeneous medium. Therefore, it can be said that the second, fifth and sixth embodiments, in which one side of the lens is flat, are highly effective in terms of mass production.

表 1 イ91 第5実施料 II!4実施例 第5実施例 第6実施例 m7実施例 また1表3は本発明の*−8−施例のレンズデータを示
し、表4はその3.次の諸収差係数及び軸上色収差係数
り1倍率色収差係数Tの値をポス、この実施例は色収差
の補正を図った例であ、す、表4にみるように単、色5
次収差係教とQK色収差係数lも良好に補正されている
。第1図にこの第8実施例のレンズ断面図を、第2図(
A)に第ルンズのd@、g@に対応する屈折本分st、
M 2 図(B)JCg 2.v y スf) d4I
、 g @lc対応する屈折率分布を示した、また第3
図は第8実施例の諸収差図であり、高次まで良好に収差
補正がなされていることがわ泰る。
Table 1 I91 Fifth license fee II! 4th Example 5th Example 6th Example m7 Example 1 Table 3 shows the lens data of *-8-Example of the present invention, and Table 4 shows the lens data of 3. The values of the following various aberration coefficients and longitudinal chromatic aberration coefficient 1x chromatic aberration coefficient T are postulated.This example is an example in which chromatic aberration is corrected.
The order aberration coefficient and the QK chromatic aberration coefficient l are also well corrected. Fig. 1 shows a cross-sectional view of the lens of this eighth embodiment, and Fig. 2 (
A) The refraction main st corresponding to the d@ and g@ of the first runes,
M 2 Figure (B) JCg 2. v y Sf) d4I
, g @lc showed the corresponding refractive index distribution, and the third
The figure is a diagram showing various aberrations of the eighth embodiment, and it can be seen that aberrations are well corrected up to high orders.

表 2 更に、色収差の補正を行なう場合1面の屈折によ抄生じ
る色収差を屈折率分布忙よって補正するため、以下の条
件を満足すbことが望まし−。
Table 2 Furthermore, when correcting chromatic aberration, since the chromatic aberration caused by refraction of one surface is corrected by adjusting the refractive index distribution, it is desirable that the following conditions be satisfied.

”IGI 1”)< ” l G 1 (g)”1(1
2(”)〉N+Gz (g) 但し’ IGI (”)−” lG2 (g)は各々1
141.gllK対する・第ルンズの屈折率分布の2次
分布係数を表わし、’+、z(”)、 NIC,2(g
)杜、各々d線1g線に対する第2レンズの屈折率分布
の2次分布係数を表わす。
``IGI 1'') < ``l G 1 (g)''1(1
2('')〉N+Gz (g) However, ' IGI ('')-'' lG2 (g) is 1 each
141. Represents the quadratic distribution coefficient of the refractive index distribution of the luns for gllK, '+,z(''), NIC,2(g
) represents the quadratic distribution coefficient of the refractive index distribution of the second lens for the d-line and 1g-line, respectively.

以上説明したように、本発明忙於いては、ラディアルグ
ラデイエントを有する媒質を用いることによ抄、2枚と
いう極めて少な−レンズ構成枚数で、諸収差が良好に補
正された結蔓象レンズを実現することができた。
As explained above, in the present invention, by using a medium having a radial gradient, a condensing elephant lens with excellent correction of various aberrations can be realized with an extremely small number of lens components of 2. We were able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明に係る結倫レンズの一実施例のレンズ
断面図、第2図(A) 、 (B)は各々、第1図に示
す結儂レンズを形成する各々のレンズの屈折率分布を示
す図、@3図は第1図に示す結。 僧レンズの諸収差図。 γ1・・・物界側より数えて第1番目のレンズ面の曲率
半径d1・・・第1番目のレンズ面と第1+1番目のレ
ンズ面との間の軸上肉厚又は軸上空気間隔 80・・・正弦条件不満足量 M・・、メリデイオナル儂面 S00.サジタル像面 リ E司〆≧ 0 とシ町2 JJ:8爺汗 (9刹0
FIG. 1 is a lens cross-sectional view of one embodiment of the Yuri lens according to the present invention, and FIGS. 2 (A) and (B) respectively show the refraction of each lens forming the YURIN lens shown in FIG. The diagram showing the rate distribution, Figure @3, is the conclusion shown in Figure 1. Diagrams of various aberrations of the monk lens. γ1... Radius of curvature of the first lens surface counting from the object world side d1... Axial thickness or axial air gap between the first lens surface and the 1st+1st lens surface 80 ...Sine condition dissatisfaction amount M..., meridional my side S00. Sagittal image surface R

Claims (1)

【特許請求の範囲】[Claims] (1) 光軸からの距離に応じ□て屈折率が連続的に□
 変化する媒質より成る2枚のレンズで形成され、物界
側に配された第ルンズは光軸から離れるに従ってその屈
折率が大きくなる屈折率分布を有し、その形状は光軸−
ヒで最も肉厚□が厚く、光軸から離れるに□従って肉厚
が減少する形状であり、儂界側に配され危第2レンズは
光軸から離れるに従ってその屈折率が小さくなる屈折率
分布を有し、その形状は光軸上で最も肉厚が薄く、光軸
から離れるに従って肉厚が増加する形状である事を特徴
“とする結像レンズ。
(1) The refractive index changes continuously according to the distance from the optical axis.
It is formed by two lenses made of a changing medium, and the first lens placed on the object world side has a refractive index distribution in which the refractive index increases as it moves away from the optical axis, and its shape is similar to the optical axis -
It has a shape in which the wall thickness □ is the thickest in H, and the thickness decreases as it moves away from the optical axis, and the second lens placed on the outside side has a refractive index distribution whose refractive index decreases as it moves away from the optical axis. An imaging lens having a shape that is thinnest on the optical axis and increases in thickness as it moves away from the optical axis.
JP7538984A 1984-04-13 1984-04-13 Image forming lens Pending JPS60218614A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7538984A JPS60218614A (en) 1984-04-13 1984-04-13 Image forming lens
US06/720,082 US4762403A (en) 1984-04-13 1985-04-04 Imaging optical system having a distributed index lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7538984A JPS60218614A (en) 1984-04-13 1984-04-13 Image forming lens

Publications (1)

Publication Number Publication Date
JPS60218614A true JPS60218614A (en) 1985-11-01

Family

ID=13574782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7538984A Pending JPS60218614A (en) 1984-04-13 1984-04-13 Image forming lens

Country Status (1)

Country Link
JP (1) JPS60218614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046833A (en) * 1988-09-16 1991-09-10 Olympus Optical Co., Ltd. Zoom lens system
US5166827A (en) * 1989-10-27 1992-11-24 Olympus Optical Co., Ltd. Gradient index optical element
US5995295A (en) * 1995-12-13 1999-11-30 Olympus Optical Co., Ltd. Lens system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046833A (en) * 1988-09-16 1991-09-10 Olympus Optical Co., Ltd. Zoom lens system
US5166827A (en) * 1989-10-27 1992-11-24 Olympus Optical Co., Ltd. Gradient index optical element
US5995295A (en) * 1995-12-13 1999-11-30 Olympus Optical Co., Ltd. Lens system

Similar Documents

Publication Publication Date Title
JPH0442650B2 (en)
US4111558A (en) Retrofocus type wide angle objective lens
US4593984A (en) Viewfinder lens system
TWI734356B (en) Optical imaging lens
JPS5913003B2 (en) Zoom lens system
US4755039A (en) Focusing lens
JPS6113206B2 (en)
JPH06308384A (en) Large-diameter wide-angle photographic lens
JPH10301021A (en) Small-sized lens
JP2000028919A (en) Middle telephotographic lens
JPS58220115A (en) Wide angle lens system
JPS60218614A (en) Image forming lens
JPS593725B2 (en) Retrofocus wide-angle photographic lens
JP3038974B2 (en) Small wide-angle lens
JP3380009B2 (en) Zoom lens system
JPS6126044B2 (en)
CN218332133U (en) Fixed focus lens
TWI802148B (en) Imaging lens
JPS60220305A (en) Image-forming lens
JPH085910A (en) Image forming lens system
JPS61113017A (en) Optical system
JPH07261076A (en) Wide-angle lens
JPS6151290B2 (en)
JPH08190049A (en) Optical system for copying machine of three-group three-lens constitution
JPS59155819A (en) Photographic lens