JPS60220305A - Image-forming lens - Google Patents

Image-forming lens

Info

Publication number
JPS60220305A
JPS60220305A JP7682184A JP7682184A JPS60220305A JP S60220305 A JPS60220305 A JP S60220305A JP 7682184 A JP7682184 A JP 7682184A JP 7682184 A JP7682184 A JP 7682184A JP S60220305 A JPS60220305 A JP S60220305A
Authority
JP
Japan
Prior art keywords
lens
refractive index
optical axis
lenses
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7682184A
Other languages
Japanese (ja)
Inventor
Jun Hattori
純 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7682184A priority Critical patent/JPS60220305A/en
Priority to US06/720,082 priority patent/US4762403A/en
Publication of JPS60220305A publication Critical patent/JPS60220305A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain an image-forming lens which has aberrations compensated well and has such wide field angle that it can be applied to a photographic lens or the like, by using a medium having a refractive index distribution and constituting a lens system with a small number of lenses. CONSTITUTION:This lens system is formed with two lenses consisting of a medium whose refractive index is changed continuously in accordance with the distance from the optical axis. The first lens arranged in the object side has such concave shape that the thickness is smallest on the optical axis and is increased according as going away from the optical axis, and further, the first lens has a meniscus shape whose concave is directed to the image side. The second lens arranged in the image side has a concave shape, and the image-side face of the second lens is plane or a concave. The first and the second lenses have the refractive index distribution where the refractive index is highest on the optical axis and is reduced gradually according as going away from the optical axis.

Description

【発明の詳細な説明】 本発cAは、光軸と直交する面内に於いて、光軸を中心
にしてその屈折率が徐々に変化する、いわゆる屈折率分
布が存す為媒質を用い友、例えは写真用レンズ等に好適
な結像レンズに関するものである。
Detailed Description of the Invention The cA of the present invention has a so-called refractive index distribution in which the refractive index gradually changes around the optical axis in a plane perpendicular to the optical axis. , for example, relates to an imaging lens suitable for photographic lenses and the like.

従来はとんどの結像レンズは屈折率が一様な媒質を用い
て構成されてお妙、例えば半画角23°、FA1.4〜
1.8程常の結像レンズは写真用レンズにみらnるごと
く均質媒質レンズ6〜7枚による構成が一般的である、
これをより少ないレンズ枚数で構成することが出来るな
らば、レンズ加工に要する労力の軽減、レンズ保持機構
の簡素化、史には偏心等の製作誤差の介入する要素が少
なくなる等の点で極めて有利である。
Conventionally, most imaging lenses have been constructed using a medium with a uniform refractive index, such as a half angle of view of 23° and an FA of 1.4.
1.8 Ordinary imaging lenses are generally composed of 6 to 7 homogeneous medium lenses, similar to photographic lenses.
If this could be constructed with fewer lenses, it would be extremely effective in terms of reducing the labor required for lens processing, simplifying the lens holding mechanism, and reducing the number of interfering factors such as eccentricity and other manufacturing errors. It's advantageous.

しかしながら、従来技術では光学性能を維持しつつ構成
枚数を現状より減らすのは極めて困難である。
However, with the prior art, it is extremely difficult to reduce the number of constituent elements from the current level while maintaining optical performance.

一方、近年屈折率分布型レンズが新規な光学技術として
注目を集め、正立等倍結像素子として用いられるアレイ
レンズや、軸−F近傍の結像のみヲ考μし皮コリメータ
レンズ、光デイスク用ピックアップレンズなどへの応用
が多数提案されている、更に、At1cinsOn等の
論文(A PPTJ T F!DOFT工08.VOl
、21 、/466〔1982)においては、写真用レ
ンズへの応用が報告されている。この写真用レンズは2
枚の屈折率分布型レンズで構成され、物界側には、光軸
上で量も肉厚が薄く、光軸から離れるに従って肉厚が増
加し、物体側に凸なる面を向けたメニスカス形状で且つ
光軸上で最も屈折率が高く、光軸から離れるに従って屈
折率の値が連続的に減少する屈折率分布を有する第1の
レンズが、像界側には光軸上で最も肉厚が薄く光軸から
離れるに従って肉厚が増加し、像界側に凸なる面を向は
友メニスカス形状で、且つ光軸上で最も屈折率が高く、
光軸から離rB、に従って屈折率の値が連続的に減少す
る屈折率分布を有する第2のレンズが配されている。こ
の構成により、I’/I6が2の標準レンズを得ている
もので、従来の均質レンズによるものに比べ、大幅にレ
ンズ枚数を少なくしている。
On the other hand, in recent years, gradient index lenses have attracted attention as a new optical technology, such as array lenses used as erect equal-magnification imaging elements, skin collimator lenses that focus only on imaging near the axis -F, and optical discs. Many applications have been proposed for pickup lenses, etc.;
, 21, /466 [1982] reports its application to photographic lenses. This photographic lens is 2
Consists of a gradient index lens, with a meniscus shape on the object side that is thin on the optical axis, increases in thickness as it moves away from the optical axis, and has a convex surface facing the object side. The first lens has a refractive index distribution that has the highest refractive index on the optical axis and continuously decreases as it moves away from the optical axis, and the first lens has the highest refractive index on the optical axis on the image field side. It is thin, and the wall thickness increases as it moves away from the optical axis, and the surface convex to the image field side has a meniscus shape, and has the highest refractive index on the optical axis.
A second lens having a refractive index distribution in which the refractive index value continuously decreases with increasing distance rB from the optical axis is disposed. With this configuration, a standard lens with I'/I6 of 2 is obtained, and the number of lenses is significantly reduced compared to a conventional homogeneous lens.

そして比較的に大きな画角を有する結像レンズに屈折率
分布型レンズを応用し皮例は、この報告垣外には、はと
んど見られまい。
Outside of this report, there are very few examples of applying a gradient index lens to an imaging lens with a relatively large angle of view.

本発明の目的は、屈折率分布が存する媒質を用い、極め
て少ないレンズ枚数で構成されるにも拘わらず、収差が
良好に補正され且つ写真レンズ郷に適用可能な広画角を
有する結fSレンズを提供することにある。
An object of the present invention is to provide a condensing fS lens that uses a medium with a refractive index distribution and has an extremely small number of lenses, yet has aberrations well corrected and a wide angle of view that can be applied to photographic lenses. Our goal is to provide the following.

本発明に係る結像し/ズに於いては、光軸からの距離に
応じて屈折率が連続的に変化する媒質より成る2枚のレ
ンズで形成される。物界側に配されるmルンズの形状は
光軸上で最も肉厚が薄く、光軸から離れるに従って肉厚
が増加する様な形状(以後、本明細書では斯様な形状を
凹の形状と呼ぶ)で、且つ像界側に凹面を向は几メニス
カス形状である、物界側に配される第2レンズの形状は
、上述した凹の形状であり、更に第2レンズの像界側の
面は、平面又は像界側に凹面を向けた形状である。更に
第ルンズ及び第2レンズともに、その屈折率の分布は。
The image forming lens according to the present invention is formed by two lenses made of a medium whose refractive index continuously changes depending on the distance from the optical axis. The shape of the m-lens placed on the object side is such that it has the thinnest wall thickness on the optical axis and increases in thickness as it moves away from the optical axis (hereinafter, in this specification, such a shape will be referred to as a concave shape). The shape of the second lens arranged on the object world side is the above-mentioned concave shape, and the concave surface facing the image field side is a meniscus shape. The surface is a flat surface or has a concave shape facing the image field side. Furthermore, the refractive index distribution of both the first lens and the second lens is as follows.

光軸上で最も屈折率が高く、光軸から#nるに従ってそ
の屈折率が徐々に小さくなる屈折率分布(以後、本明細
書では、斯様な屈折率分布を正の唄折力の屈折率分布と
呼ぶ)である。
A refractive index distribution in which the refractive index is highest on the optical axis and gradually decreases as the distance from the optical axis increases (hereinafter, in this specification, such a refractive index distribution will be referred to as positive refraction) rate distribution).

上記屈折率分布型のレンズのパワーは、屈折率分布型F よ妙定まるものであるが5本発明に係る実施例に示す様
に、第ルンズ及び第2レンズとも正のパワーを有するこ
とが望ましい6又、前記第2レンズの物界側の面は、物
界側に凹を向ける面形状であることが1ましい。
The power of the above-mentioned gradient index lens is determined by the gradient index type F, but as shown in the embodiments of the present invention, it is desirable that both the first lens and the second lens have positive power. 6. Furthermore, it is preferable that the object-world side surface of the second lens has a concave shape facing the object-world side.

以下、本発明に関して詳述する。The present invention will be explained in detail below.

本発明の結像レンズを構成するレンズの様に、屈折率N
が光軸からの距@rに応じて変化するいわゆるラディア
ルグラデイエントレンズの屈折率N (rlは、 N(r)=No+N1r”+N、r’ +H@r” +
−・と表わされる。但し、NO+ N1 +Nt e 
Nm・・・は定数、rは光軸からの距離を表わすもので
ある。この様な、屈折率分布を有するレンズには、以下
の様な特徴がある、 (1) 屈折率分布自身が屈折力を本つ。従って近軸領
域における設計の自由度が大きい、r2) 屈折率分布
がペッツバール和への寄与を本つ、そして正の屈折力を
屈折率分布に持たせた場合、同等の屈折力を屈折面に持
tせるのに比べ、そのペッツバール和への寄寿は小さい
。従って、ペッツバール和を適切か値とし、像面彎曲を
補正することが比較的容易である。
Like the lenses constituting the imaging lens of the present invention, the refractive index N
The refractive index of the so-called radial gradient lens, N (rl, is N(r)=No+N1r"+N, r'+H@r"+
It is expressed as -・. However, NO+ N1 +Nt e
Nm... is a constant, and r represents the distance from the optical axis. A lens with such a refractive index distribution has the following characteristics: (1) The refractive index distribution itself has refractive power. Therefore, there is a large degree of freedom in design in the paraxial region, r2) If the refractive index distribution primarily contributes to the Petzval sum, and if the refractive index distribution has positive refractive power, then the same refractive power can be applied to the refractive surface. Its contribution to the Petzval sum is small compared to the amount it can hold. Therefore, it is relatively easy to set the Petzval sum to an appropriate value and correct the field curvature.

(3) 非球面に類似した収差補正効果がある。即ち、
4次以上の分布係数(N7.N311.)によって近軸
前に影響を与えることなく諸収差をある範囲においてコ
ントa−ルすることができる。
(3) It has an aberration correction effect similar to that of an aspherical surface. That is,
Various aberrations can be controlled within a certain range without affecting the paraxial front by using the fourth-order or higher distribution coefficients (N7.N311.).

(4) 色消効果がある。即ち、2次の係数N1の波長
依存性が色収差係数に影響をもっ几め、これにより色収
差をコントロールすることができる。
(4) Has an achromatic effect. That is, the wavelength dependence of the second-order coefficient N1 has a stronger influence on the chromatic aberration coefficient, thereby making it possible to control the chromatic aberration.

本発明は、これらの特長をい力hシ、次t7)ような構
成をとっている。即ち、物体側に配さ一1q−y5Wc
ルンズの形状を、gj!側に凹面を向けた凹メニスカス
とし、像側に配さtまた第2レンズの形状を、倫側に凹
面オtは平面を自社た凹の形状とし、更に第1、第2レ
ンズの屈折率分布の屈折力を共に正としてt、nる。
The present invention takes advantage of these features and has the following configuration. That is, 1q-y5Wc arranged on the object side
The shape of the runes, gj! It is a concave meniscus with a concave surface facing the side, and the shape of the second lens is a concave shape with a concave surface on the image side, and the refractive index of the first and second lenses is Assuming that the refractive powers of the distribution are both positive, t and n are given.

既に木べたように、屈折力分布に正の屈折力を分担させ
次男が像面彎曲の補正に有利である。
As I have already mentioned, the second son is advantageous in correcting field curvature by sharing positive refractive power in the refractive power distribution.

従って本発明では第1、第2レンズ共に正の屈折力の屈
折率分布を屯tせ、ペッツバール和への正の寄与を小さ
くしている。更に、両レンズの形状を凹とするととによ
りペッツバール和への負の寄与を持友せ像面彎曲の補正
を図ると共に、球面収差等の他の収差の補正をも行なう
Therefore, in the present invention, the refractive index distribution of the positive refractive power of both the first and second lenses is made narrower, thereby reducing the positive contribution to the Petzval sum. Furthermore, by making both lenses concave in shape, it is possible to maintain a negative contribution to the Petzval sum and to correct field curvature, as well as to correct other aberrations such as spherical aberration.

上述しf Atkin8の論文に示される結像レンズで
は第2レンズの像界側の面を像界側に対して凸とすると
、第2レンズの物界側の面は物界側に対して強い凹とな
抄、この面で高次の収差が発生しやすい。そこで本発明
では第2レンズの像界側の面を凹面または平面とし、@
2レンズの物界側の面の負の屈折力の分担を小さくして
いる。これにより、特に高次の球面収差、コマ収差の発
生を防ぎ、良好な収差補正を行なうことが可能とかった
In the imaging lens mentioned above and shown in the paper by Atkin8, if the surface of the second lens on the image field side is convex with respect to the image field side, the surface of the second lens on the object world side is strong against the object world side. Since the surface is concave, high-order aberrations are likely to occur on this surface. Therefore, in the present invention, the image field side surface of the second lens is made concave or flat, and @
The share of negative refractive power between the object-world side surfaces of the two lenses is reduced. This makes it possible to particularly prevent high-order spherical aberrations and comatic aberrations from occurring, and to perform good aberration correction.

オた、屈折率分布が存する媒質に球面加工を施す場合、
屈折率分布の中心軸に対して偏心なく加工せねばならず
、従来の均質媒質の球面加工に比べ難かしいことから、
本発明において最終面即ち、第2レンズの像界側の面を
平面とじt場合はt童性において極めて有利であるとい
える。
Additionally, when performing spherical processing on a medium with a refractive index distribution,
It must be processed without eccentricity with respect to the central axis of the refractive index distribution, which is more difficult than conventional spherical processing of homogeneous media.
In the present invention, it can be said that it is extremely advantageous in terms of child-friendliness if the final surface, that is, the surface on the image field side of the second lens is made flat.

更に良好な収差補正を行なうため、以下の条件を満たす
ことが望ましい、 1.7 ≦r、 /f≦8r1) −1≦r3/f≦−0,55(2) 0.23≦d、/f≦ 0,42 (3)0.42≦(
13/f≦ 0.75 (4)ここにfは全系の焦点距
離、rl+rjは物体側から数えて第1、第3面の曲率
半径、即ちr。
In order to perform even better aberration correction, it is desirable to satisfy the following conditions: 1.7≦r, /f≦8r1) -1≦r3/f≦-0,55 (2) 0.23≦d, / f≦0,42 (3)0.42≦(
13/f≦0.75 (4) Here, f is the focal length of the entire system, and rl+rj is the radius of curvature of the first and third surfaces counted from the object side, that is, r.

は@ルンズの物界側の曲率半径、r3は第2レンズの物
界側の曲率半径であり、へは第ルンズのd、は第2レン
ズの軸上肉厚である、r、 / fが条件式(1)の下
限をこえると第ルンズの物界側の面で発生する球面収差
が犬となり、全系での補正が困難となる。また上限をこ
えると軸外光線の第ルンズの物界側の面での屈折が大き
くなり、軸外収差が悪化する。
is the radius of curvature of the second lens on the object world side, r3 is the radius of curvature of the second lens on the object world side, d of the second lens is the axial thickness of the second lens, r, / f is When the lower limit of conditional expression (1) is exceeded, the spherical aberration generated on the object-world side surface of the lens becomes a dog, making it difficult to correct it in the entire system. If the upper limit is exceeded, the refraction of off-axis rays on the object-world side surface of the first lunion will increase, and off-axis aberrations will worsen.

rs /f カ(2) f) 下+5をこえると、ペッ
ツバール和が大となり像面彎曲の補正が困難となり、ま
た上限をこえると第3面での高次収差の発生が大となり
、峙に球面収差、コマの補正が困難となる。
rs /f f(2) f) When the value exceeds lower +5, the Petzval sum becomes large and it becomes difficult to correct the curvature of field, and when the upper limit is exceeded, the occurrence of higher-order aberrations at the third surface becomes large, and it becomes difficult to correct the field curvature. It becomes difficult to correct spherical aberration and coma.

条件式(5) 、 (4)はレンズ厚に関する条件であ
ゆ、dl + dSが条件式(3) 、 (4)の下1
゛艮をこえると各レンズの屈折力分布が強くなり諸収差
が悪化すると共に、媒質の製造が困難となる。また(3
) (4)の上限をこえると全系が大型化し、バックフ
ォーカスが充分とれなく力る。
Conditional expressions (5) and (4) are conditions related to lens thickness, and dl + dS is the lower 1 of conditional expressions (3) and (4).
If the value exceeds 100 mm, the refractive power distribution of each lens becomes strong, various aberrations worsen, and it becomes difficult to manufacture the medium. Also (3
) If the upper limit of (4) is exceeded, the entire system will become larger and the back focus will not be sufficient and force will be exerted.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

表1は本発明の第1〜第5実施例のレンズデータを示す
。各実施例は半画角24°、焦点距離Vi1であり、第
1、第2実施列はF腐1.8、第3〜第5実施例はF/
F61.4である。第1.第4実施例は@2レンズの像
界側の面を像界に対して凹面、第2、第5、第5実施例
は同じ〈筆2レンズの像界側の面を平面としt例である
Table 1 shows lens data of the first to fifth embodiments of the present invention. Each example has a half angle of view of 24° and a focal length of Vi1, the first and second rows have an F/F of 1.8, and the third to fifth examples have an F/F of 1.8.
It is F61.4. 1st. In the fourth embodiment, the surface on the image field side of the lens 2 is concave with respect to the image field, and in the second, fifth, and fifth embodiments, the surface on the image field side of the brush 2 lens is a flat surface. be.

i友、第3実施例は、第1、@2レンズに全く同一の屈
折率分布を持たせた例である。このように両レンズに同
じ媒質を用いるならば生産コストの点で極めて有利であ
る。
Dear friend, the third embodiment is an example in which the first and @2 lenses have exactly the same refractive index distribution. If the same medium is used for both lenses in this way, it is extremely advantageous in terms of production costs.

表2は表1で示し友各実施例の物体短離無限遠時の3次
の球面収差係数■、コマ収差係数■、非点収差係数瓜、
ペッツバール和P、歪曲収差係数Vの値を示す、 表 1 第1実施例 第2実施例 第3実施例 第4実施例 第5実施例 表 2 この表でみるように、各実施例共賭収差係数が良好に補
正されている。
Table 2 is shown in Table 1, and the third-order spherical aberration coefficient ■, coma aberration coefficient ■, and astigmatism coefficient ≡ when the object is short to infinity for each example are shown.
Table 1 shows the values of the Petzval sum P and the distortion aberration coefficient V. Table 1 First Example Second Example Third Example Fourth Example Fifth Example Table 2 As seen in this table, the joint aberration of each example The coefficients are well corrected.

また、表3は本発明の第6実施例のレンズデータを示し
、表4はその3次の諸収差係数及び軸土色収差係fiL
1倍率色収差Tの錆を示す。
Table 3 shows the lens data of the sixth embodiment of the present invention, and Table 4 shows its third-order aberration coefficients and axial chromatic aberration coefficients fiL.
It shows rust with 1x chromatic aberration T.

この実施例は色収差の補正を図った例であり、表4にみ
るように単色の3次収差係数と共に色収差係数も良好に
補正されている。第1図にこの第6実施例のレンズ断面
図を、第2図(A)に第6実施例の第ルンズのdI9i
、g線に対応する屈折率分布を、第2図(B)に同じく
第2レンズのd@、glljに対応する屈折率分布を示
した。ま几第3図は第6実施例の諸収差図であや、高次
まで良好に収差補正がなされていることがわかる。
This example is an example in which chromatic aberration is corrected, and as shown in Table 4, the chromatic aberration coefficient is well corrected as well as the monochromatic third-order aberration coefficient. FIG. 1 shows a sectional view of the lens of the sixth embodiment, and FIG. 2(A) shows the dI9i of the lens of the sixth embodiment.
, and the refractive index distribution corresponding to the g-line, and FIG. 2(B) similarly shows the refractive index distribution corresponding to d@ and gllj of the second lens. FIG. 3 is a diagram of various aberrations of the sixth embodiment, and it can be seen that aberrations are well corrected up to high orders.

なお、色収差の補正を行なう場合、面の屈折により生じ
る色収差を屈折力分布により補正するため、以下の条件
を満足することが望ましい。
Note that when correcting chromatic aberration, it is desirable to satisfy the following conditions because the chromatic aberration caused by surface refraction is corrected by refractive power distribution.

N Iol (a)> N、G、(g)N 、G2(d
)> N、、2(g) 但し、N+o+(d)、’132 (g)は各々d線、
g線に対する第ルンズの屈折率分布の2次分布係数を表
わし、’ 、02(d)* NIO2(8)は各々68
1g線に対する第2レンズの屈折率分布の2次分布係数
を表わす。
N Iol (a) > N, G, (g) N, G2 (d
)> N,, 2(g) However, N+o+(d), '132 (g) are respectively d line,
Represents the quadratic distribution coefficient of the refractive index distribution of the lunth with respect to the g-line, ',02(d)*NIO2(8) are each 68
It represents the quadratic distribution coefficient of the refractive index distribution of the second lens with respect to the 1g line.

以上説明したように本発明に於いては、ラディアルグラ
デイエントを有する媒質を用いることにより、2枚とい
う極めて少ないレンズ構成枚数で、諸収差が良好に補正
され次結像レンズを実現することがで1!た。
As explained above, in the present invention, by using a medium having a radial gradient, various aberrations can be well corrected and a secondary imaging lens can be realized with an extremely small number of lenses (two lenses). 1! Ta.

【図面の簡単な説明】 第1図は、本発明に係る結像レンズの一実施例のレンズ
断面図、第2図(A)、(B)は各々、第1図に示す結
像レンズを形成する各々のレンズの屈折率分布を示す図
、第3図は第1図に示す結像レンズの諸収差図。 rl・・・物界側より数えて第1番目のレンズ面の曲率
半径 ス゛ (li、、、第1番目のレンズ面と第1+1番目のレン
が面との間の軸上肉厚又は軸上空気間隔 so・、・正弦条件不満定理 Mlo、メリディオナ′ル偉面 S・・・サジタル儂面 出願人 キャノン株式会社 弔 7 口 LI EA/2 0 EA/2
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a cross-sectional view of an embodiment of the imaging lens according to the present invention, and FIGS. 2(A) and 2(B) are views of the imaging lens shown in FIG. FIG. 3 is a diagram showing the refractive index distribution of each lens to be formed, and FIG. 3 is a diagram showing various aberrations of the imaging lens shown in FIG. 1. rl...Radius of curvature of the first lens surface counting from the object side Air interval so...Sine condition dissatisfaction theorem Mlo, meridional surface S...Sagittal my surface Applicant: Canon Co., Ltd. 7 MouthLI EA/2 0 EA/2

Claims (1)

【特許請求の範囲】[Claims] (1) 光軸からの距離に応じて屈折率が連続的に変化
する媒質より成る2枚のレンズで形成され、物界側に配
された第ルンズは、光軸から離れるに従ってその屈折率
が小さくなく屈折率分布を有し、その形状は光軸上で最
も肉厚が薄く且つ像界側に凹面を向は定メニスカス形状
であり、像界側に配され−fi:、第2レンズは、光軸
から離れるに従ってその屈折率が小さくなる屈折率分布
を有し、その形状は光軸上で最も肉厚が薄く且つ像界側
の面が平面又は像界側に凹面を向けた形状であることを
特徴とする結像レンズ、
(1) The lens is formed by two lenses made of a medium whose refractive index continuously changes depending on the distance from the optical axis, and the refractive index changes as the distance from the optical axis increases. It is not small and has a refractive index distribution, and its shape is the thinnest on the optical axis and has a constant meniscus shape with a concave surface facing the image field side. , has a refractive index distribution in which the refractive index decreases as it moves away from the optical axis, and its shape is such that it is the thinnest on the optical axis and the surface on the image field side is flat or concave toward the image field side. An imaging lens characterized by
JP7682184A 1984-04-13 1984-04-16 Image-forming lens Pending JPS60220305A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7682184A JPS60220305A (en) 1984-04-16 1984-04-16 Image-forming lens
US06/720,082 US4762403A (en) 1984-04-13 1985-04-04 Imaging optical system having a distributed index lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7682184A JPS60220305A (en) 1984-04-16 1984-04-16 Image-forming lens

Publications (1)

Publication Number Publication Date
JPS60220305A true JPS60220305A (en) 1985-11-05

Family

ID=13616333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7682184A Pending JPS60220305A (en) 1984-04-13 1984-04-16 Image-forming lens

Country Status (1)

Country Link
JP (1) JPS60220305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730905A (en) * 1985-08-06 1988-03-15 Olympus Optical Co., Ltd. Eyepiece having a radial gradient index lens
US4859040A (en) * 1985-12-27 1989-08-22 Canon Kabushiki Kaisha Optical system having gradient-index lens and method for correcting aberrations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730905A (en) * 1985-08-06 1988-03-15 Olympus Optical Co., Ltd. Eyepiece having a radial gradient index lens
US4859040A (en) * 1985-12-27 1989-08-22 Canon Kabushiki Kaisha Optical system having gradient-index lens and method for correcting aberrations

Similar Documents

Publication Publication Date Title
JP4014186B2 (en) Endoscope objective lens
JP3559623B2 (en) Imaging lens
JPH04267212A (en) Ultra wide angle lens
JPH04261511A (en) Wide-angle lens
JP4727056B2 (en) Image reading lens
JPS6113206B2 (en)
JP4491107B2 (en) Lens for photography
JP2000028919A (en) Middle telephotographic lens
JPH06308384A (en) Large-diameter wide-angle photographic lens
JPS614012A (en) Image forming lens
JPS58220115A (en) Wide angle lens system
US4257678A (en) Wide angle photographic lens
JPH11271610A (en) Medium telephoto lens
JP3426378B2 (en) Endoscope objective lens
JPH0423763B2 (en)
JPH0251115A (en) Retrofocus type wide-angle lens
JPS60220305A (en) Image-forming lens
JPH10186244A (en) Eyepiece system
JPH11133297A (en) Fourier transform lens
JPS6126044B2 (en)
JPH0750242B2 (en) Gradient index type meniscus lens and lens system
US5414560A (en) Single lens
JPS60218614A (en) Image forming lens
JP2700003B2 (en) Compact wide-angle lens
JPH085910A (en) Image forming lens system